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Abstract: 

There are many forecasting techniques that can be used in the financial markets, the 

importance of forecasting is to able investment community to take their decisions about the 

future expectations, assets allocation, portfolio management, assets pricing and other 

benefits. This paper presents the Box-Jenkins model as one of the forecasting techniques, 

which we can use, in the financial time series. The main aim of this study is to predict 

volatility of Amman Stock Exchange as one of the emerging markets for the insurance sector. 

That is adopted to give an investment community a chance to plan about their buying or 

selling decisions for financial securities in the future. That is achieved by finding the tentative 

Autoregressive Integrated Moving Average (ARIMA) models that describe the equation of the 

forecasting sector. 
The data are accumulated weekly from the web site of Amman Stock Exchange using the 

historical indices in the period from1/1/2005-1/4/2010. 
We test the stationary by using unit root test which indicates that there is a stationary at 

level for insurance sector, and then use a minimum mean square error, t-statistics value and 

p-statistics value to choose the best ARIMA models at 95% confidence interval. The resulted 

model for this study for insurance sector is: 
ttt aZZ 11  

From this proposed model we can get the forecasting equation for the insurance sector. 
Volatility has turned out to be a subject matter of massive significance to almost anyone 

who is concerned in the financial markets, even as a spectator. In this paper, we present the 

advantage of ARIMA model in forecasting financial time series data. Amman stock exchange 

(Jordan) in particular insurance data was selected as a tool to show the ability of ARIMA 

model in forecasting financial time series, experimentally. Then, the weekly data was used to 

compute the values of volatilities in this study. Finally, the best ARIMA model was 

determined.  

                                                 
*  This Research Was Submitted in January 2011, and Accepted for Publishing in April. 2012. 
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1- Introduction: 

Volatility is comparable with risk: high volatility is thought of as a sign of market 

distraction. Volatility as a noticeable fact as well as a thought remains fundamental to modern 

financial markets and academic research (Figlewski, 2004). In fact, extremely justified 

volatility can figure the basis for efficient price finding, while volatility dependence implies 

certainty, which is welcomed by traders and medium-term investors (Elena & Storis, 2009). 

Forecasting volatility in financial markets is a very important information in hedging, asset 

pricing, asset allocation and portfolio management, because it is a technique to predict  about 

events that maybe occur, and to determine the expected returns or losses in the future, hence 

investors take their decisions easily, and  with no doubt. Also a high volatility of financial 

market requires well-organized power and risk management, in order to declare the 

competitiveness's and to well manage own funds (Hussein, 2007).  

Juncal et al, (2006) studied the effect of changes in volatility dynamic behavior of 

emerging market Volatility. They investigated whether the dynamic behavior of stock market 

volatility in six emerging economies (Argentina, Brazil, Chile, Korea, Mexico, and Thailand). 

Paolo (2006) studied the analysis of financial crises for 156 stocks in 20 countries. He found 

the likelihood of these regime-shifts to be related to proxies for uncertainty among investors, 

exchange rate volatility, trade linkages, and liquidity. Zikovic (2007) studied Slovenia index 

(SBI-20), he used ARMA (Auto-Regressive Moving Average with) and GARCH.  

Chien-Chiang et al. (2009) studied the stock prices and the efficient market hypothesis. 

The purpose of their study is to demonstrate whether different economic development levels 

exhibit the same efficient market hypothesis EMH. Alshiab (2006) studied the predictability 

of ASE Performance; he examined the univariate ARIMA forecasting model, using the ASE 

general daily index between 4/1/2004 and 10/8/2008. He found that the forecasting was not 

consistent with actual performance during the same period of the prediction over the coming 

150 coming days. Al-Zoubi & Al-Zoubi, (2007) studied the Market efficiency, time-varying 

volatility and the asymmetric effect in Amman stock exchange. They examined the stock 

return behavior in ASE, market efficiency, the time varying risk-return relationship, the 

persistence of the stock volatility and the leverage effect for the holding period 1990-2000, 

they found that the univariate statistics show negative skewness excess kurtosis and deviation 

from normality for ASE index, significance positive relationship between equity return and 

risk in ASE which consistent with portfolio theory.  

Ritab, et al (2007) investigated the behavior of daily stock return volatility around the 

price limit hit for a sample of 159,189 securities listed in Amman Stock Exchange (ASE), 

over the years 1994, 1995 respectively. Their results indicated that stocks hit experiences their 

highest level of volatility on the day when stocks-hit reach their upper daily price limits of 

5%, and decreases significantly one day after the hit. The main features of this study are the 

utilization of the ARIMA model and unit root tests to distinguish the stationary of the time 

series for the volatility ASE. Also, we choose ASE because there are few numbers of studies 

that search and concern about weekly forecasting volatility data by using ARIMA model on 

the ASE as an emerging market, we studied in details the insurance sector, and that the data 

needed are available on the website of ASE.  
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2- Problem of the Study: 

Volatility has been one of the most active and successful areas of research in time series 

econometrics and economic forecasting in recent decades. Financial market volatility is a 

central issue to the theory and practice of asset pricing, asset allocation and risk management. 

The main problem of this study is to answer about the following questions: 

a- The purpose of this study is to model and quantify volatility of returns on Amman 

Stock Exchange using Box-Jenkins model. 

b- To check the stationarity for Amman Stock Exchange for the Insurance sector using 

augmented Dickey- Fuller test at level or at first difference. 

c- We can effectively forecasting volatility and identify a convenient technique to 

achieve this goal. 

3- Materials and Methods: 

3-1- Volatility: 

There are four sources of volatility differences; asset concentration, stock market 

development/economic integration, microstructure effects and macroeconomic influence, and 

political risk (Harvey & Bekaret, 1997). The most noticeable source is the first one that it 

depends on the degree of diversification and concentration natural in the IFC (International 

Finance Corporation) index for each country. As an economy becomes more developed, it often 

becomes more diverse and as a result the cross sectional volatility of the country's component 

stock returns should increase. That is, as stocks are less dependent on one sector, their 

covariance's should decrease which should increase the cross sectional variance. At the level of 

the index, this effect should decrease market volatility. This negative relation will not 

necessarily hold in more developed markets. The third is microstructure research; here we say 

that it is well known that the heterogeneity of trader's information sets as well as liquidity 

affects the variance of returns. In developed markets, large changes in prices across securities 

suggest a greater flow of private information being revealed to the market. Ross (1989) found 

the volatility of price is directly linked to the rate of information flow in the market. Schwert 

(1989a and 1989b) showed that macro economy is one of the underlying forces effecting stock 

market volatility, unfortunately, the macroeconomic data are sparse or nonexistent in some of 

emerging markets. For example inflation variability is an obvious candidate for an explanatory 

variable. The volatility trader has a different perception on the market than the habitual stock 

market investor. The volatility trader understands that times of declining stock prices and 

increasing volatility are predictable. However, periods of high volatility offer an equal number 

of trading opportunities as when stock prices are increasing. Therefore, volatility is not a 

negative. There are ways to profit regardless of market trend, and volatility is not a vengeance.  

Volatility is a fact of life when investing; it can be high as well as high. However, there 

are ways to generate profits using many strategies. When the economy is in the low-volatility 

state, the standard deviation of returns is small and determining whether the economy has 

switched to the high-volatility state is easy .Large returns are unlikely to occur in the low 

volatility state, so their occurrence quickly reveals to investors that the economy is in the 

high-volatility state. However, the inference problem is more difficult when the economy is in 
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the high-volatility state. In the high-volatility state, small returns do not immediately reveal 

that the economy has switched states because a reasonable chance of getting a small return 

exists even though the standard deviation of returns is high. A financial time series exhibits 

two essential properties: nonstationary and time varying volatility. Indeed, nonstationary 

means that a variable has no clear tendency to return to a constant value or linear trend. The 

second central property of a financial time series is that its volatility varies over time. The 

value of financial instruments depends on the expected volatility of returns. Volatility is 

analogous to risk: financial institutions undertake volatility assessments as part of their risk 

analysis exercise. Volatility can be defined as: 
rt = |log(xt) – log(xt-1)|                                                    (1) 

Where: rt is the returns, xt is the observation at time t, xt-1 is the observation time t-1, log is the 

logarithm and   |.| is the absolute value.  

3-2- Box-Jenkins Model: 

There are many forecasting techniques that used in statistics (Random Walk Model, 
Historical Mean Model, Moving Average Model, Weighted Moving Average Model, 
Exponential Smoothing Model, Regression Model, Autoregressive Conditional 
Heteroskedastic model (ARCH (1) Model), Exponential Generalized Autoregressive 
conditional heteroskedasticity model ( EGARCH (1,1) Model), ARIMA Model). In this study, 
ARIMA model was used since (Pankratz, 1983) Box-Jenkins method produced the best 
forecast for 74% of the series that he evaluated, The UBJ approach has three advantages over 
many other traditional single-series methods. First, the concepts associated with UBJ models 
are derived from a solid foundation of classical probability theory and mathematical statistics. 
Many other historically popular univariate methods (though not all) are derived in an intuitive 
way. Second, ARIMA models are a family of models, not just a single model. Box and 
Jenkins have developed an approach that guides the analyst in choosing one or more 
appropriate models out of this larger family of models. The third, it can be shown that an 
appropriate ARIMA model produces optimal univariate forecasts. That is, no other standard 
single-series model can give forecasts with a smaller mean-squared forecast error (i.e., 
forecast error variance). Box and Jenkins propose a practical three-stage procedure for finding 
a good model. The three-stage are: Identification, we use two graphical devices to measure 
the correlation between the observations within a single data series. These devices are called 
an estimated autocorrelation function (abbreviated ACF) and an estimated partial 
autocorrelation function (abbreviated PACF). The estimated ACF and PACF measure the 
statistical relationships within a data series in a somewhat crude (statistically inefficient) way. 
Nevertheless, they are helpful in giving us a feel for the patterns in the available data. 
Diagnostic checking, Box and Jenkins suggest some diagnostic checks to help determine if 
an estimated model is statistically adequate. A model that fails these diagnostic tests is 
rejected. Furthermore, the results at this stage may also indicate how a model could be 
improved. This leads us back to the identification stage. We repeat the cycle of identification, 
estimation, and diagnostic checking until we find a good final model. We find a satisfactory 
model then we may use it to forecast. The iterative nature of the three-stage UBJ modeling 
procedure is important. The estimation and diagnostic-checking stages provide warning 
signals telling us when, and how, a model should be reformulated. We continue to re-identify, 
re-estimate, and re-check until we find a model that is satisfactory according to several 
criteria. This iterative application of the three stages does not guarantee that we will finally 
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arrive at the best possible ARIMA model, but it stacks the cards in our favor. Box-Jenkins 
method produced the best forecast for 74%of the series that they evaluated (Pankratz, 1983). 
The Box - Jenkins technique is a practice for accomplishing the model past values of the time 
series variable and past values of the error terms. The Box - Jenkins approach consists of 
extracting the predictable from the observed data through a series of iterations. The most 
common ARIMA model included three parameters: p, d, and q where p is the number of 
autoregressive parameters, d is the number of differencing parameters and q is the number of 
moving average parameters. A general ARIMA model is in the form (Bruce et al, 2005; and 
John and David, 2003): 

1 1 2 2 1 1 2 2... ...t t t p t p t t t p t qz C z z z a a a a                (2)  

Where: 

:t is the periodic time,  :tz is the numerical value of an observation, :i
for 

1,2,...,i p  are the autoregressive parameters, :j
for 1,2,...,j q are the moving 

average parameters, :ta is the shock element at time t . 

To estimate the parameters 
i
and 

j
 for a fixed p and q, we perform the linear multiple 

regression:  

1 1 2 2 1 1 2 2
ˆ ... ...t t t p t pt t t p t qz z z z a a a                (3)  

There are two phases to the identification of an appropriate Box - Jenkins model: 
changing the data if necessary into a stationary time series and determining the tentative 
model by observing the behavior of the autocorrelation and partial autocorrelation function. A 
stationary time series is that it does not contain trend, that is, it fluctuates around a constant 
mean. One of the methods of transformation is by taking logarithm; it will transform the 
series into a stationary time series. We can write the differencing by the operator of 

differencing as the following
1t tBz z .  After transformation, it is clear that the observations 

fluctuate around the constant mean. Box and Jenkins suggest the number of Lag to be no more 

than 
4

n  autocorrelations; the autocorrelation coefficient measures the correlation between a 

set of observations and a lagged set of observation in a time series. The autocorrelation 

between 
tz
 
and 

t kz  measures the correlation between the pairs
1 1( , )kz z , 

2 2( , )kz z ,…,

( , )n n kz z . The sample autocorrelation coefficients 
kr  is an estimate of 

k
 where 

2

( )( )

( )

t t k

k

t

z z z z
r

z z
                                                           

(4)  

Where tz : The data from the stationary time series. t kz : The data from k time period ahead 

of t. z : The mean of the stationary time series. 

The estimated partial autocorrelation function PACF is used as a guide, along with the 
estimated autocorrelation function ACF, in choosing one or more ARIMA models that might 
fit the available data. The idea of partial autocorrelation analysis is that we want to measure 

how ˆ
tz  and ˆ

t kz  are related. The equation that gives a good estimate of the partial 

autocorrelation is: 
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                                         (5) 

Where  1, 1,
ˆ ˆ ˆ ˆ

kj k j kk k k j    and 3,4,...k ; 1,2,..., 1j k .  

The stationary assumption simplifies the theory underlying UBJ models and helps ensure 

getting a useful estimate of parameters from a moderate number of observations, the mean of 

a stationary series indicates that the overall level of the series. If a time series is stationary 

then the mean of any major subset of the series does not differ significantly from the mean of 

any other major subset of the series. Also if a data series is stationary then the variance of any 

major subset of the series will differ from the variance of any other major subset only by 

chance. However, most nonstationary series that arise in practice can be transformed into 

stationary series through relatively simple operations. 

4- Results and Discussion: 

There are many tests used to prepare the Insurance sector for ASE using ARIMA model. 

In the beginning, the volatilities for Insurance sector were calculated by using Equation (1). 

Table 1 showed the Descriptive Statistics for insurance sector. Moreover, unit root test is used 

to test the stationarity for this sector. Finally, the autocorrelation and partial autocorrelation 

were achieved for Insurance sector by checking the correlation between the index lags, they 

used to choose the convenient tentative models. 

4-1- Descriptive Statistics of the Insurance Sector: 

The first phase of this analysis is based on the descriptive statistics of the Insurance 

sector Table 1 showed the descriptive statistics for Insurance sector. While, Figure 1 showed 

the original values of the insurance sector and Figure 2 showed the plot of the volatilities for 

the insurance sector.  

Table (1) 

Summary Descriptive Statistics for Insurance Sector of ASE 

Descriptive Statistics for the Insurance Sector 

Estimators Raw Insurance Volatility Insurance 

Mean 5096.2 0.010264 

Median 4664.1 0.007330 

Maximum 8504.4 0.067905 

Minimum 3732.4 0.000106 

Std. Dev. 1143.8 0.010074 

Skewness 1.3 2.22 

Kurtosis 0.51 7.26 

Variance 1308312.2 0.000101 

SE mean 69.2 0.000611 

Total count 273 272 
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Figure 1- Original Time Series Plot of the Insurance Sector 
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Figure 2- Plot of the volatility for Insurance Sector 

4-2- Unit Root Test: 

A unit root test determine whether a time series variable is non-stationary using an 

autoregressive model. One of the most famous tests is the augmented Dickey- Fuller test. This 

test used the existence of a unit root as the null hypothesis. It appears to be necessary to check 

the stationary in levels or at differences because there is a critical problem associated with 

non-stationary variables that are the spurious correlation. The more negative ADF is the 

stronger the rejection of the hypothesis that there is a unit roots at some level of confidence. 

The non-stationary time series could produce a weak result. In order to avoid the spurious 

correlation problem it is essential to test for unit root of the insurance sector for ASE. In this 

study, the Augmented Dicky-Fuller (ADF) test is proposed to examine the stationarity (unit 

root) of the stock market index Insurance. Tables 2 showed the ADF test for stock market 

indices for Insurance sector at levels 1%, 5% and 10%. The results of this work out, strongly 

confirm at the standard 5% significance level that the stock index series are stationary in 

levels for insurance, so that no need to use any transformation on it.  
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Table (2)  

Unit Root Test (Stationary Test) of Variable (Insurance) at Levels 1%, 5% and 10% 

ADF Test Statistic -6.579841 1%   Critical Value* -3.9958 

Level  5%   Critical Value -3.4280 
Stationary  10% Critical Value -3.1371 
*MacKinnon Critical Values for Rejection of Hypothesis of a Unit Root. 

     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(INSURANCE) 
Method: Least Squares 

Included Observations: 267 After Adjusting Endpoints 
Variable Coefficient Std. Error t-Statistic Prob. 

INSURANS(-1) -0.638909 0.097101 -6.579841 0.0000 

D(INSURANS(-1)) -0.003657 0.092856 -0.039381 0.9686 
D(INSURANS(-2)) 0.001676 0.083331 0.020112 0.9840 
D(INSURANS(-3)) -0.029546 0.073462 -0.402195 0.6879 
D(INSURANS(-4)) 0.054794 0.062734 0.873447 0.3832 
C 0.007854 0.001672 4.698712 0.0000 

@TREND(1/01/2005) -8.86E-06 7.64E-06 -1.159714 0.2472 

R-squared 0.327421 Mean Dependent Var 9.53E-06 
Adjusted R-squared 0.311900 S.D. Dependent Var 0.011444 
S.E. of Regression 0.009493 Akaike Info Criterion -6.450701 
Sum Squared Reside 0.023429 Schwarz Criterion -6.356654 
Log Likelihood 868.1686 F-statistic 21.09531 
Durbin-Watson Stat 1.996473 Prob (F-statistic) 0.000000 

4-3- Autocorrelation and Partial Autocorrelation: 

The autocorrelation function (ACF) is the plot of autocorrelations and is very useful when 

examining also stationarity and when selecting from among various nonstationary models. 

Autocorrelation is one of the major tools in time series modeling (as guidance in choosing terms 

to include in an ARIMA model). The partial autocorrelation function (PACF) is the plot of partial 

autocorrelations, and it is also one of the major tools in time series modeling (as guidance in 

choosing terms to include in an ARIMA model). Figure 3 showed the ACF for the indices of 

insurance volatility data shows a large positive significant spike at lag 1 (this means that the 

autocorrelation of the successive pairs of observations within 1 time period is not within sampling 

error of zero). All of the other autocorrelations (for lags 2 to 15) are within the 95% confidence 

limits. While, Figure 4 showed the PACF for the insurance volatility data shows a large positive 

significant spike at lag 1 (this means that the partial autocorrelation of the successive pairs of 

observations within 1 time period is not within sampling error of zero). All the other partial 

autocorrelations (for lags 2 to 15) are within the 95% confidence limits.  

javascript:BSSCPopup('tren_def_time_series_model.htm');
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Figure 3- Autocorrelation Function for Insurance Volatility 
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 Figure 4- Partial Autocorrelation Function for Insurance Volatility 

4-4- ARIMA Model Analysis: 

ARIMA models are the most general class of models for a short time series 

forecasting. These series must be stationary, if not; it must be transformed into stationary 

time series, this transformation can be done by taking the difference or taking the log. In 

fact, the easiest way to think of ARIMA models is as fine-tuned versions of random-walk 

and random-trend models: the fine-tuning consists of adding lags of the differenced series 

and/or lags of the forecast errors to the prediction equation, as needed to remove any last 

traces of autocorrelation from the forecast errors. The main objective of UBJ analysis is to 

find a good representation of the process generating mechanism that has produced a given 

realization for ASE sectors, in order to build an appropriate ARIMA models for all the 

sectors used in this study. This representation is called a model. An ARIMA model is an 

algebraic statement chosen in light of the available realization. To achieve this goal we 

have used Equation 3.2 which contained three parameters p, d, and q where p is the 

number of autoregressive parameters, d is the number of differencing parameters and q is 

the number of moving average parameters. The most important general characteristics of 

theoretical AR and MA based on the construction of ACF’s and PACF’s are defined as 

follow; Stationary autoregressive (AR) processes have theoretical ACF’s that decay or 
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damp out” toward zero. But, they have theoretical PACF’s that cut off sharply to zero 

after few spikes. The lag length of the last PACF spike equals the AR order (p) of the 

process. Moving-average (MA) processes have theoretical ACF’s that cut off to zero after 

a certain number of spikes. The lag length of the last ACF   spike equals the MA order (4) 

of the process. Their theoretical PACF’s decay or “die out” toward to zero.  Mean square 

error is simply the average of the squared errors for all forecasts. Also, it can be defined 

as a measure of accuracy of the fitted model. The MSE is not very informative by itself, 

but it can be used to compare fits of different ARIMA models to choose which one do 

better. It can be defined as:  

2 2

1 1

ˆ( ) ( )
n n

t t t

t t

e y y

MSE
n n

                                            (6) 

Associated with the point estimate of each parameter in Box-Jenkins model is its 

standard error and t-value. Let  denote any particular parameter in a Box-Jenkins model, let 

 denote the point estimate of , let 
S

denote the standard error of the point estimate . 

Then the t-value associated with  is calculated by the equation  

t
S

                                                                     (7) 

If the absolute value of t is large, then  is large. This implies that  does not equal 

zero, and thus that we should reject H0: =0, which implies that we should include the 

parameter  in the Box-Jenkins model. Additionally, p-value defined to be tested regarding 

to the value of which is the level of significant. In this study, the value of  is assumed to 

be 0.05, since most financial studies used this value. If we reject 0 : 0H
 in favor of 

: 0aH
, by setting 0.05 , then we have concluded that  is important in the model by 

using a test that allows only a 0.05 probability of concluding that  is important when it is 

not. That is usually regarded as strong evidence that  is important. Table 3 showed the all 

varieties of ARIMA models choices between the model (0,0,0) to (2,2,2) for the Insurance 

volatility sector. The best model for Insurance sector is ARIMA (1,0,0), since this model 

gives the minimum mean square error which is 0.0000882, then ARIMA (1,0,2). Therefore, 

the general formula for the ARIMA (1,0,0) is defined as follows: 

ttt aZZ 11                                                 (8) 

Moreover, Table 4 showed the final estimate of the parameters for the insurance 

volatility sector data, the t-value for the coefficient AR (1) and for the constant are 

significant, based on the t-value and p-value. For all t-values, they are greater than 2, while, 

p-values, they are 0.000 for both coefficient of AR (1) and the constant term.   
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Table (3) 

The result of the best ARIMA model for Insurance volatility 

Model (ARIMA) MSE Model (ARIMA) MSE 

(1,0,0) 0.0000882 (1,2,0) 0.000227 

(1,0,1) 0.0000992 (1,2,1) Not fitted* 

(1,0,2) 0.0000889 (1,2,2) Not fitted* 

(1,1,0) 0.0001159 (2,0,0) 0.0000886 

(1,1,1) Not fitted* (2,0,1) Not fitted* 

(1,1,2) Not fitted* (2,0,2) 0.0000889 

(2,1,0) 0.0001099 (2,2,0) 0.0001920 

(2,1,1) 0.0000911 (2,2,1) Not fitted* 

(2,1,2) 0.0000893 (2,2,2) Not fitted* 

* The data not available to fit the model 

Table (4) 

Final Estimate of Parameters of the Insurance Volatility for ASE 

Final Estimates of Parameters 

Type Coef SE Coef T P 

AR   1 0.3657000 0.0566000 06.46 0.000 

Constant 0.0064972 0.0005696 11.41 0.000 

Mean 0.0102426 0.0008979   

Based on the Table 3 the ARIMA (1,0,0) model can be derived. In order to check the 

adequacy of a Box-Jenkins model is to analyze the residuals
ˆ( )t tY Y

. Figures 5 and 6 showed 

the residuals of ACF and PACF respectively for the volatility Insurance sector. The residuals 

ACF and PACF for volatility Insurance sector are indicated significant. Thus, the residuals are 

random and the model is a good fit to the data. Besides, the spikes are surrounded by the 

confidence limits. 
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Figure 5- Autocorrelation of Residuals: Insurance Volatility Sector 
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Figure 6- Partial Autocorrelation of Residuals: Insurance Volatility 

The four-in-one residual plot is showed in Figure 7. The normal probability plot indicated 

the residuals are normally distributed. Moreover, the fit regression line showed the residuals are 

closed to the straight line. The histogram indicated approximately the whole data centered on 

the mean of data. The residuals versus fitted values indicated the variance is approximately 

constant. The last graph showed the residuals versus order observations which is weekly for 

Banks volatility sector, it is clear the whole residuals centered on and near to the x- axis. 

At forecasting stage, the fitted model has been selected; it can be used to produce 

forecasts for future time periods for the Insurance volatility sector. The final model for the 

volatility Insurance sector is demonstrated in equation 8. While, Table 5.7 showed the 

predicted 10 weeks ahead of the volatility insurance sector. Whereas, Figure 5.8 showed the 

plot of the actual and predicted values for the volatility insurance sector, the 95% percent 

prediction interval for the forecasts also are computed. Since, the values of the lower interval 

are negative sign, we can ignore these boundaries.  

The main results of the volatility forecasting are demonstrated for ASE, we studied the 

volatility for Insurance sector. The main results of the unit root tests are stated. In addition the 

ARIMA models that gave the best model to predict the 10 week ahead are tested too. Hence 

the best appropriate model fitted the financial- time series for insurance sectors ASE are 

found. The convenient model that fitted the data for the volatility insurance sector is ARIMA 

(1,0,0) with mean equal 0065 and the coefficient was 0.366,  
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Figure 7- Residuals Plots: Insurance Volatility 

Table (5) 

ARIMA (1,0,0) Model: Forecasting Values for Volatility Insurance Sector 

Forecasts from Period 272, 95% Limits Confidence Interval 

Period Forecast Lower Upper 

273 0.0100608 -0.0083547 0.0284763 

274 0.0101761 -0.0094320 0.0297842 

275 0.0102183 -0.0095439 0.0299804 

276 0.0102337 -0.0095489 0.0300163 

277 0.0102393 -0.0095460 0.0300247 

278 0.0102414 -0.0095443 0.0300271 

279 0.0102421 -0.0095436 0.0300279 

280 0.0102424 -0.0095434 0.0300282 

281 0.0102425 -0.0095433 0.0300283 

282 0.0102426 -0.0095432 0.0300283 
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Figure 8- Actual and Forecasts Volatility Insurance for ASE 

4-5- Further Research: 

a- There are many forecasting methods that can be used to measure the goodness of fit 

for the time series of Amman Stock Exchange like GARCH models, we can use it to 

forecast volatility then compare its results with ARIMA models.  

b- We can use another programs for example SAS to find the appreciate model for the 

financial time series, and then compare its results with other programs results. 

c-  There are many details can be illustrated in ARIMA models with more explanations.  
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