Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences ,Department of Entomology ,Faculty of Sciences Ain Shams University .

Microbiology journal is one of the series issued twice by the Egyptian Academic Journal of Biological Sciences, and is devoted to publication of original papers related to the research across the whole spectrum of the subject. These including bacteriology, virology, mycology and parasitology. In addition, the journal promotes research on the impact of living organisms on their environment with emphasis on subjects such a resource, depletion, pollution,

biodiversity, ecosystem.....etc www.eajbs.eg.net

Heavy Metals and Antibiotics Resistance of Halophilic Bacteria Isolated from Different Areas in Red Sea, Egypt.

Khalid A. Ali AbdelRahim^{1,*}, El-Sayed Mohamed Soltan^{1,2}, Magdy A. Abu-Garbia¹, and Fathia El-Zien¹

1- Department of Botany, Faculty of Science, Sohag University, 82524 Sohag, Egypt
 2- Department of Botany, College of Science, Al-Baha University, Saudi Arabia
 E. Mail: <u>khalidfp7@gmail.com</u>

ARTICLE INFO

Article History Received: 2/5/2014 Accepted: 8/6/2014

Keywords: Halophilic bacteria Heavy metals Salts Antibiotics

ABSTRACT

Hundred and thirty eight (138) bacteria were isolated from 3 different areas on Red Sea governorate, Egypt. Among these 138 moderately halophilic isolates, 2.17%, 3.6%, 6.5%, 9.4%, and 7.2% of the isolates were resistant up to 5mM Cd^{2+} and Zn^{2+} , 20 mM for Cu^{2+} , Pb^{2+} , and Co^{2+} , respectively. The majority of halophilic bacterial isolates showed resistance to more than 10 mM to these metals except Cd^{2+} . All strains were resistant to lead, whereas 50% only of the strains were resistant to cadmium. The resistance to $(Cd^{2+} + Cu^{2+})$; $(Zn^{2+} + Cu^{2+})$ showed the highest values between bacteria (6.5%), whereas 4.34% of the isolated strains were resistant to (Cd^{2+}, Zn^{2+}) and $(Zn^{2+} + Pb^{2+})$, but 2.17% of the isolates were resistant to 3 metals (Cd²⁺, Zn²⁺ Cu²⁺); (Zn^{2+}, Cu^{2+}, Co^2) ; $(Cu^{2+}, Co^{2+}, Pb^{2+})$ and resistant to 4 metals $(Zn^{2+}, Cu^{2+}, Co^{2+}, Pb^{2+})$; $(Cd^{2+}, Zn^{2+}, Cu^{2+}, Co^2)$; $(Cd^2, Zn^{2+}, Cu^{2+}, Pb^{2+})$; $(Zn^{2+}, Pb^{2+}, Cu^{2+}, Co^2)$. No bacterial isolates were resistant to the 5 metals combined. The isolated halophilic bacteria exhibited sharp peaks of resistance to drugs such as: Velosef 95%, Cceftriaxone, 91.66%, Ampicillin 83.33 %, Nitrofurantion 81.66%, Tarivid 80%, Cephalothin 73.33%, Cephalexin 66.66%, Cefadroxil 83.33%, and Flucloxacillin 85% whereas few isolates (6.6%) were resistant to Vancomycin.

INTRODUCTION

Microorganisms which vary greatly in their salt tolerance can be classified into different categories according to the basis of their optimal growth rates. According to the levels of salinity that can grow in its presence, bacteria can be classified to: non halophiles, which grow best in media containing less than 1% NaCl; slight halophiles (mesophiles) which grow in media containing 1-3% NaCl (include the marine bacteria); moderate halophiles (halotolerant) which grow in media with 3-15% NaCl con.; borderline extreme halophiles that grow best in media containing 9-23% NaCl and extreme halophiles that grow in media up to 32% NaCl (Baxter and Gibbons, 1956; Marquez *et al.*, 1987).

Halophilic microorganisms can be classified into two main groups, the first group is extremely halophilic archeae which constitute a very heterogeneous halophilic microorganism and can grow best in the media containing up to 32 % NaCl.

The second group is the moderately halophilic bacteria which can grow in the media containing up to 3% NaCl (Galinski and Tindall 1992).

Many studies were conducted on halophilic bacteria over the last years. Halotolerant and moderately halophilic eubacteria can adapt to wider ranges of salt concentrations (Vreeland *et al.*, 1983).

most In cases. а minimum concentration of Na is essential for growth. This may be due in part to the requirement for Na gradients to drive transport processes in the cell membrane. Certain species may also possess a primary respiration-driven outward sodium pump. Addition of high concentrations of compounds such as glucose or glycerol lowered the NaCl requirement to 0.3 M, but no further lowering of the sodium concentration required was achieved (Adams., et al 1987).

Studying the interactions between heavy metals and microorganisms has been specially focused on bacterial transformation and conversion of metallic ions by reduction in different polluted environments (Chang and Waltho., 1993), the selection of metalresistant microorganisms from polluted environments (Hiroki, 1994), and the use of resistant microorganisms as indicators of potential toxicity to other forms of life as well as on mechanisms, determinants, and genetic transfer of microbial metal-resistance (De Rore *et al.*, 1987).

Microbial metal resistance mechanisms include precipitation of metals as phosphates, carbonates, and sulfides; metal volatilization by methyl or ethyl group physical addition; exclusion by electronegative components in membranes extracellular polymeric substances and (EPS); energy dependent metal efflux systems; and intracellular sequestration with low molecular weight, Cysteine-rich proteins

(Hughes and Poole, 1989; Gadd, 1990; Silver, 1998).

microbial In general, the metal resistance happened through different strategies to deal with toxic metal concentration in the environments (Roane and Kellogg, 1996; Bruines et al., 2000; Nies, 2003). These strategies are either to prevent entry of the metal into the cell or to actively pump the metal out of the cell. Such resistance can be divided into two classes: metal dependent and metal-independent (Roane and Pepper, 2000). As mentioned before, the mechanism of resistance to metals takes several forms, these include accumulation in the form of particular protein-metal association (Ow, 1993; Rohit and Sheela, 1994), blockage at the level of the cell wall and the systems of membrane transportation (Tomioka et al., 1994; Wehreim and Wettern , 1994), efflux of metal ions outside of the cell, complication of the metal ions inside the cell, reduction of the heavy metal ions to a less toxic state (Nies, 1999) or in situ immobilization by extracellular precipitation (Roane, 1999).

In many cases, resistance to heavy metal ions is determined by plasmids (Silver and Mitra, 1988), which can be used for the creation of novel microbial strains with a high detoxifying activity against heavy metals. As a result of metal resistance ability, microbes play a major role in the biogeochemical cycling of toxic heavy metals also in cleaning up or remediation metal contaminated environments (Jing *et al* ., 2007).

Despite, alternatively low concentration some heavy metals are essential for microorganisms (e.g., Co²⁺, Cu $^{2+}$, Zn^{2+} , Ni^{2+}) since they provide vital cofactors for metallo-proteins and enzymes (Chua 1999; Doelman et al., 1994), heavy metals have an inhibitory action on microorganisms by blocking essential functional groups, replacing essential metal ions, or modifying the active conformations of biological molecules (Rajapaksha et al., 2004; Wood and Wang, 1985; Doelman et al., 1994; Li et al., 1994).

In naturally polluted environments, the response of microbial communities to heavy metals depends on the concentration and availability of metals and is dependent on the actions of complex processes, controlled by multiple factors such the type of metal, the nature of medium, and microbial species (De Rore et al., 1987; Goblenz et al., 1994; Hachemi et al., 1994; Tomioka et al., 1994). Heavy metal MICs (minimal inhibitory concentrations for bacterial strain present in various natural habitats such as soil, water, sediments, and sewage amended soil have been studied (Chang and Broadbent, 1982; Duxbury and Bicknell, 1983; Abbas and Edwards, 1989; Nieto et al., 1989; Hiroki, 1994).

In addition to heavy metals. microorganisms resistant may be to antibiotics too. These resistant strains have been isolated frequently from different environments and clinical samples (Henriette et al., 1991; Sundin and Blender 1993). This leads to the suggestion that the combined expression of antibiotic resistance and metal tolerance is caused by selection resulting from metals present in the particular environment (Sevil et al., 2009 Calomiris et al., 1984).

MATERIALS AND METHODS Sample Collection and Preparation

Water samples were collected from different sites of the Red Sea, Hurgada, Safaga, and Al-Quseir. For bacteriological analysis, water samples were collected aseptically and transported to the laboratory. where they were analyzed within 8 hrs of collection. To determine total cultural bacteria, a serial dilution method was used to reduce the number of organisms on halophilic agar plates medium. Individual bacterial colonies on nutrient agar plate which varied in shape and color were picked up and purified by repeated streaking. Water samples were acidified with concentrated HNO₃ and stored at 4°C for heavy metal analysis.

Medium

Halophile medium agar (HA) was used in g/l: NaCl, 100 yeast, 5 tryptone 5; or peptone, 5 or peptone perteose, 5 MgSO₄.7H₂O, 20 CaCl₂, 0.2 KCl, 5 agar, 25. **Characteristics of Water Samples**

Cation concentration and Cl ion content were performed according to the methods described by Abou –Kandil, 2000.

Water samples were treated as recommended by Grimalt, 1989 by acid digestion using 0.6 ml of concentrated HNO3, 0.25 ml of 75% H_2SO_4 and 100 ml of unfiltered water. Each sample was then evaporated, diluted to 25 ml and analyzed for metal content using atomic absorption spectroscopy, (Perkin Elmer Analyst 300) metal with acetylene-air flame.

Physico-Chemical Analysis of Water Samples

Temperature and pH values were measured. Electric conductivity, E.C. (mmhos/cm as indicator for the salinity) was also measured according to Mostafa *et al.*, 2004 and Dunkle, 1944.

Heavy Metal Analysis

Water samples were analyzed for Heavy metal content by atomic absorption spectrophotometer (Perkin Elmer 2380).

Identification of Bacterial Isolates

were Bacterial isolates identified Morphology (Paik 1980); according to: staining; catalase production Gram (Whittenberg, 1964); growth in 7% sodium chloride; growth in 10% sodium chloride; growth in 15% sodium chloride; growth in 20% sodium chloride; acid and gas from sugars; growth at 15 °C, 40 °C and 45 °C; reduction of nitrate to nitrite (Bachmann and Weaver,1951; Cowans and Steel. 1966); Motility (Rhodes 1958); gelatin hydrolysis; production of indole from tryptophan; starch hydrolysis; casein decomposition; oxidase test (Kovacs ,1956); pigment production (King et al., 1954); anaerobic agar; Voges-Proskauer reaction (Cruickshank et al., 1975); acetylmethylcarbinol production; and growth on sea water.

Effect of Heavy Metals on Bacterial Isolates

Resistance to heavy metals was determined by an agar dilution method according to Washington and Sutter 1980. Plates containing 20 ml of agar and different concentrations of metals were poured on the day of the experiments. The concentrations for all metals tested were as follows (in mM): 0.1, 0.5,1, 2.5, 5, 10, 20, 40, 80, and 100 (Trevors et al., 1985; Garcia et al., 1987b). The minimal inhibitory concentration (MIC) was determined to Cd^{2+} , Zn^{2+} , Cu^{2+} , Pb^{2+} , and Co^{2+} as the lowest concentration of metal ion preventing growth (Smith 1967).

Antibiotic Susceptibility Test

Standard disc-agar diffusion method described by FineGold and Martine 1982, was used for determining the antibiotic susceptibility. Discs containing Nitrourantion (NF300 µg), Ceeadroxil (CFR 30 µg), Cephalexin (CL30 µg), Rocephen (CRO30 µg), Ampicillin (AM10 µg), Cephradine (CD 30 µg), Tarivids (OFX10 µg), Flumox (AF 10 µg), Vancocin (Va 30 µg), and Keflin (KF30 µg) were used in this test according to Bauer *et al*, (1966), and the inhibition zone was determined according to Foti *et al.*, 2009; 1974.

RESULTS

Physical and Chemical Characteristics of Water Samples

Thirty six samples were collected from 3 different sites of the Red Sea water. Table 1 shows the average means of physicochemical characteristics of water samples were measured. For example, the physicochemical characteristics of the water samples showed that; the temperature of the water samples varied between 20-25 °C, and the pH values of the samples were ranged between 7-7.8, which was considered suitable for growth of halophilic bacteria.

Table 1: Mean of the physico-chemical characteristics of water samples collected from different sites of the Red Sea.

Characteristics	Concentrations	Characteristics	Concentrations
Temp (°C)	20-25 °C	$Ca^{2+}(\mu g/l)$	$7.0-7.5 \times 10^2$
РН (-)	7.62-7.81	$Mg^{2+}(\mu g/l)$	$12.25-12.26 \times 10^{5}$
E.C (mmhos/cm)	30.1-30.8	$K^+(\mu g/l)$	$4-4.5 \times 10^2$
Salinity (µg/l)	$1.44 - 1.45 \times 10^5$	HCO ₃ (µg/l)	$7-8 \times 10^5$
$Na^{+}(\mu g/l)$	9.996-9.997×10 ⁶	$SO_4^{-}(\mu g/l)$	$4-5 \times 10^{6}$
$C^{-}(ug/l)$	$20.14-20.15 \times 10^{6}$		

Each value is an average mean of collected samples.

E.C.: Electric conductivity

Table 2: Heavy metal ions concentrations in water samples collected from different sites of the Red Sea.

Metal ions	Concentration
$Pb^{2+}(\mu g / l))$	$7-7.2 \times 10^2$
$\operatorname{Co}^{2+}(\mu g/l)$	$3-3.3 \times 10^2$
$Zn^{2+}(\mu g/l)$	20-25
$Cd^{2+}(\mu g/l)$	75-76
$Cu^{2+}(\mu g/l)$	$7.9-8.0 \times 10^2$

The chemical analysis of water samples showed that the chloride ions of the water samples varied between 20.14×10^{6} -20.15 $\times 10^{6} \,\mu$ g/ml, the sodium concentrations of the samples ranged between 9.996 $\times 10^{6}$ -9.997 $\times 10^{6} \,\mu$ g/ml, whereas it had low amount of calcium and potassium (7.0 $\times 10^{2}$ -7.5 $\times 10^{2} \,\mu$ g/ml, 4 $\times 10^{2}$ -4.5 $\times 10^{2} \,\mu$ g/ml), respectively. The sulphate concentration fluctuated

between 4×10^{6} - 5×10^{6} µg/ml, while magnesium levels ranged between 12.25 $\times 10^{6}$ - 12.26×10^{6} µg/ml.

Heavy Metal Analysis

Table 2 shows the average of 5 heavy metal ions $(Pb^{2+}, Co^{2+}, Zn^{2+}, Cd^{2+}, and Cu^{2+})$ concentrations in sea water.

Table 3: Total count of	halophilic bacteria	isolated from d	lifferent sites o	f the Red Sea.
-------------------------	---------------------	-----------------	-------------------	----------------

S *4	CFU×10 ³ /ml water samples				
Sites	winter	Autumn	Summer	Spring	
Hurghada	3	2.9	2.9	3	
Safage	1.6	1.6	1.8	1.7	
Al-Quseir	1.3	1.5	1.3	1.3	

Bacteria

Hundred and thirty eight (138) bacterial isolates were obtained after incubation of water samples on HA medium (Table 3). The mean value of total count of halophilic bacterial isolates from the three sites were ranged in summer between 1-3.8 (CFU/ 10^3 ml), in autumn was between 1.2-4.7 (CFU/ 10^3 ml), in winter was between 1.1-5 (CFU/ 10^3 ml), whereas in spring was between 1.1-3.8 (CFU/ 10^3 ml).

Table 4: Incidence of metal resistance (138 isolates) halophilic bacterial isolates isolated from the Red Sea.

Metals		No. of resistant isolates (%of resistant isolates)							
Metals ions (mMol)	0.05	0.1	0.5	1	2.5	5	10	20	40
Cd ²⁺	69(50)	55(39.8)	37(26.8)	35(25)	25(18)	3(2.17)	0	0	0
Zn ²⁺	119(86.2)	58(42)	30(21.7)	21(15.2)	16(11.5)	5(3.6)	0	0	0
Cu ²⁺	106(76.8)	83(60)	69(50)	58(42)	51(36.9)	46(33.33)	23(16.6)	9(6.5)	0
Pb ²⁺ ,	138(100)	138(100)	133(96.6)	92(66.66)	78(56.5)	71(51.44)	22(15.9)	13(9.4)	0
Co ²⁺	124(89.8)	104(75.36)	92(66.66)	69(50)	58(42)	33(23.9)	19(13.76)	10(7.2)	0

Screening of Halophilic Bacterial Isolates for Heavy Metal Resistance

The 138 bacterial isolates were screened for their metal resistance using media containing different concentrations of the five heavy metal, namely, Cd^{2+} , Zn^{2+} , Cu^{2+} , Co^{2+} , and Pb^{2+} ranging from 0.05 to 100mM (Table 4). Among the 138 moderately halophilic isolates isolated from the Red Sea, 2.17%, 3.6%, 6.5%, 9.4%, and 7.2% of the isolates were as resistant up to

5mM Cd^{2+} and Zn^{2+} , 20 mM for Cu^{2+} , Pb^{2+} , and Co^{2+} , respectively. The resistance determination (Table 4) indicated that a majority of halophilic isolates showed resistance to more than 10mM to these metals except Cd^{2+} , other resistance values up to 20 mM were recorded. As shown in Table 5 and Figure 1, all strains were resistant to lead, whereas 50% only of the strains were resistant to cadmium.

Table 5: Percentages of the halophilic bacterial isolates resistant to used five heavy metal.

Metal ion	No of resistant isolates	% of resistant isolates			
Cadmium	69	50			
Zinc	119	86.2			
Copper	106	76.8			
Lead	138	100			
Cobalt	124	90			

Table 6: Multiple metal resistance pattern of the (138) halophilic bacterial isolates recovered from different sites of the Red Sea.

No. of metals	Resistance pattern	No. of resistant isolates	% of resistant isolates
	Cd^{2+}, Zn^{2+}	6	4.34
	Cd^{2+}, Cu^{2+}	9	6.5
2	Cd^{2+} , Pb^{2+}	3	2.17
	Zn^{2+} , Cu^{2+}	9	6.5
	Zn^{2+}, Pb^{2+}	6	4.34
	$Cd^{2+}, Zn^{2+}, Cu^{2+}$	3	2.17
3	Zn^{2+} , Cu^{2+} , Co^{2}	3	2.17
	Cu ²⁺ , Co ²⁺ , Pb ²⁺	3	2.17
	Zn ²⁺ , Cu ²⁺ , Co ²⁺ , Pb ²⁺	3	2.17
4	$Cd^{2+}, Zn^{2+}Cu^{2+}, Co^{2}$	3	2.17
	$Cd^{2},Zn^{2+}, Cu^{2+}, Pb^{2+}$	3	2.17
	$Zn^{2+}, Pb^{2+}, Cu^{2+}, Co^2$	3	2.17

Fig. 1: Percentages of the halophilic bacterial isolates resistant to heavy metal.

The results of multiple metal resistances of these halophilic bacteria isolated from different sites of the Red Sea were listed in Table 6 and drown in Figure 2. The resistance to $(Cd^{2+} + Cu^{2+})$; $(Zn^{2+} + Cu^{2+})$ showed the highest values between bacteria (6.5%), whereas 4.34% of the isolated strains were resistant to (Cd^{2+}, Zn^{2+})

and $(Zn^{2+} + Pb^{2+})$, but 2.17% of the isolates were resistant to 3 metals $(Cd^{2+}, Zn^{2+}, Cu^{2+})$; $(Zn^{2+}, Cu^{2+}, Co^{2})$; and $(Cu^{2+}, Co^{2+}, Pb^{2+})$ and resistant to 4 metals $(Zn^{2+}, Cu^{2+}, Co^{2+}, Pb^{2+})$; $(Cd^{2+}, Zn^{2+}, Cu^{2+}, Co^{2})$; $(Cd^2, Zn^{2+}, Cu^{2+}, Pb^{2+})$; and $(Zn^{2+}, Pb^{2+}, Cu^{2+}, Co^{2})$. No bacterial isolate were resistant to the 5 metals combined.

Table 7: Percentages	of isolates	resistant to	antibiotics.
----------------------	-------------	--------------	--------------

Antibiotic	Conc. (ug)	NO of resistant strains	% of resistance
Velosef (Cephradine) (CD)	30	131	95
Ceftriaxone (CRO)	30	127	91.66
Ampicillin(AM)	10	115	83.33
Nitrofurantion (NF)	300	113	81.66
Tarivids (OFX)	10	110	80
Cephalothin (KF)	30	101	73.33
Cefalexin (CL)	30	92	66.6
Cefadroxil (CFR)	30	115	83.33
Flucloxacillin (AF)	10	117	85
Vancomycin(VA)	30	9	6.6

Fig. 2: Multiple metal resistance pattern of the isolated halophilic bacteria.

As shown in (Table 5) cadmium was the most toxic metal since 50 % of the isolates were inhibited by only 0.05 mM. Zinc was very toxic after cadmium, since 86.2% of the isolates were resistant by the same concentration while copper, lead, and cobalt were the less toxic metals than cadmium and zinc, since 76.8%, 100%, and 90% of the isolates were resistant by the same concentration respectively.

Antibiotics Susceptibility Test

In our study, the isolated halophilic bacterial strains exhibited sharp peaks of resistance to drugs such as: Velosef 95%, Cceftriaxone 91.66%, Ampicillin 83.33 %, Nitrofurantion 81.66%, Tarivid 80%, Cephalothin 73.33%, Cephalexin 66.66%, Cefadroxil 83.33%, and Flucloxacillin 85%, whereas few isolates (6.6%) were resistant to Vancomycin as shown in Table 7 and Figure 3.

NO. of antibiotics to which isolates were resistant	No. of isolates	solates (%)
10	9	6.6
9	50	33.66
8	55	40
7	57	41.45
6	60	43.63
5	68	49.27
4	73	52.89
3	87	63
2	122	88.40
1	131	95

As shown in Table 8 and Figure 4, the numbers

greater the number of antibiotics that

bacteria were exposed to it, the less the

numbers and percentage of resistant isolates. Table 9 shows the antibiotic resistance pattern of the isolates.

Fig. 4: Incidence of multiple antibiotic resistances.

Table 9: Antibiotic resistance pattern of 138 isolates recovered from different sites of the Red Sea.

NO of antibiotics	Resistance pattern	NO of resistant isolates
	AF, KF	27(19.5)
	CRO,AM	30(21.3)
2	SFR,CL	27(23.1)
2	OFX.NF	30(21.3)
	NF,VA	5(3.6)
	CD.AF	3 (2.1)
	AF.KF.CRO	20(14.4)
3	AM.CFR.CL	15(10.8)
	OFX.NF.VA	5(3.6)
	AF.KF.CRO.AM	17(12.3)
4	CFR,CL,OFX,NF	13(9.4)
	VA,CD,AF,KF	4(2.8)
_	AF,KF,CRO,AM,CFR	13(9.4)
5	CL,OFX,NF,VA,CD	3(2.17)

DISCUSSION

The chemical characteristics of the Salter deposit from Alexandria, and Port-Saeed, since the pH values are 8.5-9 and 7.6, respectively. These two sites had temperature range between 22°C-27°C. (Rodriguez-Valera *et al*.1981; Rodriguez-Valera *et al*.1985).

Hanan (2002) reported that, the Red Sea coast marshes were formed by the evaporation of sea-water on the Red sea-side and encouraged by high temperatures and low rainfall, the temperature during sampling was 28°C-30°C. Schweinfurth and Lewin 1998, have collected two samples from soda lakes in Wadi-Naturon, Egypt, which are located in a desert depression west of the Nile Delta. The temperature of this sampling area was in the range of 30°C-32°C, and pH values ranged from 9.6 to 10. In the present work, the electric conductivity fluctuated between 30.1-30.8 mmhos/cm, salinity $1.44 - 1.45 \times 10^{\circ}$ ranged between which reflected high salinity of collected samples.

Metal concentrations ranged at the time of sampling from $0.075\mu g l^{-1}$ for Co^{2+} to $181\mu g l^{-1}$ for Pb²⁺. These values represent up to a 100-fold increase above those reported internationally and are even higher than data from polluted marine environments (Spivak 1981; Abosamra *et al.*1989). These high metal concentrations may attribute to sewage disposal and to the ship-maintenance activity (El-Sayed *et al.* 1981; Claisse and Alzieu 1993). The marked variations in the microbial numbers of the different water samples could be interpreted on the basis of the differences in the physical and chemical characteristics of water samples (e.g., salinity temperature and others). These factors interact and produce a complex interrelated effect on the microbial counts and activities. In this respect, El-Abyad *et al.*, (1979) suggested that the salinity is not only the factor that affects the microbial numbers, but the environmental conditions during incubation have a major influence on the appearance of specific bacterial types.

Pollution of the environment by metals has increased dramatically in recent years, largely as a result of industrial activity; although agricultural products and sewage disposal also contribute (Gadd, 1990; Gadd White, 1993). The ability of microorganisms to grow in the presence of high metal concentrations may result from specific mechanisms of resistance (Sabry et al., 1997; Nies, 1999). These resistance mechanisms take several forms, such as extracellular precipitation and exclusion, binding to cell surface and intracellular sequestration (Blackwell et al., 1995). Duckworth et al., (1996) reported that Soda Lake in Wadi-Natrun contains dense populations of aerobic organotrophic and alkaliphilic bacteria and recorded numbers of 10^7 - 10^8 bacteria ml-1 in dilute soda lakes.

Ramarnoorthy and Kushner (1975) showed that the availability of lead in the growth medium is generally very low, since

this ion binds to the components of the media. That may explain the resistance of all isolates to applied lead ions. Also, the high resistance to lead could be attributed to the high lead content (181) μ g l-1 in sea water. These findings are in accordance with data from similar work (Nieto *et al.*, 1989; Riley and Taylor 1989). It has been reported that lead can be accumulated in the cell wall and membrane (Tornabene and Edwards 1972). Nevertheless, very little research has been conducted on the genetic basis of lead resistance in bacteria.

The high zinc susceptibility (21%) of the isolates detected in this study is probably due to the increased toxicity to zinc in media containing NaCl, due to the formation of a soluble zinc- chloro complex which increases the availability of the cation to the bacterial cell (Hughes and Poole, 1989).

The majority of halophilic bacterial isolates were strongly multi-resistant to metal ions, as the resistance often occurred for a range of metals rather than for specific metal alone (Dressler et al., 1991: Trojanovska et al., 1997). Sabry et al., (1997) suggest that all of the 81 isolates they studied were penta-metal resistant with 11 different resistances combinations. The resistant of haophilic bacteria to heavy metals may attributed to presence of carbonates phosphates and naturally occurring in sea water and can protect bacteria against metal toxicity (Hughes and Poole 1989), in addition, halophilic isolates are good extracellular polysaccharide producers which may further protect the cell from the toxic effect of heavy metals (Geesey and Jange, 1990).

Plaut *et al.*, (2013) reported that, under similar experimental conditions, three strains (3.7%) were resistant to 11 tested antibiotics and hepta-resistance (9.88%) occurred within eight strains. In addition, seven isolates (8.64%) could tolerate nine different antibiotics.

As pointed by Hsu *et al.*, (1992), the differences in percentage of bacterial resistance to various antibiotics may reflect

the history of antibiotic application and hence there is a possibility of using bacterial drug resistance as an indicator of antibiotics application. The adaptive responses of the bacterial community to several stress agents observed in the present investigation seemed to be the result of sewage disposal as previously stated by Baldini and Cabezali, 1991.

REFERENCES

- Abbas A., and Edwards C. (1989). Effects of metals on a range of *Streptomyces species*. Appl. Environ. Microbiol., (6): 2030-2035.
- Abosamra F., Nahhas R., Zabalawi N., Baba S., Taljo G., and Kassoumeh F. (1989). Trace metals and petroleum hydrocarbonsin Syrian coastal waters and selected biota species. In Marine Pollution (eds).New York: Hemisphere Publishing Corp Albaiges, J., pp.185-200.
- Abou-Kandil R.I. (2000). Studies on moderately halophilic bacteria. M. Sc. Thesis. 2000; Botany Department, Faculty of Science, Alexandria University.
- Adams R., Bygraves J., Kogut M., and Russel M. (1987). The role of osomotic effects in haloadaptation of *Vibrio costicola*, J. Gen. Microbiol., (133): 1861-1870.
- Bachmann B., and Weaver H.R. (1951). Rapid micro Techniques for identification of cultures. V Reduction of nitrates to nitrites. Am. J. Clin. Pathol., (21): 190-.195.
- Baldini M.D., and Cabezali C.B. (1991). Occurrence of antibiotic resistant *Escherichia coli* isolated from environmental samples. Marine Pollution Bulletin., (22): 500-503.
- Bauer A.W., Kirby W.M., Sherris J.C., and Turck M. (1966). Antibiotic susceptibility testing by standardized single disc diffusion method. Am. J. Clin. Pathol., (45): 493-496.
- Baxter R.M., and Gibbons N.E. (1956). Effects of sodium and postassium chloride on certain enzymes of *Micrococcus halodenitrificans* and *Preudomonas salinaria*. Can. J. Microbiol., (2): 599-606.
- Blackwell K.J., Singleton I., and Tobin J.M. (1995). Metal –cation uptake by yeast. A review. Appl. Microbiol. Biotechnol., (43): 579-584.
- Bruines M.R., Kapil S., and Oehme F.W. (2000). Microbial resistance in the

environment. Ecotoxicol. Environ. Saf., (45): 198-207.

- Calomiris J.J., Armstrong J.L., and Seider R.J. (1984). Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Appl. Environ. Microbiol., (47): 1238-1242.
- Chang F.H., and Broadbent F.E. (1982). Influence of trace metals on some soil nitrogen transformation. J. Environ. Qual., (11): 1-4
- Chang J.H., and Waltho J.A. (1993). Solute concentrations within cells of halophilic and non-halophilic bacteria, Biochim. Biophys. Acta., (17): 57-69.
- <u>Chua</u> H., <u>Sin</u> S.N., and <u>Cheung</u> M.W. (1999). Sub-lethal effects of heavy metals on activated sludge microorganisms. *Chemosphere*, 39 (15): 2681–2692.
- Claisse D., and Alzieu C.L. (1993). Copper contamination as aresult of antifouling paint regulations. Marine Pollution Bulletin, (26): 394-395.
- Cowans S.T., and Steel J.K. (1966). Manual for the identification of medical bacteria, Cambridge: Cambridge University press., pp.33:132,148.
- Cruickshank R., Dguid J.P., Marmion B.R., and Swain R.H. (1975). Medical Microbiology.2nd volume12th ed.living stone Edinburgh, London and NewYork., pp 3-19.
- De Rore A., Quesada E., Bejar V., and Ramos-Cormenzana E. (1987). Evolution of bacterial flora from a subterranean saline well by graduted salinity changes in enrichement media. Appl. Bacteriol., (62): 465-471.
- Doelman P., Jansen E., Michels M., and Van Til M. (1994). Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity resistance index, an ecologically relevant parameter Biol. Fertile. Soil., (17):177-184.
- Dressler C., Kues U., Nies D.H., and Friedrich B. (1991). Determinants encoding resistance to several heavy metals in newly isolated copperresistant bacteria. Appl. and Environ. Microbiol., 57: 3079-3085.
- Duckworth A.W., Grant W.D., Jones B.E., and Van Steenbergen R. (1996). Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol. Ecology., (19):181-191.
- Duxbury T., and Bicknell A. (1983). Metaltolerant bacterial populations from natural and metal polluted soils. Soil Biol. Biochem., (15): 243-250.

- El-Abyad M. S., Ismail I.K., and Rizk M.A. (1979). Ecological soils. In: Arid land of plant resources, Proceedings of the international arid lands conference of plant resources, pp.582-597.
- El-Sayed M.K., El-Sayed M.A., and Moussa A.A. (1981). Anthropogenic material in sediment from the Eastern Habour of Alexandria, Egypt. IN Workshop on pollution of Mediterranean. Monaco: ICSEM- UNEP., pp. 493-502.
- Finegold S.M., and Martin W.J. (1982). Standardized disc agar diffusion method for determining susceptibility to antibiotics. In Diagnostic Microbiology. London., pp. 542-550.
- Foti M., Giacopello C., Teresa B., Fisichella V., Rinaldo D., Mamminac C. (2009).
 Antibiotic Resistance of Gram Negatives isolates from loggerhead sea turtles (Caretta caretta) in the central Mediterranean Sea. *Marine Pollution Bulletin*, 58: 1363–1366.
- Gaad G.M., and White C. (1993). Microbial treatment of metal pollution a working biotechnol. Trends. Biotecchnol., 11: 353-359.
- Gadd G.M. (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia., 46: 834-840.
- Galinski E. A., and Tindall B.J. (1992). Biotechnological prospects for halophiles and halo-tolerant microorganisms, In: Herber, R. A. and Sharp, R. J. (ed.), Molecular Biology and Biotechnology of Extremophiles, Blackie and Son, London., pp. 76-114.
- Garcia M.T., Ventosa A., Ruiz-Berraquero F., and Kocur M. (1987). Taxonomic study and amended description of Vibrio costicola. Int. J. Syst. Bacteriol. (37): 251-256.
- Gessy G., and Jang L. (1990). Extracelluar polymers for metal binding.In: H. L. Ehrlich, C. L. Brierley. (ed.), C. L. McGraw-Hill Publishing Company, New York., pp.223-247.
- Goblenz A., Wolf A., and Bauda P. (1994). The role of glutathione biosynthesis in heavy metal resistance in the fission yeast *Schizosaccharomyces pombe*. Metals and microorganisms: relationships and applications. FEMS. Microbiol. Rev., 14: 303-308.
- Grimalt J.G. (1989). Sampling sample handing and operational methods for the analysis of trace pollutants in the marine environment. In: Marine pollution. Albaiges, J. (ed.) New

York, Washington, Philadelphia. Hemisphere Publishing Corp., (32): 13-19.

- Hanan A.M. (2002). Biodiversity and Biotechnological potential of Egyptian halophilic Bacteria Faculty of Science at Qena south Valley University.
- Hashemi F., Leppard G.G., and Kushner D.J. (1994). Copper resistance in *anabaena varibillis*: Effects of phosphate nutrition and polyphosphate bodies. Microbial Ecology., 27: 159-176.
- Henriette C., Petitdemange E., Raval G., and Gay R. (1991). Mercury reductase activity in the adaptation to cationic mercury, phenyl mercuric acetate and multiple antibiotics of a Gram negative population isolated from an aerobic fixed bed reactor. J. Appl. Bacteriol., 71: 439 -444.
- Hiroki M. (1994). populations of Cd- tolerant microorganisms in soil polluted with heavy metal. Soil Sci. Plant. Nutr., 40: 515-524.
- Hsu C.H., Hwang S.C., and Liu J.K. (1992). Succession of bacterial drug resistance as an indicator of antibiotic application in aquaculture. J. Fisheries Society of Taiwun, 19:55-64.
- Hughes M.N., and Poole R.K. (1989). Metal toxicity. In Metals and Microorganisms. Suffolk, U. K: S. T Edmunds buries Press., pp. 252 – 302.
- Jing K.M., Kim K.I., Goldberg A.L., Ha D.B., and Chung C.H. (2007). Metal ions and bacteria wiley, J. Biol. Chem., 267: 20429-20434.
- King E.O., Ward K.M., and Raney D.E. (1954). Two single media for thedemonstration of pyocyanin and fluorscenin. J. Lab.Clin. Med., 44: 301-307.
- Kovacs N. (1956). Identification of *Pseudomonas pyocyanea* by the oxidase reaction. Nature., 178: 678-703.
- Li, F., Tan T.C., and Lee Y.K. (1994). Effect of precondition and microbial composition on the sensing efficacy of a BOD biosensor. Biosensors Bioelectron., 9:197–205.
- Marques, A.M., Congregado F., and Simon-Pujol D. (1979). Antibiotic and heavy- metal resistance of *Pseudomionas aerginusa* isolated from soils. J. Appl. Bacteriol., 47: 437-450.
- Mostafa S.E., Kristen N.S., Aharon O., Gutierrez M.C., Antonio V., and Lee R.K. (2004). *Haloferax sulfurifontis sp. nov.*, a halophilic archaeon isolated from a sulfide- and sulfur-

rich spring. Int. J. of Systematic and Evolutionary Microbiol., 54: 2275–2279.

- Nies D.H. (1999). Microbial heavy –metal resistance. Appl. Microbiol. Biotechnol., 51: 730-750.
- Nies D.H. (2003). Efflux-mediated heavy metal resistance in prokarotes. FEMS. Microbiol. Rev., 27: 313-339.
- Nieto J.J., Fernandez–Castillo R., Marquez M.C., Ventosa A., Quesada E., and Ruiz – Berraquero F. (1989). Survey of metal tolerance in moderately halophilic eubacteria. Appl. Environ. Microbiol., 55: 2385-2390.
- Ow D. (1993). Phytochelatin-mediated cadmium tolerance in *Schizasaccharomyces pombe*. In Vitro cell. Develop. Biol., 29: 213-219.
- Paik D.J. (1980). *Halobacterium mediterranei* spec. nov., a new carbohydrate-utilising extreme halophile. Syst. Appl. Microbiol., 4: 369–387
- Plaut R.D., Mocca C.P., Prabhakara R., Merkel T.J., and Stibitz S. (2013). Stably luminescent Staphylococcus aureus clinical strains for use in bioluminescent imaging. *PLoS One.*, 8(3): e59232.
- Rajapaksha R.M., Tobor-Kapłon, M. A and Bååth E. (2004). Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently. *Applied and environmental Microbiology*, 70(5):2966–2973.
- Ramamoorthy S., and Kushner D.J. (1975). Binding of mercury and other heavy metal ions by microbial growth media. Microb. Ecol., 2:162-176.
- Rhodes M.E. (1958). The ecology of *Pseudomonas* spp. As revealed by silver plating staining method. J. General Microbiol., 42: 593-603.
- Riley X.P., and Taylor T.J. (1989). Survival of *Vibrio parahaemolyticus* at low temperatures under starvation conditions and subsequent resuscitation of viable, non culturable cells. Appl. Environ. Microbiol., 62:1300-1305.
- Roane F. (1999). Expression of major gas vesicle protein gene in the halophilic arachaebacterium *Haloferax mediterranei* is modulated by salt. Mol. Gen., 222: 225–232.
- Roane T.M., and Pepper I.L. (2000). Metalloids resistance mechanism in prokarotes. J. Bioch., 123: 16-23.
- Roane T. M., and Kellogg S.T. (1996). Characterization of bacterial in heavy metal

contaminated soils. Can.J. Microbiol., 42: 593-603.

- Rodriguez-Valera F., Ventosa A., Juez G., and Imhoff J.F. (1985). Variation of environmental features and microbial populations with salt concentrations in a muli-pond saltern. Microb. Ecol., 11: 107-115.
- Rodriguez-Valera F., Ruiz–Berraquero F., and Ramos-Cormenzana A. (1981). Variation of environmental features and microbial populations with salt concentrationin a multipond saltern. Microbial. Ecol., 11: 107-115.
- Rohit M., and Sheela S. (1994). Uptake of zinc in *pseudomonas sp.* strain UDG26. Appl. Environ. Microbiol., 60: 2367-2370.
- Sabry S.A., Ghozlan H.A. and Abou–Zied D.M. (1997). Metal tolerance and antibiotics resistance patterns of bacterial population isolated from sea water. J. Appl. Microbiol., 82: 245 -252.
- Schweinfurth G. and Lewin L. (1998). Chromosome and plasmid partition in *Escherichia coli* Annu. Rev. Biochem., 61: 283-306.
- Sevil T., Emin T., Sadik D., Cemil K. and Metin K. (2009). Resistances of antibiotics and heavy metals in Enterobacteriaceae spp. isolated from gills and intestines of Achanthobrama marmid (Heckel,1843) from Sir Dam lake Turkey. J. Environ. Biol., 30(1): 23-31.
- Silver S. (1998). Bacterial resistance to toxic metal ions Areview. Gene. (179): 9-19.
- Silver S. and Mitra T.K. (1988). Plasmid mediated heavy metal resistance Annual. Rev. Microbiol., 72: 717-743.
- Smith D.H. (1967). R factors mediate resistance to mercury, nickel and cobalt. Science, 156: 1114-1116.
- Spivak A.J. (1981). Copper, nickel and cadmium in the Mediterranean.In *NATO Workshop Trace Metals in* Sea Water. J. Gen. Microbiol., 25: 15-27.

- Sundin G.W. and Blender C.L. (1993). Ecological and genetic analysis of copper and streptomycin resistance in *Pseudomonas syringae* pv. *syringue*. Appl. Environ. Microbiol., 59: 1018-1024.
- Tomioka G., Rodriguez-Valera F., Herrero N., and Mojica F.J. (1994). Evidence for saltassociated restriction pattern modifications in archaeobacterium *Halobacterium mediterranei*. J. Gen. Microbiol., 13:19-28.
- Tornabene T.G., and Edwards H.W. (1972). Microbial uptake of lead. Science, 196: 1334-1335.
- Trevors J.T., Oddie K.M., and Belliveau B.H. (1985). Metal resistance in bacteria. FEMS.
 U. Halfter, M. Ishitani, J.K. Zhu, The Arabidopsis SOS2 proteinU. Schuppler, P.H.
 He, P.C.L. John, R. Munns, effects of water stress under drought and high-salinity conditions, Proc. Natl. Acad. Sci., Biotechnol., 8: 358–362.
- Trojanovska S., Brotz M.L., and Bhave M. (1997). Detection of heavy metal ion resistance genes in Gram-positive and Gramnegative bacteria isolated from a lead contaminated site. Biodegradation. 8:113-124.
- Vreeland R.H., and Martin E.L. (1983). Growth Characteristics, effects of temperature and ion specificity of the halotolerant bacterium *Halomonas elongata*. Canad. J. Microbiol., 26: 746-752.
- Washington J.A., and Sutter V.L. (1980). Dilution susceptibility test: agar and macrobroth dilution procedures, TOF-MS: Stateof-the-Art in Chemical Analysis and Molecular Science, Mass Spectrom. Rev., 15:139-162.
- Wehrheim B., and Wettern M. (1994). Comparative studies of heavy metal uptake of whole cells and different types of cell ills from *chorella fusca*. Biotechnol. Tech., 8: 227-232.
- Wood J.M., and Wang H.K. (1985). Microbial resistance to heavy metals. Environ. Sci. Technol., 17: 582-590.

ARABIC SUMMARY

دراسه مقاومه المعادن الثقيلة والمضادات الحيوية في البكتيريا المحبة للملوحة والمعزولة من مناطق مختلفة من البحر الأحمر في مصر

¹ خالد عبدالله علي عبدالرحيم^{1&2} - السيد محمد سلطان^{1&3} - مجدي عبدالسميع أبو غربيه¹ - فتحيه الحامدي الزين¹ ١- قسم النبات - كليه العلوم- جامعه سوهاج

٢- قسم النبات و الميكر وبيولوجي- كليه العلوم- جامعه الملك سعود-الرياض- المملكة العربية السعودية
 ٣- قسم النبات - كليه العلوم- جامعه الباحة – المملكة العربية السعودية

تعتبر مقاومة العناصر الثقيله والمضادات الحيويه من الظواهر المهمه والتي بدأت تتزايد هذه الأيام، وهي تعتبر أيضا مؤشر على إزدياد معدلات التلوث بهذه المركبات نتيجة لصرف مخلفات وعوادم الصناعه في مصادر المياه المختلفه وكذلك نتيجه لسوء الإستخدام من جانب الإنسان للمضادات الحيويه على سبيل المثال

في هذه الدراسه تم عزل مائة وثمانية وثلاثين (١٣٨) عزله بكتيريه من ٣ مناطق مختلفة في محافظة البحر الأحمر، بجمهورية مصر العربيه (الغردقه – سفاجا – القصير)، وتم إختبار مقاومتها وتحملها لعدد من العناصر الثقيله والمضادات الحيويه. وأظهرت نتائج الدراسه أن ٢.١٧ ٪، ٣.٦ ٪، ٣.٦ ٪، ٩.٤ ٪ و ٢.٢ ٪ من هذه العزلات كانت مقاومة لتركيز ٥ ملي مول من الكادميوم، ٢٠ ملي مول من النحاس والرصاص والكوبلت على الترتيب. وأظهرت غالبية العزلات البكتيرية المحبة للملوحة المقاومة لأكثر من ١٠ ملم إلى هذه المعادن ما عدا الكادميوم. مقاومة للرصاص، في حين أن ٥٠ ٪ فقط من السلالات كانت مقاومة للكادميوم.

ولقد وجد أن أعلى نسبه للمقاومه كانت لكل من الكادميوم والنحاس مجتمعين، وكذلك الزنك والنحاس مجتمعين وكانت حوالي ٦.٥% من إجمالي العزلات البكتيريه تقاوم كل من زوجي العناصر المشار اليهم مجتمعين. في حين أن ٢٤. ٢٤ من السلالات المعزولة كانت مقاومة للزنك والكادميوم مجتمعين، الزنك والرصاص مجتمعين، في حين أن ٢.١٧ من العزلات مقاومة لل من الكادميوم مجتمعين، الزنك والرصاص مجتمعين، في حين أن ٢.١٧ من العزلات مقاومة لل من المعادي معاومة للزنك والكادميوم مجتمعين، الزنك والرصاص مجتمعين، في حين أن ٢.١٧ من العزلات مقاومة لل تما معادية للزنك والكادميوم مجتمعين، الزنك والرصاص مجتمعين، في حين أن ٢.١٧ من العزلات مقاومة لل ٣ من المعادن مجتمعه (الكادميوم، الزنك، النحاس)، (الزنك والنحاس والكوبلت)؛ (النحاس، الكوبلت، الرصاص) ومقاومة ل ٤ من المعادن مجتمعه (الزنك، النحاس، الكوبلت، الرصاص)، (الكادميوم، النحاس، الكوبلت)؛ الخاس، الكوبلت، الرصاص)، والكوبلت)؛ (النحاس، الكوبلت، الرصاص)، والكوبلت)؛ (النحاس، الكوبلت، الرصاص)، ومقاومة ل ٤ من المعادن مجتمعه (الزنك، النحاس، الخوالت، الرصاص)، (الزنك والنحاس والكوبلت)، الخاس، الكوبلت، النحاس، المعادن مجتمعه (الكادميوم، الزنك، النحاس)، (الزنك والنحاس والكوبلت)؛ (النحاس، الكوبلت، الرصاص) ومقاومة ل ٤ من المعادن مجتمعه (الزنك، النحاس، الكوبلت، الرصاص)، (الكادميوم، النحاس، الزنك، النحاس، الكوبلت، الرصاص)، (الزنك، النحاس، الكوبلت)، الموليوم، النحاس، الزنك، النحاس، الكوبلت)، الكوبلت). لم يسجل مقاومة أي من العادس، الرصاص)؛ (الزنك، الرحاص، النحاس، الكوبلت)، لم يسجل مقاومة أي النحاس، الرصاص)؛ (الزنك، الحاص، النحاس، الكوبلت)، والكوبلت). لم يسجل مقاومة أي من الغالي من الخلي من الخلي من الخلي

أظهرت الدراسه أن نسب عاليه من العز لات البكتيريه المحبه للملوحه كانت مقاومه للمضادات الحيويه المستخدمه. فعلى سبيل المثال، كان ٩٥% من العز لات كانت مقاومه للفيلوسيف (سبفرادين)، ٩١.٦% كانت مقاومه للسي سيقتر اكسون، ٣.٣٨% كانت مقاومه للأمبسيلين، ٢.١٨% كانت مقاومه للنيتروفيورانتيون، ٨٠% مقاوم للتاريفيد، ٣.٣٧% مقاوم للسيفالوتين، ٦.٦٦% مقاوم للسيفالكسين، ٣.٣٨% مقاوم للسيفادروكسيل، ٥٥% مقاوم للفلوكوكساسيلين، في حين أن أقل مقاومه كانت للمضاد الحيوي فانكومايسين (٦.٦%).