Volume 4 (2022) | Issue 4| Pages 261 - 281

Case Report

Metastasis of Lung Cancer to the Oral and Maxillofacial Region: A Case Report and Review of the Literature

James C Sheffield¹, Nolan Wendling¹, Daria Vasilyeva², Elizabeth Philipone³

¹Columbia University College of Dental Medicine, New York

²Division of Oral and Maxillofacial Pathology, Columbia University Irving Medical Center, New York

³Division of Oral and Maxillofacial Pathology, Columbia University Irving Medical Center, New York

Email: dv2350@caa.columbia.edu

Submitted: 31-8-2022 **Accepted:** 28-10-2022

Abstract

Lung cancer is the most frequent cause of cancer-related death worldwide. While metastases of lung malignancies to the oral cavity are rare, it is the most common neoplasm to metastasize to this region. Diagnosis of a metastatic lesion in the oral cavity is challenging for clinicians and pathologists, but is critical in improving patient outcomes. This report presents a case of a 75-year-old female with lung adenocarcinoma metastatic to posterior left mandible. A literature review of cases of lung cancer metastasis to the oral and maxillofacial region between 2015 and 2022 was conducted and compared with prior research.

Keywords: neoplasm metastasis, differential diagnosis, literature review

Introduction

Metastatic tumors to the oral region are uncommon (representing 1-2% of malignancies) and may occur in the oral soft tissues or in the jawbones.¹ Only 5% of all malignancies involve the oral cavity, and one percent of these malignancies are secondary to neoplasms found below the level of the clavicles.² These oral metastases are often a late-stage manifestation found in the presence of widespread disease and are associated with poor long-term prognosis, yet they are sometimes the first sign of an undiagnosed malignancy. The rarity and severity of these metastases make the diagnosis and treatment of these tumors for both the clinician and pathologist. Herein, we present a case of a 75year-old woman with poorly differentiated lung carcinoma involving the mandible, which was initially thought to be a lesion of endodontic origin, and a review of literature spanning 2014-2022.

Case Report

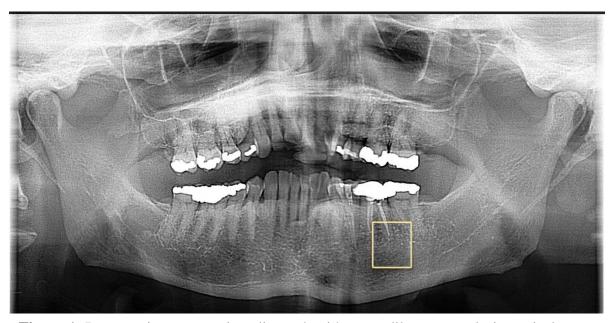
A 75-year-old female in apparent good health was referred to an oral surgeon by her treating endodontist for evaluation of persistent swelling of the lower left mandible. Mandibular left first molar, believed to be the source of swelling, received root canal treatment twice over the 6 months preceding the oral surgery visit (Figure 1). An accompanying computer tomography (CT) scan demonstrated reactive periostitis in the area.

Clinical examination revealed slight fullness of lower left face, with no appreciable lymphadenopathy, redness, or tenderness. Intraorally, marked expansion of posterior left mandible was noted, although the mucosal surface was intact and did not show ulceration or discoloration.

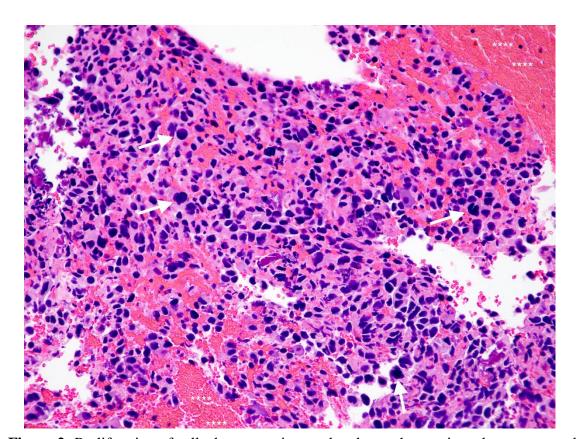
Based on the clinical presentation, periapical pathology, such as periapical granuloma or radicular cyst, was suspected. Radiographically, periapical granuloma presents with an opacity at the apex of a nonvital tooth, although early lesions may present with no radiographic evidence.³ Similar to a periapical granuloma, a radicular cyst is associated with an asymptomatic nonvital tooth, with radiographic appearance identical to that of a periapical granuloma. Radicular cysts are more likely to be present in the anterior maxilla rather than the molar region of the mandible seen in this case.⁴ A residual radicular cyst was not considered, as this patient's lesion was not at an extraction site or an area where an odontogenic cyst was removed. Residual cysts typically present in areas that are not properly curetted.⁵ Although it is not common for the lining of a residual cyst to undergo malignant transformation to squamous cell carcinoma, it should always be included on a differential with a residual radicular cyst when there is history of extraction or surgical removal of a cyst.6

A biopsy was obtained apical to the distal root of mandibular left first molar was planned to determine the cause of persistent swelling. A mucoperiosteal flap was created and reflected on posterior left buccal alveolar ridge, and a bony window was created with a low-speed handpiece and abundant sterile saline irrigation. Lesional tissue was obtained through the osseous window and submitted for histologic examination along with the bony window. Histologic examination revealed a proliferation of cells with nuclear hyperchromasia, enlargement, and pleomorphism against a background of extravasated red blood cells (Figure 2). Immunohistochemical staining demonstrated the positivity of the lesional cells for panCK, CK7, TTF-1, and Napsin A. CK20, S100, CD45, HMB45, CDX2, and GATA3 were negative. This immunohistochemical profile suggested the lung as the primary origin of the present lesion.

Materials and Methods


A literature search for metastatic lung cancer cases in the oral and maxillofacial region was performed using references from January 2015 through March 2022 in PubMed, Scopus, Web of Science, and the Columbia University Libraries with combinations of the keywords metastatic lung cancer, metastatic lung carcinoma, metastasizing lung cancer, metastasizing lung carcinoma, jaw metastasis, metastasis to oral cavity, metastasis to jawbones, metastasis to oral and maxillofacial region, and metastasis to salivary glands. The selected publications were analyzed using the following factors: type of lung cancer, site of metastasis, treatment received, and outcome/prognosis. The cases were reported as case reports or reviews of the literature.

We present a review of literature on lung cancer metastases to the oral cavity. To the best of our knowledge, this is the first such literature review since the most recent publication in 2014.⁷ Results of the literature review of lung tumors metastatic to the oral and maxillofacial region are presented in Table 1.⁷⁻⁵¹


Results

Forty-five articles were used to identify forty-six cases. All of the publications entered into the final review were case reports (N=46).

Patient age was reported in forty-five of the cases. Most metastatic tumors to the oral and maxillofacial regions were found in patients in their seventh decade (mean age for male was 62.3 years and 67 years for females). This is slightly older than the data from Hirshberg et. al, which reported the most common decades being the fifth and sixth.¹

Figure 1: Preoperative panoramic radiograph with no readily apparent lesion apical to mandibular left first molar.

Figure 2: Proliferation of cells demonstrating nuclear hyperchromasia, enlargement, and pleomorphism (arrows) against a background of extravasated red blood cells (asterisks), 100x (hematoxylin-eosin).

Table 1: 2015 to 2022. Results of the literature search of lung tumors metastatic to the oral and maxillofacial region from

Reported	Age/Sex	Tumor Site	Direc	Histological Type	Treatment	Treatment	Follow-up	Known	Smoking/Tobacco
Case			t		of Lung	Following		lung	History
Author,			Exten		Primary If	Discovery of		primary at	
Year of			sion/		Known	Oral Lesion		time of	
Publication			Meta		Prior to			oral	
			stasis		Oral			diagnosis?	
					Metastasis				
Abe Et al.,	76/M	Hard Palate	Lung	Adenocarcinoma	CTX	CTX	Expired, 4 months	Yes	40.5 pack year
20198							after the first		history, alcohol use
							admission		unspecified
Arslan et	59/M	Retromolar	Lung	Mesothelioma	CTX,	None	Expired, 45 days	Yes	Unspecified
al., 2016 ⁹		Trigone (R)			RTX		following diagnosis		
							of oral lesion		
Bisht et	32/M	Maxilla (R)	Lung	Adenocarcinoma		CTX, RTX	Alive, showed partial	No	Smokeless Tobacco,
al., 2017 ¹⁰							response to		one or two pouches
							radiotherapy		per day. Unspecified
									alcohol use

Cui et al.,	64/M	Parotid Gland	Lung	Small Cell		Sx, CTX	Alive, treatment and	No	Unspecified
201911		(R)		Carcinoma			follow up are ongoing		
							following three cycles		
							of chemotherapy		
D'Antonio	76/M	Palatine	Lung	Small Cell Lung		CTX	Expired, 14 months	No	"Former smoker of
et al.,		Tonsil (R)		Cancer			following		30-40 cigarettes a
2016 ¹²							presentation		day" Unspecified
									Alcohol Use
Forooghi	57/M	Maxillary	Lung	Squamous Cell	CTX,	Symptomat	Alive, three months	Yes	"Heavy smoker",
et al.,		Alveolar		carcinoma	RTX	ic treatment	after commencing		unspecified alcoho
2019 ¹³		Ridge (L)					case evaluation		use
George et	68/M	Mandible (R)	Lung	Adenocarcinoma		Sx, CTX,	Unspecified	No	"Had a habit of
al., 2019 ¹⁴						and RTX			smoking 10-15
									cigarettes a day for
									more the 25 years"
									~18 pack years,
									"occasional alcoho
									consumption"

G 1	50/E	G 11	•			DELL CELL	F : 1.10	N.Y.	((2 1 110 - 15
Guarda-	59/F	Condylar	Lung	Carcinoma		RTX, CTX,	Expired, 13 months	No	"Smoked 10 to 15
Nardini et		Head (R)				Sx	after initial diagnosis		cigarettes per day"
al., 2017 ¹⁵									unspecified how
									many years,
									unspecified alcohol
									use
Gultekin	72/M	Mandible (R)	Lung	Adenocarcinoma	RTX	Sx,RTX,	Expired, 6 months	Yes	40 pack year smoking
et al.,						CTX	after initial diagnosis		history, Unspecified
2016 ⁷									alcohol use
Hussain et	66/F	Mandible	Lung	Poorly		Palliative	Expired, 4 weeks	No	Never smoker and
al., 2020 ¹⁶		(R)		Differentiated		Care	after initial		"low alcohol intake"
				Neuroendocrine			presentation		
				Carcinoma					
Ito et al.,	85/M	Maxillary	Lung	Adenocarcinoma	Supportive	RTX	Expired "soon"	Yes	Unspecified
2017 ¹⁷		Buccal			Care				
		Gingiva (L)							
Jeba Et al.,	45/M	Anterior	Lung	Adenocarcinoma		CTX	Lost to follow-up	No	Smoker, unspecified
2016 ¹⁸		Tongue (L)							pack years,

									unspecified alcohol
									-
									use
Johnson	66/M	Mandible (L)	Lung	Adenocarcinoma		CTX	Alive, treatment is	No	30 pack-year
and Read-							ongoing as of April		smoking history,
Fuller							2020		unspecified alcohol
202019									use
Kalaitsido	69/M	Anterior	Lung	"high grade	CTX	None	Expired, prior to	Yes	Unspecified
u et al.,		Mandible		neuroendocrine			surgical excision of		
2015^{20}				carcinoma with			oral lesion		
				elements of both					
				small and large					
				cell lung					
				carcinoma"					
Kaur et.	47/M	Mandible (L)	Lung	Adenocarcinoma		CTX	Expired, following	No	30 pack year history,
al., 2021 ²¹							two cycles of		unspecified alcohol
							chemotherapy		use

Kawahara	79/M	Maxilla (L)	Lung	Adenocarcinoma	Sx, RTX	Supportive	Expired, 11 months	Yes	Unspecified
da et al.,						Care, RTX	after initial		
2022 ²²							presentation for oral		
							lesion		
Kitadai et	64/M	Anterior	Lung	"Non small cell	RTX	CTX	Expired due to	Yes	No smoking history,
al., 2019 ²³		Maxillary		lung cancer			aspiration pneumonia		unspecified alcohol
		Gingiva		favoring			followed by acute		use
				adenocarcinoma"			respiratory distress		
							syndrome		
Lee et al.,	87/F	Submandibul	Lung	Small Cell		Patient	Expired, three months	No	Unspecified
2020^{24}		ar Gland (L)		Neuroendocrine		Declined	after diagnosis		
				Carcinoma					
Lee S-Y et	63/M	Tip of	Lung	Squamous Cell		CTX and	Expired, 8 months	No	"Heavy alcohol and
al., 2018 ²⁵		Tongue		Carcinoma		Sx	after presentation for		tobacco use"
							tongue lesion		unspecified pack
									years

Lenouvel	59/M	Parotid (R)	Lung	Adenocarcinoma		Unspecified	Expired due to	No	30 pack year smoking
et al.,	03,111	1 41 0010 (10)	24.1.8			Chispothicu	cardiac arrest	110	history, unspecified
							cardiac arrest		
2016^{26}									alcohol use
Matsuda	83/F	Mandible (R)	Lung	Poorly		CTX	Alive, two years after	No	Nonsmoker,
et. Al.,				Differentiated			initial hospital visit		unspecified alcohol
2018 ²⁷				Adenocarcinoma			for oral lesion		use
McKernon	61/F	Mandible (L)	Lung	Adenocarcinoma		Unspecified	Unspecified	No	40 pack year smoking
et al.,									history, Unspecified
2017 ²⁸									alcohol use
Mohamed	Unspecif	Dorsal	Lung	Mesothelioma	CTX	Supportive	Alive, uninterested in	Yes	Unspecified
et al.,	ied age/F	Tongue				Care	RTX for the tongue		
2021 ²⁹							lesion at six week		
							F/U		
Moraes et	66/M	Mandible (R)	Lung	Small Cell Lung	CTX	CTX	Alive at 4 months	Yes	Unspecified
al., 2017 ³⁰				Cancer			follow up. Patient		
							was asymptomatic		
							and the x-ray showed		
							-		

							signs of new bone		
							formation.		
Nuyen and	59/M	Maxillary	Lung	Adenocarcinoma		RTX	Unspecified	No	Nonsmoker,
Tang		Gingiva (L)							unspecified alcohol
2016 ³¹									use
Oliver et	51/F	Mandibular	Lung	Adenocarcinoma		Unspecified	Unspecified	No	Unspecified
al., 2021 ³²		Condyle (R)							
		and							
		Mandibular							
		Ramus (R)							
Pezzuto, et	65/M	Mandible (R)	Lung	Squamous Cell	Sx, CTX	RTX,	Expired a few weeks	Yes	40 pack year history,
al., 2017				Carcinoma		Hypertherm	after treatment		unspecified alcohol
(Case 1) 33						ia			use
						Treatment			
Pezzuto, et	65/F	Mandible (R)	Lung	Squamous Cell	CTX	Sx	Expired, 7 days after	Yes	"Pack-years above
al., 2017				Carcinoma			surgery as a result of		40", unspecified
(Case 2) 33							bleeding and		alcohol use
							embolism		

Rajini et	62/M	Mandible (R)	Lung	Poorly		CTX, RTX	Alive, "response to	No	Unspecified
al., 2015 ³⁴				Differentiated			radiotherapy		
				Adenocarcinoma			is good"		
Rajinikant	60/M	Mandible (R)	Lung	Metastatic		CTX, RTX	Unspecified	No	Unspecified
h et al.,				Malignant Tumor					
2015 ³⁵									
Rocha et	55/M	Parotid	Lung	Adenocarcinoma	RTX,	None	Expired, 1 month	Yes	"Ex-smoker" pack
al., 2020 ³⁶		Region (R)			CTX		following		years unspecified
							presentation with oral		"ex-alcoholic"
							lesion		
Rovira-	59/F	Mandible (L)	Lung	Adenocarcinoma		Unspecified	Expired, 15 months	No	40 pack year smoking
Wilde et							after initial		history, Unspecified
al., 2020 ³⁷							presentation		alcohol use
Schneider	61/F	Mandible (L)	Lung	Large-Cell	RTX and	RTX and	Expired, 3 months	Yes	80 pack year smoking
et al.,				Neuroendocrine	CTX	palliative	following		history, no history of
2015 ³⁸				Carcinoma		care	presentation with oral		alcohol use
							lesion		

Soputro et	79/M	Parotid Gland	Lung	Adenocarcinoma	RTX	Sx	Alive, presented to	Yes	60 pack year history,
al., 2022 ³⁹		(L)					ED 2 months later		prior occupational
							with left pleural		asbestos exposure,
							effusion. Long term		alcohol use
							pleural drainage		unspecified
							catheter was placed.		
Souron et	70/M	Posterior	Lung	Large Cell	CTX	Unspecified	Unspecified	Yes	60 pack year smoking
al., 2016 ⁴⁰		Maxillary		Neuroendocrine					history, unspecified
		Gingiva (L)		Carcinoma					alcohol use
Steffen et	50/M	Mandible (L)	Lung	Adenocarcinoma	Sx, RTX	Sx, CTX	Unspecified	Yes	"Former smoker"
al., 2020 ⁴¹									
Stephen et	65/F	Parotid (L)	Lung	Adenocarcinoma		Patient	Unspecified	No	Unspecified
al., 2020 ⁴²						Declined			
Tamgadge	41/M	Maxilla	Lung	Adenocarcinoma	Patient		Lost to follow up	No	Gutkha chewer for 20
et al.,					never				years, unspecified
202043					reported				alcohol use
					back				

Tanaka et	66/M	Buccal	Lung	Malignant	CTX	RTX	Expired, 1 month	Yes	Unspecified
al., 2020 ⁴⁴		gingiva of		Pleural			after presentation		
		Maxilla (L)		Mesothelioma			with gingival tumor		
Thomas	40/M	Parotid	Lung	Small Cell		Unspecified	Unspecified	No	"Chronic Smoking"
and Blake		Region (L)		Carcinoma					
2021 ⁴⁵									
Tirkey et	50/M	Attached	Lung	Large Cell	RTX,	Unspecified	Unspecified	Yes	Unspecified
al., 2019 ⁴⁶		gingiva of		Carcinoma	Supportive				
		Anterior			Care				
		Maxilla							
Veremis et	81/F	Anterior	Lung	Mesothelioma	Sx, CTX,	Sx	Expired, 12 days after	Yes	Unspecified
al., 2020 ⁴⁷		Maxilla (R)			RTX		discharge		
Xie et al.,	63/M	Root of	Lung	Malignant	Unspecifie		Unspecified	No	Unspecified
202048		Tongue		Pleural	d				
				Mesothelioma					

Yanagisa	84/M	Mandible (R)	Lung	Small Cell Lung	CTX	CTX	Alive, partial	Yes	"Heavy smoking
wa et al.,				Cancer			remission of		history"
2017 ⁴⁹							symptoms following		Unspecified alcohol
							CTX for oral lesion		use
Yang and	66/M	Parotid Gland	Lung	Adenocarcinoma		Sx, CTX,	Unspecified	No	"Heavy smoking for
Xiong		(L)				and RTX			30 years" pack years
2017^{50}									unspecified,
									unspecified alcohol
									use
Zaubitzer	66/F	Palatine	Lung	Poorly		CTX	Alive, last MRI	No	Former smoker with
et al.,		Tonsil (R)		Differentiated			correlated with stable		40 pack year history
2019 ⁵¹				Adenocarcinoma			disease.		unspecified alcohol
									use

The sex of the patients was mentioned in all of the publications. Metastatic lung cancer to the oral and maxillofacial region was more prevalent in males (n=33) than in females (n=13; ratio, 2.54:1). This is similar to the 2.5:1 ratio cited for soft tissue metastases.¹

In line with past research, the jawbones and hard palate were more affected than the oral soft tissues (25:21), and of the bony structures in the oral and maxillofacial region, the mandible was the most frequently affected structure. The mandible was the site of oral metastasis nineteen times (n=19) of the forty-six cases. The posterior mandible or ramus of the mandible was particularly common.

When looking at the oral soft tissues, the attached gingiva of the maxilla was the most commonly affected site (6 cases, 28.5%), followed by the parotid gland (5 cases, 23.8%), and the tongue (4 cases, 19.0%). The remaining soft tissue sites occurred much less frequently.

Patients often presented with several symptoms common to past research, the most common being pain, swelling, and paresthesia. In the event that soft tissue was involved, it was also common that bleeding or ulceration was present.

In twenty-five of the forty-six cases, the patient was unaware of any primary cancer at the time of presentation with oral symptoms. This demonstrates that patients can unknowingly have widespread metastatic cancer and present with symptoms that a dental provider should notice. An occult primary should be considered when a patient presents with symptoms suggestive of metastatic disease or if a lesion persists after dental treatment. No conclusions can be drawn regarding the frequency of distant oral metastases presenting the first symptom of metastatic disease due to bias of reporting unusual cases.

Histological typing was done in fortyfour cases. The most common histological type was by far adenocarcinoma (n=24), followed by small cell or neuroendocrine carcinoma (n=9), mesothelioma (n=5), squamous cell carcinoma (n=5), and non-small cell carcinoma (n=1).

In twenty-six cases there was some form of tobacco use reported in the patient history (56.5% of cases). Twenty-four of these cases reported that the patient was either a current or former smoker and in two of the cases the patient used a form of smokeless tobacco. It should be noted that tobacco could have been used in a greater number of the cases, but tobacco use was not specified in sixteen of the cases.

In the reported cases chemotherapy was by far the most common treatment modality. Chemotherapy was used in thirty-one (67.4%) of the cases. This is to be expected as it is known that oral metastases are often a late-stage manifestation found in the presence of widespread disease. Radiation therapy was used in twenty-one cases (45.7%), and surgical excision was used in twelve of the cases (26.0%). Treatment was not specified in six of the cases, the patient declined any treatment in two of the cases, and one patient was lost to follow up.

Metastasis of a distant primary malignancy to the oral cavity is associated with poor long-term prognosis. Of the reported cases, twenty-two of the patients (47.9%) had died prior to publication of an associated case report. The overwhelming majority of the patients who died did so within weeks to months of diagnosis of their oral lesion. At the time of publication ten cases (21.7%) reported that the patient was still living. No follow-up information was provided on the patient in fourteen of the cases.

Discussion

Metastasis to the oral cavity may occur at any age, but is most common during the fifth and sixth decades of life. There is an almost equal sex distribution in jawbone metastases, whereas in the oral soft tissues there is a 2:1 male to female ratio. 70% of oral metastases manifest after the primary tumor becomes evident, while the remaining 30% are the first clinical manifestation

of tumor spread. The most common location for these metastases to the oral cavity is the mandible. This predilection is likely due to sites of bone metastasis concentrating in red marrow, as opposed to the primarily fatty marrow composition of the maxilla.⁵²

Lung cancer is one of the most malignant solid tumors. Almost 1,608,823 cases of lung cancer and 1,378,415 cancer deaths occur worldwide each year.⁵³ Lung cancer is also the most common neoplasm to metastasize to the oral cavity, 2 usually via blood vessels. 1 The average survival rate for metastatic lung cancer is 4 months to 1 year, with a maximum survival rate of five years.54

Lung cancer may also metastasize to the soft tissues. These metastases can appear as dental or periodontal infections and resemble reactive lesions like pyogenic granuloma, epulis, and peripheral giant cell granuloma, or odontogenic infection.⁵⁵ For gingival metastases, fast growth, a tendency for bleeding, mechanical disorders due to tumor development, ulceration, and a patient's clinical condition can all suggest a lesion of malignant nature.⁵⁶ Common symptoms of oral metastases to the oral cavity include a rapidly progressing lesion with potential pain and paresthesia, a bony swelling with tenderness over the affected area, dysphagia, disfigurement, and bleeding.57,58

Gnathic metastases can be initially misdiagnosed as endodontic lesions, as was the case with our patient. According to recent literature, about 0.65%-4.22% of clinically diagnosed endodontic periapical pathoses receive a nonendodontic histopathologic diagnosis, emphasizing the difficulty and importance of identifying and classifying these lesions, particularly the malignant nonendodontic lesions (MNPLs).⁵⁹ MNPLs are common in the posterior mandible and are usually radiolucent and unilocular, with tooth mobility or bone resorption. On physical examination, metastatic jaw lesions can develop a bony swelling with

tenderness over the affected area, pain, and paresthesia. Jaw metastases do not possess a pathognomonic radiographic appearance, most often presenting as lytic radiolucencies with illdefined margins.² Our case featured swelling of the posterior mandible as the major symptom, with no apparent radiolucency.

Conclusion

The ages, sex, most common locations and symptoms of lung cancer metastases to the mandible in this literature review were all similar to previous research done by Hirshberg et al.1 and others. 54% of the cases in the literature review were unaware of the primary cancer prior to the discovery of the oral lesion, compared to only 30% reported in past research. Malignant nonendodontic lesions can present similarly to many benign lesions in the oral cavity, and early detection and biopsy of these lesions are critical to improving the prognosis of these cases.

Conflict of Interest:

The authors declare no conflict of interest.

Source of Funding:

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

- 1. Hirshberg A, Shnaiderman-Shapiro A, Kaplan I, Berger R. Metastatic tumours to the oral cavity - pathogenesis and analysis of 673 cases. Oral Oncol. 2008;44(8):743-752. doi:10.1016/j.oraloncology.2007.09.012
- 2. Zachariades N. Neoplasms metastatic to the mouth, jaws and surrounding tissues. Craniomaxillofac 1989;17(6):283-290. doi:10.1016/s1010-5182(89)8009

- Márton IJ, Kiss C. Protective and destructive immune reactions in apical periodontitis. *Oral Microbiol Immunol*. 2000;15(3):139-150. doi:10.1034/j.1399-302x.2000.150301.x
- 4. Koseoglu BG, Atalay B, Erdem MA. Odontogenic cysts: a clinical study of 90 cases. *J Oral Sci.* 2004;46(4):253-257. doi:10.2334/josnusd.46.253
- 5. Lee J, Costandi J, Mandel L. The residual radicular cyst. *N Y State Dent J*. 2014;80(4):38-40.
- Tarakji B., Shireen A., Umair A., Azzeghaiby S., AlzoghaibiI., & Hanouneh S. (2014). Malignant Transformation of Radicular Cyst/Residual Cyst: A Review of Literature. *Journal of Advances in Medicine* and Medical Research, 4(25), 4278-4288. https://doi.org/10.9734/BJMMR/2014/953
- 7. Gultekin SE, Senguven B, Isik Gonul I, Okur B, Buettner R. Unusual Presentation of an Adenocarcinoma of the Lung Metastasizing to the Mandible, Including Molecular Analysis and a Review of the Literature. *J Oral Maxillofac Surg*. 2016;74(10):2007.e1-2007.e20078. doi:10.1016/j.joms.2016.06.004
- 8. Abe M, Watanabe K, Shinozaki-Ushiku A, et al. Identification of a metastatic lung adenocarcinoma of the palate mucosa through genetic and histopathological analysis: a rare case report and literature review. *BMC Cancer*. 2019;19(1):52. Published 2019 Jan 11. doi:10.1186/s12885-019-5277-1

- 9. Arslan A, Ozcakir-Tomruk C, Deniz E, Akin O. A case report of metastasis of malignant mesothelioma to the retromolar trigone. *World J Surg Oncol*. 2016;14(1):188. Published 2016 Jul 20. doi:10.1186/s12957-016-0942-1
- 10. Bisht N, Singh S, Sarin A, Mulajker D, Gupta S, Mishra PS. Maxillary metastasis from carcinoma lung: an unusual presentation. *Asian Journal of Oncology*. 2017;03(02):136-138. doi:10.4103/asjo.asjo_16_17
- 11. Cui Y, Cui XY, Wu Y, Yin WZ, Zhu ZP. A case of metastasis of small cell lung cancer to the parotid gland: a case report and literature review. *J Int Med Res*. 2019;47(11):5824-5830. doi:10.1177/0300060519865645
- 12. D'Antonio C, Lombardini A, Onesti CE, et al. A rare case of palatine tonsillar metastasis from small cell lung cancer. *Transl Lung Cancer Res.* 2016;5(6):709-711. doi:10.21037/tlcr.2016.11.07
- 13. Forooghi R, Ranaei M, Bijani F, et al. Huge maxillary metastasis of an aggressive Pancoast tumor -A case report. *Caspian J Intern Med*. 2019;10(3):351-355. doi:10.22088/cjim.10.3.351
- George R, Neralla M, Rajan J, Haque AE, Kumar SP. Metastatic Tumour to the Mandible A Diagnostic and Management Dilemma. *Cureus*. 2019;11(7):e5093. Published 2019 Jul 7. doi:10.7759/cureus.5093
- Guarda-Nardini L, Stellini E, Di Fiore A, Manfredini D. A Rare Case of Misdiagnosed Silent Lung Cancer with

- Solitary Metastasis to the Temporomandibular Joint Condyle. *J Oral Facial Pain Headache*. 2017;31(2):180-185. doi:10.11607/ofph.1672
- 16. Hussain I, Maharaj K, Prince S. The "numb chin syndrome": A case report. *Int J Surg Case Rep.* 2020;67:157-160. doi:10.1016/j.ijscr.2020.02.013
- 17. Ito H, Onizawa K, Satoh H. Non-small-cell lung cancer metastasis to the oral cavity: A case report. *Mol Clin Oncol*. 2017;6(3):422-424. doi:10.3892/mco.2017.1141
- 18. Jeba J, Backianathan S, Ishitha G, Singh A. Oral and gastrointestinal symptomatic metastases as initial presentation of lung cancer. *BMJ Case Rep.* 2016;2016:bcr2016217539. Published 2016 Nov 18. doi:10.1136/bcr-2016-217539
- 19. Johnson C, Read-Fuller A. Mandibular metastasis from lung adenocarcinoma as the first sign of occult malignancy. *Proc (Bayl Univ Med Cent)*. 2020;33(2):261-262. Published 2020 Feb 5. doi:10.1080/08998280.2020.1719783
- Kalaitsidou IG, Astreidis IT, Kontos KI, et al. Metastatic Tumours to the Oral Cavity: Report of Three Cases. *J Oral Maxillofac Res.* 2015;6(4):e5. Published 2015 Dec 31. doi:10.5037/jomr.2015.6405
- 21. Kaur H, Mishra D, Manchanda S, Bhutia O. Mandibular tumour as the primary manifestation of an occult adenocarcinoma. *BMJ Case Rep.*

- 2021;14(1):e239151. Published 2021 Jan 7. doi:10.1136/bcr-2020-239151
- 22. Kawaharada M, Maruyama S, Abé T, Hayashi T, Kobayashi T, Tanuma J. Metastasis of pulmonary adenocarcinoma to the oral cavity: A case report and literatures review of the last 30 years. *Oral Science International*. 2022. doi:10.1002/osi2.1130
- 23. Kitadai R, Okuma Y, Kashima J. Gingival metastasis of ALK rearranged non-small cell lung cancer. *Case Reports in Oncology*. 2019;12(1):171-177. doi:10.1159/000497481
- 24. Lee DH, Kim JH, Yoon TM, Lee JK, Lim SC. Metastatic small cell neuroendocrine carcinoma of the submandibular gland from the lung: A case report. *Medicine* (*Baltimore*). 2020;99(4):e19018. doi:10.1097/MD.0000000000019018
- 25. Lee S-Y, Kim MK, Won CS. Lingual metastasis to the tip of the tongue as the first sign of metastatic spread in lung cancer: A case report and review of the literature. *Korean Journal of Otorhinolaryngology-Head and Neck Surgery*. 2018;61(9):489-491. doi:10.3342/kjorl-hns.2017.00017
- 26. Lenouvel D, Bhagwat P, Warnakulasuriya S. Metastases from the lung presenting as a parotid lump. *Br J Oral Maxillofac Surg*. 2016;54(1):e10-e12. doi:10.1016/j.bjoms.2015.09.002
- 27. Matsuda S, Yoshimura H, Yoshida H, Umeda Y, Imamura Y, Sano K. Mandibular metastasis as the first clinical indication of occult lung adenocarcinoma with multiple metastases: A case report.

- *Medicine* (*Baltimore*). 2018;97(15):e0296. doi:10.1097/MD.000000000010296
- 28. McKernon S, Taylor K, Balmer C. Lung cancer diagnosed by a metastatic lesion in the mandible. *New Horizons in Clinical Case Reports*. 2017;1:20. doi:10.1016/j.nhccr.2017.06.181
- 29. Mohamed IZB, Idle M, Bates T, Yahya S. Tongue: the unusual site in malignant pleural mesothelioma. *BMJ Case Rep.* 2021;14(4):e241166. Published 2021 Apr 12. doi:10.1136/bcr-2020-241166
- 30. Moraes RM, Alves FA, Carvalho BFDC, Costa FD, Lopes RN, Jaguar GC. Mandible metastasis of small cell lung cancer mimicking a residual cyst. *Autops Case Rep.* 2017;7(1):37-41. Published 2017 Mar 30. doi:10.4322/acr.2017.003
- 31. Nuyen BA, Tang CG. Gingival Metastasis: A Case Report and Literature Review. *Perm J.* 2016;20(1):71-73. doi:10.7812/TPP/15-057
- 32. Oliver C, Mouallem G, Dutot-Philipeau N, Longis J, Piot B, Bertin H. A case report of condyle metastasis and a review of the literature. *Journal of Stomatology, Oral and Maxillofacial Surgery*. May 2021. doi:10.1016/j.jormas.2021.04.013
- 33. Pezzuto A, Morrone M, Mici E. Unusual jaw metastasis from squamous cell lung cancer in heavy smoker: Two case reports and review of the literature. *Medicine* (Baltimore). 2017;96(21):e6987. doi:10.1097/MD.00000000000006987

- 34. Rajini Kanth M, Ravi Prakash A, Raghavendra Reddy Y, Sonia Bai JK, Ravindra Babu M. Metastasis of lung adenocarcinoma to the gingiva: a rare case report. *Iran J Med Sci.* 2015;40(3):287-291.
- 35. Rajinikanth M, Prakash AR, Swathi TR, Reddy S. Metastasis of lung adenocarcinoma to the jaw bone. *J Oral Maxillofac Pathol*. 2015;19(3):385-388. doi:10.4103/0973-029X.174624
- 36. Rocha BA, Paranaíba LM, Dantas CD, et al. Two rare cases of oral metastasis arising from lung adenocarcinoma and esophageal carcinoma. *J Clin Exp Dent*. 2020;12(10):e999-e1004. Published 2020 Oct 1. doi:10.4317/jced.57125
- 37. Rovira-Wilde A, McKernon SL, Balmer C. Metastatic lesions in the mandible: A case series and literature review. *Oral Surgery*. 2020;15(1):51-58. doi:10.1111/ors.12560
- 38. Schneider KM, Martinez AY, Guglielmi M. Large cell neuroendocrine carcinoma: topic review and a unique case of metastasis to the mandible. *J Maxillofac Oral Surg.* 2015;14(Suppl 1):120-126. doi:10.1007/s12663-012-0362-x
- 39. Soputro NA, Asairinachan A, Prasad J. Parotid gland metastasis of lung adenocarcinoma identified on surveillance 18F-FDG PET/CT. *BMJ Case Rep.* 2022;15(1):e246779. Published 2022 Jan 17. doi:10.1136/bcr-2021-246779
- 40. Souron B, Weingertner N, Seigle-Murandi F, et al. Rare oral metastasis from a probable large-cell

- neuroendocrine carcinoma of the lung. *Médecine Buccale Chirurgie Buccale*. 2016;22(1):49-54. doi:10.1051/mbcb/2015054
- 41. Steffen C, Doll C, Thieme N, Waluga R, Beck-Broichsitter B. Presentation of cervical metastases and pathological mandibular fracture due to pulmonal adenocarcinoma: A case report. *Int J Surg Case Rep.* 2020;70:53-55. doi:10.1016/j.ijscr.2020.04.044
- 42. Stephen N, Raman A, Kumari S, Dineshbabu S, Gochhait D, Siddaraju N. Intraparotid metastasis from lung adenocarcinoma diagnosed by fnac—report of a rare case. *Diagnostic Cytopathology*. 2020;48(7):662-665. doi:10.1002/dc.24428
- 43. Tamgadge S, Pereira T, Kale S, Shetty S, Tamgadge A. Lung metastasis, an incidental finding in maxilla A case report. *Indian J Pathol Microbiol*. 2020;63(2):273-275. doi:10.4103/IJPM.IJPM_325_19
- 44. Tanaka T, Nakamatsu K, Imamura T. Metastasis of malignant pleural mesothelioma to maxillary gingiva: A case report and literature review. *Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology.* 2020;32(2):140-144. doi:10.1016/j.ajoms.2019.10.008
- 45. Thomas S, Bhake A. Cytodiagnosis of unusual metastases in parotid gland. *Journal of Oral and Maxillofacial Pathology.* 2021;25(1):171. doi:10.4103/jomfp.jomfp_267_20

- 46. Tirkey AS, R, Rajeev R, Thatchani GV, Siva SP. Non-small Cell Lung Cancer Metastasis to the Oral Cavity. *Oral & Maxillofacial Pathology Journal*. 2019;10(2):103-104. doi:10.5005/jp-journals-10037-1165
- 47. Veremis BM, D.D.S., Glass SH, D.D.S., Ramer N, D.D.S., Reich RF, D.D.S. Metastatic Pleural Mesothelioma to the Oral Cavity: Case Report and a Review of the Literature. *N Y State Dent J.* 2020;86(2):35-41.
- 48. Xie P, Wang W, Yang J. Tongue metastasis was the first sign of malignant pleural mesothelioma detected by PET/CT. *Eur J Nucl Med Mol Imaging*. 2020;47(9):2218-2219. doi:10.1007/s00259-020-04705-1
- 49. Yanagisawa S, Miyauchi E, Ichinose M. Numb Chin Syndrome: An Ominous Sign of Lung Cancer. *J Thorac Oncol*. 2017;12(8):e114-e116. doi:10.1016/j.jtho.2017.03.014
- 50. Yang C, Xiong B: Metachronous, solitary parotid gland metastasis of primary lung adenocarcinoma: a misdiagnosed case report and literature review. *International Journal of Clinical and Experimental Medicine*. 2017;10(2):3906-3911.
- 51. Zaubitzer L, Rotter N, Aderhold C, et al. Metastasis of pulmonary adenocarcinoma to the palatine tonsil. *Mol Clin Oncol*. 2019;10(2):231-234. doi:10.3892/mco.2018.1776
- 52. Kricun ME. Red-yellow marrow conversion: Its effect on the location of

- some solitary bone lesions. Skeletal Radiol. 1985;14:10–19. doi: 10.1007/BF00361188.
- 53. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview [published online ahead of print, 2021 Apr 5]. *Int J Cancer*. 2021;10.1002/ijc.33588. doi:10.1002/jc.33588
- 54. López-Jornet P, Garcia G, Camacho-Alonso F. Isolated gingival metastasis from lung carcinoma. N Y State Dent J. 2011;77:27–8. PubMed PMID: 21417163.
- 55. Huang ChJ, Chang YL, Yang MY, Hsueh CH, Yu ChT. Lung cancer metastatic to the maxillary gingiva—a case report and literature review. Oral Oncology Extra. 2005;41:118–120. doi: 10.1016/j.ooe.2005.02.007.
- 56. Curien R, Moizan H, Gerard E. Gingival metastasis of a bronchogenic adenocarcinoma: report of a case. Oral Surg

- Oral Med Oral Pathol Oral Radiol Endod. 2007;104:e25–28. PubMed PMID: 17942337
- 57. van der Waal RI, Buter J, van der Waal I. Oral metastases: Report of 24 cases. Br J Oral Maxillofac Surg. 2003;41:3–6. doi: 10.1016/S0266-4356(02)00301-7.
- 58. Rajappa S, Loya AC, Rao DR, Rao IS, Surath A, Srihari U. Metastasis to oral cavity- A report of two cases and Review of literature. Indian Journal Of Medical & Paediatric Oncology. 2005;26:43–6
- 59. Kosanwat T, Poomsawat S. Kitisubkanchana J. Non-endodontic periapical lesions clinically diagnosed as endodontic periapical lesions: retrospective study over 15 years. J Clin 2021;13(6):e586-e593. ExpDent. Published 2021 Jun 1. doi:10.4317/jced.57957