Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

Egyptian Academic Journal of Biological Sciences is the official English language journal of the Egyptian Society for Biological Sciences, Department of Entomology, Faculty of Sciences Ain Shams University.

Microbiology journal is one of the series issued twice by the Egyptian Academic Journal of Biological Sciences, and is devoted to publication of original papers related to the research across the whole spectrum of the subject. These including bacteriology, virology, mycology and parasitology. In addition, the journal promotes research on the impact of living organisms on their environment with emphasis on subjects such a resource, depletion, pollution, biodiversity, ecosystem.....etc

www.eajbs.eg.net

Citation: Egypt. Acad. J. Biolog. Sci. (G. Microbiolog) Vol.9 (2)pp. 1-9 (2017)

Submerged Fermentation of *Jatropha curcas* Seedcake in Production of Itaconic Acid by Aspergillus niger and Aspergillus terreus

Patricia F. OMOJASOLA^{*} and Patience O. OKWECHIME

University of Ilorin, Department of Microbiology, Faculty of Life Sciences, P.M.B. 1515, Ilorin, Kwara State, Nigeria E. Mail: <u>folakejasola@yahoo.co.uk</u>

ARTICLE INFO

Article History Received:3/7/2017 Accepted:15/8/2017

Keywords: Aspergillus niger, Aspergillus terreus, Fermentation, Jatropha curcas, Itaconic acid

ABSTRACT

In this study, two fungi: Aspergillus niger (ATCC 16404) and Aspergillus terreus (ATCC 20542) were used to ferment Jatropha seed cake (JSC) by submerged fermentation for the production of itaconic acid. The physico-chemical analysis of JSC was determined. JSC was shelled, defatted and used as substrate in mineral salts media and the inocula of A. niger and A. terreus for eleven days at pH 5.42, 29±2°C, 10% substrate and 2 ml inocula (2.6 x 10⁸ spores/ml A. niger) (3.7 x 10⁸ spores/ml A. terreus). Carboxylmethylcellulose (CMC) was used as control. Optimization experiments were conducted by varying fermentation parameters. Results of the physico-chemical analysis revealed carbohydrate 16.23%; protein 29.3%; fibre 10.42%; fat 32.13%; ash 5.75% and moisture 6.15%. Itaconic acid yields of 154.0 g L⁻¹ and 208.0 g L⁻¹ were produced by A. niger and A. terreus respectively. Results of the optimization showed higher yields of itaconic acid by A. niger to 209.0 g L⁻¹ at pH 2.5, 3 ml inocula, 25% substrate, at $26\pm2^{\circ}C$ on Day 8 and A. *terreus* yielded of 218.0 g L⁻¹ at pH 3.5, 4ml inocula, 25% substrate at $29\pm2^{\circ}$ C on Day 8. These results support potential of JSC for industrial production of itaconic acid.

INTRODUCTION

Large amount of wastes are generated every year from the processing of agricultural raw materials. Most of these wastes are used as animal feed or burned as alternative for elimination. However, such wastes usually have a composition rich in sugars, minerals and proteins, and therefore, they should not be considered "wastes" but raw materials for other industrial processes. Agro-industrial wastes have been demonstrated to be suitable substrates via fermentation in the production of organic acids and enzymes (Couto and Sanroman, 2006; Ncube *et al.* 2012). The presence of other nutrients aside the lignocellulosic residues in these wastes make them suitable for the rapid growth of microorganisms, especially fungi (Mussato *et al.*, 2012). Filamentous fungi are well known for their ability to degrade lignocellulosic biomass. In addition, they have the ability to convert the products of the biomass degradation into value added products such as various organic acids and biofuels (Liaud *et al.*, 2014).

Citation: Egypt. Acad. J. Biolog. Sci. (G. Microbiolog) Vol.9 (2)pp. 1-9 (2017)

Jatropha curcas Linn., a small shrub belonging to the family Euphorbiaceae, is known as 'physic nut' and 'purging nut' in English; 'purgeernoot' and 'schijtnoot' in Dutch; and 'hab el melluk' in Arabic (Sharma et al., 2012). Native to Central and South America, it is also found in parts of Africa, South East Asia and India and is used traditionally as a hedge to protect fields and farmlands as it is not browsed by cattle or other animals (Belewu and Sam, 2010). The plant has various industrial and medicinal uses (Agbogidi et al., 2013) and is gaining increasing importance as an emerging source of biodiesel which is leading to a rapid accumulation of the cake. Despite being nutrientrich, Jatropha cake contains toxic and antinutrient components such as phorbol esters, trypsin inhibitors, lecithin, saponin and phytate and cannot be consumed by humans or animals so it is cheap and readily available (Phenugnuam and Suntornsuk, 2013).

Itaconic acid (IA) is an unsaturated dicarbonic acid with high potential as a chemical building block and can be used for a plethora of industrial products including resins, plastics, elastomers, carpet and book cover coatings, adhesives, high-strength fiberglass, enhanced artificial gems, synthetic glass with non linear characteristics and paints (Steiger et al., 2013; Hajian and 2015). Yusoff. IA (IUPAC: 2methylenebutanedioic acid) has the chemical formula C₅H₆O₄; has a melting point of 167-168° C; density of 1.632; is stable at acidic, neutral and middle basic conditions at moderate temperature (Ramesh and Sastry, 2011; Johann, 2012). With a market price of about \$2 per kg (Van der Straat et al., 2014), IA is currently expensive, so alternative or cheaper substrates may make the production process more profitable. The global IA market was valued at \$126.4m in 2014; however. driven by concerns over diminishing world stocks of fossil fuels, global warming issues and the need to step up manufacture of 'green chemicals', the IA

market is projected to reach \$204.6m by 2023 (TMR, 2015).

The objectives of this study were to determine the suitability of JSC for the fermentative production of IA using *A. niger* and *A. terreus*; and to determine the optimal conditions for its production.

MATERIALS AND METHODS Plant material and Microorganisms

Jatropha curcas seeds were collected from the Department of Crop Production, Faculty of Agriculture, University of Ilorin, Kwara Nigeria. State. The test organisms Aspergillus niger (ATCC 16404) and Aspergillus terreus (ATCC 20542) were obtained from the Federal Institute of Industrial Research Oshodi (FIIRO) Nigeria. The cultures were maintained on potato dextrose agar slants and kept at 4°C prior to use. Fungal spore inocula were produced by suspending spores in sterile distilled water and adjusting approximately to 2.6 x 10^8 spores/ml for A. niger and 3.7×10^8 spores/ml for A. terreus by counting with the Neubauer Haemocytometer improved (Petruccioli et al., 1999).

Substrate Pre-treatment

The JSC substrate was pre-treated using the method of Omojasola and Jilani (2009). The seeds were dried, crushed and defatted with petroleum ether and autoclaved for 1 h at 121° C with 5% (w/v) NaOH (20 ml g⁻¹ of substrate) in separate flasks. The autoclaved materials were filtered through a sterile muslin cloth. Sample was thoroughly washed with water and neutralized with 1 M HCl, washed again with distilled water and dried at 70° C.

Physico-chemical analysis of JSC

The parameters analyzed were pH, total carbohydrates, crude fibre, crude protein, ash, fat, moisture content (AOAC, 1990).

Fermentation

The fermentation medium was Mary Mandel's Mineral Salts Medium (MSM) consisting of 3g NaNO₃, 1g KH₂PO₄, 0.8g MgSO₄, 0.01g FeSO₄, 0.5g KCl, were added to distilled water. The pH was adjusted using a digital pH meter (Denver Model 20 pH/Conductivity meter) to 5.8 with 0.1N NaOH or HCl. Ten grams of JSC were added. The sterilized media were inoculated with 2 ml of 2.6 x 10^8 and 3.7 x 10^8 spores/ml of A. niger and A. terreus separately. Each flask was cultured on a rotary shaker (Gallenkamp, England) at 200 rpm; temperature 28 ± 2 °C. The samples were assaved for IA at 24 hour intervals using the spectrophotometer (Thermo UV Fisher Scientific. GENESYS 20 Model 4001-4) at 385 nm (Meena et al., 2010).

Optimization for Itaconic Acid Production

The fermentation conditions were varied with a view to determine yield efficiency of JSC under optimal conditions for IA production. Fermentation conditions varied were: substrate concentration (5-25%); pH (0.5-3.5); time (1-12 days); and inocula size (3-6 ml). These conditions were varied changing one variable and keeping all others constant. Optimal conditions were later combined in a single fermentation to optimize the yield of the acids.

Data Analysis

Statistical significance was determined one-way analysis of variance using (ANOVA) and two-way ANOVA, while multiple comparisons between means were determined by Tukey's or Sidak's multiple comparisons test. Analysis was performed using GraphPad Prism software (GraphPad Software Inc. La Jolla, CA, USA) and SigmaPlot for Windows version 10.0 (SysStatSoftwares Inc.). All data are expressed as means of triplicates \pm SEM or SD and values of (p<0.05) were considered

significant and 'n' represented independent experiments.

RESULTS

Proximate analysis

The results of the physico-chemical analysis of JSC substrate were carbohydrate $26.23\pm0.62\%$; crude protein $49.3\pm0.02\%$; crude fibre $10.42\pm0.1\%$; ash $5.75\pm0.03\%$; fat $2.13\pm0.05\%$ and moisture $6.15\pm0.13\%$.

Fermentation

The pre-optimization fermentation of JSC yielded the maximum amount of IA on Day 9 of fermentation. *A. niger* yielded 154 g L⁻¹ while *A. terreus* yielded 208 g L⁻¹ (Table 1). The yields from the JSC substrate were significantly higher (p<0.05) than the CMC control. The yield declined sharply by Day 10. It was also observed that the yield from *A. terreus* was higher than *A. niger*.

Optimization of fermentation

When the fermentation time was varied, IA production rose steadily and peaked at 110 g L⁻¹ and 122 g L⁻¹ on Day 8 by A. niger and A. terreus respectively after which it declined (Fig. For substrate 1). concentration. 25% w/v gave the maximum IA yield of 186 g L^{-1} and 189 g L^{-1} by A. niger and A. terreus respectively on Day 9 of fermentation (Fig. 2). pH 3.5 yielded 195 g L^{-1} by A. niger on Day 9, while pH 2.5 yielded 204 g L^{-1} by A. terreus on Day 5 (Fig. 3); inocula size variation recorded maximum IA yields at 3 ml with 146 g L^{-1} by A. niger, and 4 ml with 153 g L^{-1} by A. terreus (Fig. 4).

When the conditions that gave maximum IA yields were combined in a single fermentation, the highest yields were 209 g L⁻¹ by *A. niger* and 218 g L⁻¹ by *A. terreus* on Day 8 of fermentation.

Days	Quantity of Itaconic Acid produced (g L ⁻¹)						
	Aspergillus niger		Aspergillus terreus				
	JSC	CMC	JSC	CMC			
0	0.0	0.0	0.0	0.0			
1	44.5±0.21 ^b	43.0±0.49 ^b	47.0 ± 0.09^{b}	33.0±0.10 ^{ab}			
2	66.0±0.31 ^{bc}	50.0 ± 0.43^{b}	98.0±0.59 ^{cd}	56.0±0.11 ^{bc}			
3	$71.0\pm0.92^{\circ}$	57.0±0.47 ^{bc}	105.0 ± 0.40^{d}	68.0±0.11 ^{bc}			
4	78.0±0.14 ^c	60.0 ± 0.14^{bc}	100.0±0.59 ^{cd}	55.0 ± 0.11^{b}			
5	$82.0\pm0.18^{\circ}$	63.0±0.08 ^{bc}	110.0 ± 0.17^{d}	57.0±0.24 ^{bc}			
6	124.0±0.10 ^{de}	65.0 ± 0.50^{bc}	121.0 ± 0.32^{d}	46.0 ± 0.21^{b}			
7	134.0±0.89 ^e	73.0±0.11 ^c	134.0±0.17 ^e	55.0 ± 0.24^{b}			
8	152.0±0.34 ^{ef}	86.0±0.31 ^{cd}	123.0±0.33 ^{de}	63.0±0.65 ^{bc}			
9	154.0±0.05 ^{ef}	111.0 ± 0.82^{d}	208.0±0.14 ^{gh}	80.0 ± 0.20^{c}			
10	109.0 ± 0.15^{d}	92.0±0.22 ^{cd}	143.5±0.02 ^e	43.0±0.20 ^b			

 Table 1: The fermentation of Jatropha seedcake by Aspergillus niger and Aspergillus terreus for the production of itaconic acid

Key: JSC- Jatropha Seed Cake; CMC- Carboxy methylcellulose; Fermentation parameters: Substrate concentration 10%; pH 5.42; inocula size 2 ml; Temperature 29±2° C. Values presented are Mean±SD; Values with different superscripts are significantly different at p<0.05

Fig. 1: Effect of varying fermentation time on itaconic acid production by *A. niger* and *A. terreus* using *Jatropha* seedcake as substrate

Fig. 2: Effect of varying substrate concentration on itaconic acid production by *A. niger* and *A. terreus* using *Jatropha* seedcake as substrate

Fig. 3: Effect of varying pH on itaconic acid production by A. *niger* and A. *terreus* using *Jatropha* seedcake as substrate

Fig. 4: Effect of varying inoculum size on itaconic acid production by A. niger and A. terreus using Jatropha seedcake as substrate

DAYS	Quantity of Itaconic Acid produced (g L ⁻¹)				
	Aspergillus niger		Aspergillus terreus		
	JSC	CMC	JSC	CMC	
0	0	0	0	0	
1	65.0 ± 0.01^{bc}	39.0 ± 0.03^{ab}	$71.0 \pm 0.50^{\circ}$	32.0 ± 0.20^{ab}	
2	$68.0 \pm 0.43^{\rm bc}$	42.0 ± 0.48^{b}	$74.0 \pm 0.43^{\circ}$	44.0 ± 0.40^{b}	
3	$73.0 \pm 0.04^{\circ}$	$60.0 \pm 0.04^{\rm bc}$	$78.0 \pm 0.01^{\circ}$	52.5 ± 0.15^{b}	
4	$82.0 \pm 0.09^{\circ}$	$76.0 \pm 0.159^{\circ}$	93.0 ± 0.03^{cd}	$65.0 \pm 0.06^{\rm bc}$	
5	96.0 ± 0.54^{cd}	89.0 ± 0.48^{cd}	102.0 ± 0.28^{d}	$83.5 \pm 0.40^{\circ}$	
6	113.0 ± 0.44^{d}	103.0 ± 0.45^{d}	125.5 ± 0.51^{de}	95.0 ± 0.45^{cd}	
7	116.0 ± 0.51^{de}	109.0 ± 0.24^{d}	129.0 ± 0.42^{de}	103.0 ± 0.33^{d}	
8	$209.0 \pm 0.09^{\text{gh}}$	114.0 ± 0.44^{d}	$218.0 \pm 0.04^{\text{gh}}$	108.0 ± 0.25^{d}	
9	99.5 ± 0.02^{cd}	82.0 ± 0.08^{cd}	108.0 ± 0.37^{d}	$65.5 \pm 0.03^{\rm bc}$	
10	$78.0 \pm 0.02^{\circ}$	$78.0 \pm 0.003^{\circ}$	$74.0 \pm 0.03^{\circ}$	44.0 ± 0.06^{b}	
11	$69.0 + 0.09^{bc}$	$74.0 + 0.004^{\circ}$	$43.0 + 0.03^{b}$	$19.0 + 0.03^{a}$	

 Table 3: Optimized production of itaconic acid by Aspergillus niger and Aspergillus terreus using Jatropha curcas seed cake

DISCUSSION

In this study, JSC was used as substrate for IA production. The proximate composition of the JSC substrate was 26.23% carbohydrate, 49.3% crude protein and 2.13% fat which is within similar range reported by Joshi and Khare (2011); Phenugnuam and Suntornsuk (2013). The protein and fat contents were lower than amounts reported by Belewu and Sam (2010) and Inekwe et al. (2012). This may be due to differences in oil extraction techniques and seed variety. The carbohydrate, protein and fat content were high enough to serve as good carbon and energy sources for IA production. The protein content of 49.3% would also serve as a good nitrogen source for microbial metabolism. Nitrogen is one of the most essential constituents of the medium for fungal fermentation and various studies have reported increased organic acid yields with high nitrogen content (Betiku et al., 2016).

The results confirm that JSC is a good substrate for IA production confirming the observations of Couto and Sanroman (2006) and Ncube et al. (2012) about the suitability of agro-industrial as fermentable substrates. Many substrates have been used for the fermentative production of itaconic acid employing different organisms. These include corn starch (Yahiro et al., 1997); cane molasses (Meena et al. 2010); sweet potato peel (Omojasola and Adeniran, 2014); rice bran, groundnut shell, orange pulp, groundnut oil cake and sugar cane bagasse (Rafi et al. 2014); sago starch hydrolysate (Dwiarti et al. 2007). JSC has also been used by some earlier workers (Rao et al. 2007; El Imam et al. 2013). Both workers employed Aspergillus terreus as fermenting organism recording peak IA yields of 24.46 g L⁻¹ after 120 h and 48.70 g L^{-1} respectively. This study produced higher IA yields than of other workers. This may be due to the rich nutrient composition of the substrate which contained 2.13% fat, 49.3% protein and 26.23% carbohydrate. The IA yield from the JSC substrate was higher than the CMC

control in all the fermentations (Table 1). This may also be due to the rich chemical composition of the JSC as compared to CMC a cellulose derivative, an anionic polysaccharide devoid of the other growth stimulating nutrients.

Generally, it was observed that A. terreus produced higher yields of IA than A. niger was observed and this in all the fermentations (Table 1, Figs 1-4). A. terreus is reported to be a natural producer of IA with yields as high as 115 g L^{-1} (Okabe *et al.*, 2009; Kuenz et al., 2012; Steiger et al., 2013; Omojasola and Adeniran, 2014; Van der Straat et al., 2014). It is asserted that the genetic manipulation of A. niger involving the insertion of CadA gene could even improve IA production further (Li et al., 2012). A. niger is a highly versatile synthetic fungus involved in the production of various organic acids including citric, gluconic, oxalic, malic, acetic, propionic, isobutyric, tartaric, lactic, fumaric and ascorbic acids (Liaud et al., 2014).

Any change in culture conditions potentially alters the production ability of a microbial strain (Meena et al., 2010). In studying the effect of variation of fermentation time, a daily increase in IA vield was observed as fermentation progressed to a maximum on Day 8 by both fermenting organisms (Fig. 1). This time was longer than 120 h reported by Meena et al. (2010) using A. niger, A. flavus and A. nidulans on molasses and 5 days by Rafi et al. (2009) using U. maydis on orange pulp and Omojasola and Adeniran (2014) using A. niger and A. terreus on sweet potato peel respectively. Simple sugars are the preferred substrates in fermentation; therefore any substrate with large amounts of such sugars will record earlier peaks of product yield than other cellulosic substrates which contain mostly complex carbohydrates.

When the substrate concentration was varied between 5-25%, the maximum IA yield by *A. terreus* 189 g L⁻¹ and 186 g L⁻¹ by *A niger* at 25%. (Figure 2). Attempts to increase the concentration beyond 25%

altered the consistency of the medium to semi solid. The fermenting organisms were able to efficiently utilize the JSC substrate. Aspergillus spp. are reported to possess all the components of the cellulase enzyme system (de Vries and Visser, 2001). In addition, they also produce a number of proteases which will assist in metabolizing the substrate (Castro and Sato, 2014; Sethi and Sahoo, 2016). Chandragiri and Sastry (2011) reported maximum yields at 35% glucose concentration using U. maydis; 40% using Jatropha seed cake by A. terreus (El Imam et al. 2013) and 10% using sweet potato peel using A. niger and A. terreus respectively.

An initial low pH has been suggested to enable the cells develop the biochemical machinery for IA production (Boruta and Bizukojc, 2017). The optimum pH that gave the highest IA yields were pH 2.5 producing 204 g L⁻¹ and pH 3.5 producing 195 g L⁻¹ by A. niger and A. terreus respectively (Figure 3). This is similar to the findings of many workers who put the range of optimum pH for IA production between pH 3.0-4.0 (Rao et al., 2007; Meena et al., 2010; Sudarkodi et al., 2012; Chandragiri and Sastry, 2011; El Imam et al., 2013; Rafi et al., 2014; Omojasola and Adeniran, 2014). Some workers have proposed pH 3.1 as the optimum for IA production (Kuenz et al., 2012; Hevekerl et al., 2014; Gao et al., 2014).

Maximum IA yield was recorded with 3 ml inoculum of A. niger producing 146 g L^{-1} and 4 ml inoculum of A. terreus which yielded 153 g L^{-1} (Figure 4). The amount of inoculum is important because low amounts may give inadequate biomass and lead to a reduction in the IA yield, while excessive inoculum may lead to competition for nutrients (Chandragiri and Sastry, 2011). Although El Imam et al. (2013) and Omojasola and Adeniran (2014) reported a higher optimum inoculum size of 5 ml using U. maydis; A. terreus and A. niger respectively. Meena et al. (2010) reported a much higher inoculum size of 10% using different species of Aspergillus.

The yields obtained by A. niger and A. terreus in the optimized fermentation were 209.0 g/L (35.71% increase) and 218.0 g/L (4.80% increase) respectively (Table 3). While the IA yield was highest for A. terreus, it was not significantly different (p<0.05) from the yield of A. niger. In addition, the percentage increase of IA yield was higher in A. niger. This improvement in vield may be attributed to the highly synthetic nature of A. niger (Liaud et al. 2014). While A. terreus is reported to be the most frequently used commercial producer of IA, it is sensitive to conditions such as substrate impurities which may have a negative effect on the yield (Rao et al. 2007).

CONCLUSION

This study was conducted to evaluate the potentials of Jatropha seed cake as a substrate for the production of itaconic acid by Aspergillus niger and Aspergillus terreus. The results obtained have shown the potential of JSC as a good substrate for the production of itaconic acid. A. terreus was a better producer of itaconic acid than A. niger, with an optimum yield of 218.0 g L^{-1} and 209.0 g L^{-1} respectively. The yields obtained in this study are one of the highest that are available in literature and the data have effective supported the utilization of Jatropha seedcake for the fermentative production of itaconic acid. With the growing importance of itaconic acid, this study, therefore, provided a dual importance of utilizing an agro-industrial waste for the bioproduction of IA and a reducing of environmental pollution.

REFERENCES

- Agbogidi OM, Akparobi SO, Eruotor PG. (2013). Health and environmental benefits of *Jatropha curcas* Linn. Unique Res J Agric Sci., 1(5):76-79
- AOAC (1990). Official Methods of Analysis of the Association of Official Analytical Chemists (15thed.). Arlington, Virginia
- Belewu MA, Sam R. (2010). Solid state fermentation of *Jatropha curcas* kernel cake: Proximate composition and

antinutritional components. J Yeast Fungal Res., 1(3):44-46

Betiku E, Emeko,HA, Solomon B. (2016). Fermentation parameter optimization of microbial oxalic acid production from cashew apple juice Heliyon, 2(2):e00082.

doi:10.1016/j.heliyon.2016.e00082

- Boruta T, Bizukojc M. (2017). Production of lovastatin and itaconic acid by *Aspergillus terreus*: a comparative perspective. World J Microbiol Biotechnol., 33:34-45 doi:10.1007/s11274-017-2206-9
- Castro RJS, Sato HH. (2014). Production and biochemical properties of proteases secreted by *Aspergillus niger* under solid state fermentation in response to different agroindustrial substrates. Biocatal Agric Biotechnol., 3(4): 236-245https://doi.org/10.1016/j.bcab2014. 06.001
- Chandragiri R, Sastry RC. (2011). Synthesis of itaconic acid using *Ustilago maydis*. Can J Chem Eng Technol., 2(7):128-135.
- Couto SR, Sanroman MA. (2016). Application of solid-state fermentation to food industry - a review. J Food Eng., 76: 291-302.
- de Vries RP, Visser J. (2001). *Aspergillus* enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev., 65(4): 497-522.
- Dwiarti L, Otsuka M, Mura S, Yaguchi M, Okabe M. (2007). Itaconic acid production using sago starch hydrolysate by *Aspergillus terreus* TN484-MI. Bioresor Technol., 98(17): 3329-3337
- El-Imam MA, Kazeem MO, Odebisi MB, Oke MA, Abidoye OA. (2013). Production of itaconic acid from *Jatropha curcas* seed cake by *Apergillus terreus*. Not Sci Biol., 5(1):57-61.
- Gao Q, Liu J, Liu L. (2014). Relationship between morphology and itaconic acid production by *Aspergillus terreus*. J Microbiol Biotechnol., 24: 168-176.

- Hajian H, Yusoff WMW. (2015). Itaconic acid production by microorganisms: A review. Curr Res J Biol Sci., 7(2): 37-42.
- Inekwe UV, Onyike E, Odey MO, Agbaji AS, Joel JT, Diafe T. (2012). Comparative proximate composition of *Jatropha curcas* seed from India, Kaduna and Edo. Int J Sci Technol., 2(8):379-381
- Hevekerl A, Kuenz A, Vorlop KD. (2014). The influence of pH on the itaconic acid production with *Aspergillus terreus*. Appl Microbiol Biotechnol., 98: 10005-10012.
- Johann H. (2012). Biotechnologically produced itaconic acid as a raw material for the chemical industry. Federal Research Institute for Rural Areas, Forestry Fisheries
- Joshi C, Khare SK. (2011). Utilization of deoiled *Jatropha curcas* seed cake for production of xylanase from thermophilic *Scytalidium thermophilum*. Bioresourc Technol., 102(2011):1722-1726 doi: 10.1016/j.biortech.2010.08.070
- Kuenz A, Gallenmuller Y, Willke T, Vorlop KD. (2012). Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol., 96(5): 1209-1216.
- Li A, Pfizer N, Zuijderwijk R, Punt P (2012). Enhanced itaconic acid production in *Aspergillus niger* using genetic modification and medium optimization. BMC Biotechnol., 12: 57 doi:10.1186/1472-6750-12-57
- Liaud N, Ginies C, Navarro D, Fabre N, Crapart S, Herpoel-Gimbert I, Levasseur A, Raouche S, Sigoillot J. (2014). Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotechnol., 1:1 doi: 10.1186/s40694-014-0001-z
- Meena V, Sumanjali, A, Dwarka K, Subburathinam KM, SambasivaRao KRS. (2010). Production of itaconic

acid through submerged fermentation employing different species of *Aspergillus*. Rasayan J Chem., 16(3-1):100-109.

- Musatto SI, Ballesteros LF, Martins S, Teixeira JA. (2012). Use of agroindustrial wastes in solid State Fermentation processes In Industrial waste Kuan-Yeow S, Xinxin G (Eds)In Tech, Croatia. 253pp
- Ncube T, Horward RL, Abotsi EK, Jan van Rensburg EL, Ncube I. (2012). *Jatropha curcas* seed cake as substrate for the production of xylanase and cellulose by *Aspergillus niger* FGSCA773 in solid-state fermentation. Ind Crops Prod., 37: 118-123.
- Okabe M, Lies D, Kanamasa S, Park E. (2009).Biotechnological production of itaconic acid and its biosynthesis in *Aspergillus terreus*. Appl Microbiol., 84: 579-606.
- Omojasola PF, Adeniran EA. (2014). The production of itaconic acid from sweet potato peel using *Aspergillus niger* and *Aspergillus terreus*. Albanian J Agric Sci., 13(4): 1-5.
- Omojasola PF, Jilani OP. (2009). Cellulose production by *Trichoderma longi*, *Aspergillus niger* and *Saccharomyces cerevisiae* cultured on plantain peel. Res J Microbiol., 4(2): 67-74
- Petruccioli M, Pulchi V, Federici F. (1999). Itaconic acid production by *Aspergillus terreus* on raw material. Lett Appl Microbiol., 28: 309-312.
- Phengnuam T, Suntornsuk W. (2013). Detoxification and anti-nutrients reduction of *Jatropha curcas* seed cake by *Bacillus* fermentation. J Biosci Bioeng., 115(2): 168-172.
- Rafi MR, Hanumanthu MG, Rizwana S, Venkateswarli K, Rao DM. (2012). Effect of different physic-chemical parameters on the fermentative production of itaconic acid by *Ustilago maydis*. J Microbiol Biotech Res., 2(5): 794-800.

- Ramesh C, Sastry RC. (2011). Synthesis of Itaconic acid using *Ustilago maydis* Can J Chem Eng Technol., 2:7
- Rao DM, JaheerHussain SMD, Rangadu PV, Subramanyam K, Sivarama Krishna G, Swamy AVN. (2007). Fermentative production of itaconic acid by *Apergillus terreus* using Jatropha seed cake. Afr J Biotechnol., 6(18):2140-2142.
- Sethi BK, Sahoo SL. (2016). Thermostable acidic protease production in *Aspergillus terreus* NCFT 4269.10 using chuckling vet patches. JTUSCI., 10(4): 571-583 <u>https://doi.org//10.1016/j</u>. tusci.2015.11.001
- Sharma S, Dharmija HK, Parashar B. (2012). *Jatropha curcas*: A Review. Asian J Res Pharm Sci., 2(3): 107-111
- Steiger MG, Blumhoff ML, Mattanovich D, Sauer M. (2013). Biochemistry of microbial itaconic acid production. Front Microbiol., 4(23): doi 10.3389/fmicb.2013.00023
- Sudarkodi C, Subha K, Kanimozhi K, Panneerselvan A. (2012). Optimization and production of itaconic acid using *Aspergillus flavus*. Adv Appl Sci Res., 2(2): 1126-1131.
- Transparency Market Research (TMR) (2015). Itaconic acid market- Global industry analysis, size, share, growth, trends and forecast 2015-2023. <u>https://www.transparencymarketresear</u> <u>ch.com/itaconic-acid-market.html</u> Accessed 9/10/2017
- Van der Straat L, Vernooij M, Lammers M, van der Berg W, Schonewille T, Cordewener J, van de Meer I, Koops A, de Graff LH. (2014). Expression of Aspergillus terreus itaconic acid biosynthesiscluster in Aspergillus niger. Microb Cell Fact., 13: 11 doi.1186/1475-2859-13-11
- Yahiro K, Shibata S, Jia S, Park Y, Okabe M. (1997). Efficient itaconic acid production from raw corn starch. J Ferment Bioeng., 84(4):375-377.