

Egypt. Acad. J. Biolog. Sci., 14(1):325-336 (2022) Egyptian Academic Journal of Biological Sciences C. Physiology & Molecular Biology ISSN 2090-0767 www.eajbsc.journals.ekb.eg

Micronucleus and Comet Assay as An Index for Carbon Tetrachloride Genotoxicity in Rats

Sahar Abd El-Razik Mosallam

Zoology Department, Women's College for Arts, Science and Education - Ain Shams University- Egypt

*E. Mail: <u>adr.sahar@yahoo.com</u>

ARTICLE INFO

Article History Received:1/3/2022 Accepted:13/4/2022 Available:18/4/2022

Keywords: Carbon tetrachloride (CCL₄), Green Coffee Extract (GCE), Olive oil, Micronucleus (MN), and Comet assay.

ABSTRACT

Many studies have reported that green coffee extract (GCE) has many benefits such as anti-diabetic, antioxidant, antihypertensive, and anti-obesity effects. The hepatoprotective effect of Green Coffee Extract (GCE) and olive oil in liver rats were studied as a result of the treatment with Carbon Tetrachloride (CCL4) compared to that of control. There was a sharp increase in tail DNA% from the GCE group to the CCL₄ group, which reached the beak in the CCL₄ group (24.67 ± 5.09) (P<0.001), after being treated with GCE with CCL₄, the chart declined to (14.67+2.68). CCL₄ group induced a very high frequency of MN (14.00 ± 1.67) compared to the control one (1.83+0.75). While animals treated with GCE at the same time with the CCL₄ group induced a significant reduction in the number of MN, 38/6000 (6.33+1.21). The results of this trial illustrated the protentional antioxidant effects of Green Coffee Extract and Olive Oil together or apart on the hepatotoxicity and cancerous effects of Carbon Tetrachloride in the liver and bone marrow of male albino rats. So, it was concluded that the GCE and olive oil minimizes the genotoxic role of CCL4 in rats.

INTRODUCTION

Cytoprotective, as well as cytotoxic compounds with potential properties, were detected in extracts from olive oil such as oleuropein glucoside, and tyrosol, besides hydroxytyrosol and caffeic acid (Habibi et al., 2021 and García-Martínez *et al.*, 2016). Green coffee is rich in chlorogenic acid, gallic acid, caffeine, protocatechuic, hydroxybenzoic, caffeic acid, ferulic acid, sinapic acid, and vanillic acid (Rizk *et al.*, 2021).

Many studies have reported that green coffee extract (GCE) has many benefits such as anti-diabetic, antioxidant, antihypertensive, and anti-obesity effects Revuelta-Iniesta and Al-Dujaili (2014) and Onakpoya *et al.* (2010). However, many studies have reported side effects of GCE if consumed in large amounts, causes leaching of minerals from the body Hutachok *et al.* (2021) and irritation of the stomach (Cano-Marquina *et al.*, 2013). The main polyphenol compound in green coffee is caffeine and chlorogenic acid which possess great therapeutic potential (Garg *et al.* 2021). Many investigators proved the antioxidant activities of chlorogenic acid and its inhibitory effects on chemical-induced carcinogenesis in vitro and in vivo (Villota *et al.*, 2021). Many studies and articles put more focus on caffeine, while others focus on beneficial compounds such as polyphenols and the Chlorogenic acid in coffee (Perdani and Pranowo 2019).

Citation: Egypt.Acad.J.Biolog.Sci. (C.Physiology and Molecular biology) Vol. 14(1) pp325-336 (2022) DOI: 10.21608/EAJBSC.2022.231278

Carbon tetrachloride (CCL₄) is an poly-chlorinated ozone-depleting hydrocarbon that has been used as an alternate substance as a liquid solvent for years (Sayed et al., 2021) and that evaporates easily in the surrounding environment (Fahmy et al., 2018). CCL4 is a famous compound known as hepatotoxin that is used in scientific experiments for the induction of hepatotoxicity in animals (El Rabey et al., 2021). Liver injuries are associated with the release of Reactive oxygen species (ROS) or free radicals (Xiao et al. 2012). The main target of free radicals in the cell membrane (phospholipid molecules) oxidative commanding stress. lipid aldehyde peroxidation. and reactive causing a block of intracellular DNA and proteins (Weber et el., 2003). In addition, ROS alters the structure and function of cellular and intracellular membranes producing hepatotoxicity and genotoxicity (Ingawale et al., 2014 and Lettéron et al., 1990). CCL₄ is bioactivated to an extremely reactive trichloromethyl radical CCL3-, and dichloromethyl CHCl2-, these two free radicals are very reactive and can bind to macromolecules like nucleic acids. proteins, and lipids causing mutation (Boll et al., 2001).

The objective goal of this study was to investigate the hepatoprotective effect of green coffee extract prepared at home in a normal way beside the same role for the olive oil against liver damage induced by CCL₄. It is worthy to note that the doses were determined to be equivalent to the daily consumption of a human. The role of the study is to see the effect of GCE besides olive oil which amplifies or enhances the end result benefits.

MATERIALS AND METHODS Experimental Animals:

Nine-week-old Male rats Rattus norvegicus (40-50 gm) were used in the study. The animals involved in the study were maintained and used in accordance with the guide to the care and use of laboratory animals prepared by Ain Shams University. The study's experimental procedures were approved by the medical Faculty Experimentation Ethics Committee. Animals were housed in the departmental animal facility for approximately 5 days after receipt prior to the experiment (21 C, 50% humidity, and 12 h, light per day).

The Applied Drugs:

Carbon tetrachloride CCL₄ was obtained from sigma company while pure olive oil and Green Coffee bean were purchased from the local market. All items were sourced in Egypt. The Green coffee extract (GCE) was prepared daily and adapted for animals to be equivalent to human consumption.

Experimental Design:

Thirty male rats were used in five groups of six. Group one served as control, group two is the olive oil (1 ml/kg), group three received GCE (0.2 ml/kg), group four received CCL4 (1ml/kg) dissolved in olive oil (1: 1), Hanafi (2012) and group 5 with CCl4 in olive oil and GCE 3 on alternate days thrice a week.

The bone marrow micronucleus test was done according to the modified method by Schmid (1976) and Heddle et al. (1983). The animals were slaughtered, and both femurs were separated. The proximal ends of the femurs were cut to reveal the bone marrow and then aspirated with fetal bovine serum into a centrifuge tube. Centrifugation was used to collect the cells, and slides were prepared. The slides were air-dried, methanol fixed, and stained with Giemsa. Micronucleated polychromatic erythrocytes (PCE) were counted in 1000 PCEs from each animal. addition, 100 both In of types, Micronucleated polychromatic erythrocytes (PCE) and Micronucleated normochromatic erythrocytes (NCE) were randomly counted from each animal to determine the PCEs/NCEs ratio.

The Comet assay was searched,

as the liver was removed and frozen at 80 Co until use. The DNA fragments migration patterns of six animals for each group were evaluated. 1g of crushed liver samples were transferred to 1ml ice-cold PBS. This suspension was stirred for 5 mins and filtered. Cell suspension (100 ul) was mixed with 600ul of low-melting agarose (0.8% in PBS). 100ul of this mixture was spread on pre-coated slides. The coated slides were immersed in lysing buffer (0.045M TBE, pH 8.4, containing 2.5% SDS) for 15 mins. In the electrophoresis chamber containing the TBE buffer, the slides were same mounted, but devoid of SDS. The Conditions for electrophoresis were 2 V/cm for 2 mins. Staining with ethidium bromide 20ug/ml. Kinetic Imaging, Ltd. created the Comet 5 image analysis software (Liverpool, UK) By measuring the length of DNA migration, а microscope linked to a CCD camera was used to assess the quantitative and qualitative extent of DNA damage in cells and the percentage of migrated DNA. The Comet's tails extents were measured from the mid of the nucleus to the end of the tail with a 40x objective for the total and measure of the size of the Comet (Olive et al., 1990).

Statistically, significance was evaluated using an ANOVA (one-way) test with the help of Sigma Plot 14.0. Ink. In cases where ANOVA showed significant differences, post hoc analysis Tukey HSD was performed. P values of 0.05 or less were well-thought-out statistically significant.

RESULTS

Physical Appearance:

CCL₄ group showed weight loss and lazy animals compared to the rest of the groups, while the weight of liver in CCL₄ was the highest compared to the other groups (data not scored) on one hand, and the animals' fur of CCL₄ dissolved in olive oil turned to pale yellow color, on another hand.

Comet Assay:

Comet tail DNA % in rats treated with a dose of 0.1 ml/kg of the CCL₄ was significantly increased verv highly compared to the control group. While GCE significantly reduced the effect of CCL₄ on the liver cells, Table (1) and Fig. (1). There was a sharp increase in tail DNA% from the GCE group to the CCL₄ group, which reached the beak in the CCL₄ group (24.67 + 5.09) (P<0.001) that indicating the genotoxicity of CCL₄, after being treated with GCE with CCL₄, the chart declined to (14.67 + 2.68), Fig. (2). Furthermore, when compared to the control group (1.50 + 0.38) both GEC and olive oil had no significant effect on tail DNA percent (1.67+0.19 and 2.40+0.76 respectively), which implies the protection of both.

Table (I):	Rates of Comets tail DNA 9	% in liver of rats treated orally for 4 week	s with
	CCL4, olive oil and GCE	groups apart or together compared to t	hat of
	control.		

Groups	No. of examined animals	No. of analyzed cells / 6 animals	Mean <u>+</u> S.D.
control	6	600	1.50 <u>+</u> 0.38
Olive Oil	6	600	2.40 <u>+</u> 0.76
GCE	6	600	1.67 <u>+</u> 0.19
CCL ₄ + Olive Oil	6	600	24.67 <u>+</u> 5.09**
CCL ₄ +GCE&Olive Oil	6	600	14.67 + 2.68**

N.B.: 600 hepatocytes were examined per each group.

** = P < 0.001: very highly significant.

* = P<0.01: highly significant

Fig.1: Comet photomicrographs showing the DNA migration pattern in hepatocytes of rats. **a**) unaffected cells. **b**) and **c**) are the different forms of the affected cells.

Fig. 2: The mean of tail DNA % in the liver of male rats treated orally with CCL4, olive oil and GCE apart or together for 4 weeks.

Micronucleus Test:

In this study, the diversity in shape and number of MN was recorded. The cells were categorized as single micronucleus and more than one micronucleus. There was a very high frequency of MN induced in the CCL4 group (14.00 ± 1.67) compared to the control one (1.83 ± 0.75), which indicates the toxicity of CCL4. However, animals treated GCE at the same time with CCL4 group induced a significant reduction in the number of MN, 38/6000 (6.33 ± 1.21), Table (2). The micronuclei were varied in size, some micronuclei were small and the others were large. The PCEs frequency of the CCL₄ animals was 3.6 times the GCE group (Figs. 3 & 4). As illustrated in Table (3), the PCEs were increased after treatment with CCL₄, which signified the cytotoxicity of CCL₄ (0.57+0.05) and the evident decline in such ratio after treatment GCE at the same time with CCL4 (0.79+0.03).

Table 2: Induction of micronuclei by CCL4, olive oil and GCE groups combined or apart as compared to control group in bone marrow cells of male rats.

Groups Serial number	Control	Olive Oil	GCE	CCL ₄₊ Olive Oil	CCL₄+GCE & Olive Oil
1	2	2	4	12	5
2	1	3	5	15	7
3	3	4	4	16	6
4	2	3	3	15	7
5	1	2	4	14	8
6	2	3	3	12	5
total	11	17	23	84	38
Mean+ SD	1.83+0.75	2.83 <u>+</u> 0.75	3.83 <u>+</u> 0.75*	14.00+1.67**	6.33+1.21**

N.B.: 600 hepatocytes were examined per each group.

** = P<0.001: very highly significant.

* = P<0.01: highly significant

Fig.3: Micronucleated polychromatic erythrocytes in rat bone marrow after oral administration of CCL4, olive oil and GCE apart or together for 4 weeks.

Fig. 4: The mean of frequencies of micronucleated polychromatic erythrocytes in bone marrow cells of male rats following treatment with CCL4, olive oil and GCE apart or together for 4 weeks.

Table 3: Ratio of polychromatic erythrocytes (PCE) to normochromatic erythrocytes(NCE) in rats treated orally for 4 weeks with CCL4, olive oil and GCEcombined or apart compared to that of control group.

Groups Serial number	Control	Olive Oil	GCE	CCL ₄₊ Olive Oil	CCL ₄ +GCE & Olive Oil
Total	5.57	5.57	5.3	3.44	4.76
Mean+ SD	0.93 <u>+</u> 0.03	0.88 <u>+</u> 0.04	0.93 <u>+</u> 0.03	0.57 <u>+</u> 0.05**	0.79+0.03**

N.B.: 600 hepatocytes were examined per each group.

** = P<0.001: very highly significant.

* = P<0.01: highly significant.

DISCUSSION

CCL₄ group presented weight loss in the liver and animals' body weight. Therefore, this increase combined with the reduction of animals' activity-induced liver stress compared to the other groups. These findings align with Naz *et al.* (2020) and Mesalam *et al.* (2021), who recorded the lowest body weight and liver damage in the CCL₄-treated group.

Many studies demonstrated as aforementioned the effect of CCL4induced oxidative stress and it is one of the main mechanisms underlying CCL₄ hepatotoxicity (Xiao et al., 2012). This in turn affected the DNA directly or indirectly, Alkreathy et al., 2014. It was demonstrated that CCL₄ induced toxicity increased lipid peroxidation, IL-6, kidney function parameters, liver function enzymes, total cholesterol, triglycerides, and low-density lipoproteins, and decreased irisin, antioxidants, CYP450, and high-density lipoprotein levels (El Rabey et al., 2021).

This study indicated that the ability of CCL₄ to induce DNA breakage compared to the control group as indicated by Comet assay in liver cells - suggested that CCL₄ enhanced oxidative stress by releasing free radicals. CCL₄ itself is nontoxic, but its metabolite \cdot CCl₃ and \cdot OOCCl₃ formed by cytochrome P450dependent monooxygenases cause hepatotoxicity Lee et al. (2019). These free radicals caused lipid peroxidation which in turn led to liver injury Shah *et al.*, 2017 and decreased the efficiency of the liver to overcome oxidative stress ending up in the change of antioxidant enzyme activities Mesalam et al., 2021. In addition, at a high level of O2, CCL₄ is metabolized to trichloromethyl peroxy radical CCL3OO- running to peroxidation of lipid to trigger the cell to steatosis or apoptosis Boll et al., 2001. Furthermore, at the molecular level CCL₄ stimulated tumor necrosis factor (TNF)-alpha, nitric oxide (NO), and transformed growth factors (TGF)-alpha and -beta in the cell, which directed the cell primarily to selfdestruct or fibrosis Weber et al., 2003. The same author mentioned that these findings may be interfered with using antioxidants and mitogens by restoring cellular methylation. Antioxidant molecule's activity can scavenge ROS before these molecules cause tissue damage, especially in the genetic material Adewale et al., 2004 and Sheweita et al., 2001.

Chlorogenic acid (CGA). phenolic compound found in both olive oil and green coffee, has antioxidant activity and the ability to trap and neutralize superoxide anions or hydroxyl radicals Fazel Nabavi et al., 2017. GCE and olive oil indicated a great ability to overcome the oxidative stress of CCL₄ on hepatocytes by increasing the antioxidant to counteract ROS, as an antagonist to the toxicity effect of CCL₄ on both cytotoxic and molecular effects. Therefore, the hypotensive effect of caffeic acid in spontaneously hypertensive rats might be mediated via the muscarinic acetylcholine receptors Suzuki et al., 2002.

The protective effect of GCE and olive oil against the damage that occurred by CCL₄ on the liver and bone marrow cells of rats clearly appears in this study. The study outcome is in the same line as Singh, et al. (2021) who examined effect of chlorogenic acid the on enzymes in vitro metabolizing and diabetic complications in vivo. Their results showed important enhancement of weight, HDL-cholesterol, body total protein, and albumin levels leading to improvement in atherogenic keys related diabetes-associated cardiovascular to risks. GCE and olive oil may suppress the formation of free radicals released by which is concurrent CCL₄ with Venkatakrishna et al. (2021)who concluded the safety of green coffee bean extract. Furthermore, Hsu et al. (2022) showed CGA efficiency hepatoprotective consequences for CCL₄-incited liver injuries in mice by the elevation of the activities of antioxidant enzymes and hindrance of lipid peroxidation.

Detection of micronuclei is a simple, inexpensive, and relatively minimally invasive technique commonly used to evaluate chemical genotoxicity but rarely applied to assess wildlife genotoxic effects Sandoval-Herrera et al., 2021. The Micronucleus test (MN) has become one of the most popular methods to assess the genotoxicity of different chemical and physical factors, including ionizing radiation-induced DNA damage Sommer 2020. Although many tests al., et classified as "in vivo biomonitoring" are available, a micronucleus test (MN) is one of the most popular and widely used to test genotoxicity in vitro OECD (2010).

Micronucleus assay can detect spindle poisons (Thomson and Perry 1988) leading to the appearance of large MN (Yamamoto and Yasumoto, 1980 and Högstedt and Karlsson, 1985). The present findings showed MN size ranged from small to large which may be part of a chromosome, deletion, break, or acentric

fragment as a result of disrepair of DNA double-strand or DNA break (Lin et al., 2021 and Mosallam 2020). The findings of the study revealed that CCL₄ had a strong effect on the induction of MN, which reflected its cytotoxic impact throughout the anaphase period throughout the deterioration route of the erythrocyte nucleus (Moras et al., 2017). The results are in line with El-Shorbagy (2017) who stated that CCL₄ increased the frequency of MN in the bone marrow of mice. Moreover, Abdou et al. (2012) detected a high frequency of chromosomal aberrations in the bone marrow and liver cells of CCL₄-treated male mice at a dose level of 1 ml/kg/b.wt., which is in harmony with these results. Recently, Pegoraro et al. (2021) studied the Bidens pilosa species of herbaceous, against toxicity of CCL₄ on the liver, kidney, intestine, and bone marrow through MN test and Comet assay, the finding showed that CCL₄ exerted a mutagenic effect on which manipulated by Bidens rats. pilosa herb. Once again, the present consequences of the treatment with CCL₄ revealed a statistical decrease in MN-PCEs when compared with control animals, indicating the cytotoxic effects of CCL₄ which disrupted the normal bone marrow cell proliferation. Alshahrani et al., 2021 and Tripathi et al., 2012, mentioned that, when normal bone marrow cell proliferation is disrupted by a toxic agent, the number of immature erythrocytes (i.e., PCEs) decreases in comparison to mature erythrocytes (i.e., NCEs), resulting in a decrease in the PCE/NCE ratio.

The findings revealed the significant influence of GCE and olive oil in reducing the cytogenetic effects of CCL₄ on bone marrow cells. In addition, Ansari *et al.* (2021), examined the radioprotective effect of three herbal extracts including green coffee on bone marrow cells of mice after exposure to irradiation (3 Gy gamma-rays of Co-60). The study outcomes signified the appearance of large MN in the CCL₄ treated group which is considered as an index of toxicity of CCL₄ on spindle fibers, and the ability of green coffee to decrease its effect. methanolic Green coffee extract. silymarin, their combination and succeeded in protecting the male rats against CCL₄ hepatotoxicity due to their antioxidant activity (El Rabey et al., 2021). The degree of roasting affects the antioxidant and anti-inflammatory effects of coffee extracts, the lightly roasted coffee is the richest antioxidant and antiinflammatory effects (Choi et al., 2018). Nevertheless, Masek et al., 2020, stated that both ethanol green coffee extract and aqueous solutions have strong antioxidant properties. Finally, it can be concluded that Green Coffee and olive oil showed a great potency of antioxidant and anticancer effects which antagonist the hepatotoxicity of CCL₄. The positive results obtained in the two tests revealed the genotoxic potential of CCL₄. The present study has several strengths including 1- the large size of samples, 2-The usage of two markers, MN as a carcinogenic marker and Comet assay as a DNA breakage marker, 3- the usage GCE equivalent to the daily human consumption.

Conclusion

In conclusion, the results of this trial illustrated the protentional antioxidant effects of Green Coffee Extract and Olive Oil together or apart on the hepatotoxicity and cancerous effects of Carbon Tetrachloride in the liver and bone marrow of male albino rats.

REFERENCES

Abdou, H. S., SH, S., Booles, H. F., & EA, A. R. (2012). Effect of pomegranate pretreatment on genotoxicity and hepatotoxicity induced by carbon tetrachloride (CCl4) in male rats. *Journal of Medicinal Plants Research*, 6(17), 3370-3380. https:// doi.org/10.5897/JMPR12.217

Adewale, O. B., Adekeye, A. O.,

Akintayo, C. O., Onikanni, A., & Sabiu, S. (2014). Carbon tetrachloride (CCl4)-induced hepatic damage in experimental Sprague Dawley rats: Antioxidant potential of Xylopia aethiopica. Carbon tetrachloride (CCl4)-induced hepatic damage in experimental Sprague Dawley rats: Antioxidant potential of *Xylopia aethiopica*, 3(2), 1-6. http://eprints.abuad.edu.ng/id/ep rint/37

- Alkreathy, H. M., Khan, R. A., Khan, M. R., & Sahreen, S. (2014). CCl 4 induced genotoxicity and DNA oxidative damages in rats: hepatoprotective effect of Sonchus arvensis. BMC complementary and alternative medicine, 14(1), 1-7. DOIhttps:// doi.org/10.1186/1472-6882-14-452
- Alshahrani, S., Tripathi, P., Alhazmi, H. A., Hussain, S. M., Siddiqui, A. H., Ahsan, W., & Bratty, M. A. (2021). Genotoxicity of yellow shammah (smokeless tobacco) in murine bone marrow cells in vivo. *Drug and chemical toxicology*, 44(2), 124-129. https: //doi.org/10.1080/01480545.2019 .1566351
- Ansari, L., Banaei, A., Dastranj, L., Majdaeen, M., Vafapour, Н., Zamani, Н., ... & Abedi-Firouzjah, R. (2021). Evaluating radioprotective effect of the single-dose and daily oral consumption of green tea, grape seed, and coffee bean extracts gamma irradiation. against Applied Radiation and Isotopes, 109781. https://doi.org/10.1016/ j.apradiso.2021.109781
- Boll, M., Lutz, W. D., Becker, E., & Stampfl, A. (2001). Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon

tetrachloride metabolites. *Zeitschrift für Naturforschung* C, 56(7-8), 649-659. file:///Users/ saharmosalam/Downloads/10.15 15_znc-2001-7-826%20(1).pdf

- Cano-Marquina, A., Tarín, J. J., & Cano, A. (2013). The impact of coffee on health. *Maturitas*, 75(1), 7-21. https://doi.org/10.1016/j.maturita s.2013.02.002
- Choi S, Jung S, Ko KS. (2018). Effects of Coffee Extracts with Different Roasting Degrees on Antioxidant and Anti-Inflammatory Systems in Mice. *Nutrients.*,10(3):363. Published 2018 Mar 16. doi:10.3390/nu10030363
- El Rabey, H. A., Rezk, S. M., Sakran, M. I., Mohammed, G. M., Bahattab, O., Balgoon, M. J., ... & Bakry, (2021). Green coffee N. methanolic extract and silvmarin protect against CCl4-induced hepatotoxicity in albino male *complementary* rats. BMC medicine and therapies, 21(1), 1https://doi.org/10.1186/ 11. s12906-020-03186-x
- El-Shorbagy, H. M. (2017). Molecular and anti-oxidant effects of wheat germ oil on CCl4-induced renal injury in mice. *Journal of Applied Pharmaceutical Science*, 7, 94-102. http://japsonline. com/admin/php/uploads/2267_pd f.pdf
- Fahmy, M. A., Diab, K. A., Abdel-Samie, N. S., Omara, E. A., & Hassan, Z. M. (2018). Carbon tetrachloride induced hepato/ renal toxicity in experimental mice: antioxidant potential of Egyptian Salvia officinalis L essential oil. Environmental Science and Pollution Research, 25(28), 27858-27876. https://doi. org/10.1007/s11356-018-2820-6
- Fazel Nabavi, S., Tejada, S., N Setzer, W., Gortzi, O., Sureda, A., Braidy, N., ... & Mohammad Nabavi, S.

(2017). Chlorogenic acid and mental diseases: from chemistry to medicine. *Current Neuropharmacology*, 15(4), 471-479.

- García-Martínez, O., De Luna-Bertos, E., Ramos-Torrecillas, J., Ruiz, C., Milia, E., Lorenzo, M. L., Jimenez, B., Sánchez-Ortiz, A., & Rivas, A. (2016). Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation. *PloS one*, 11(3), e0150045. https://doi.org/10.1371/journal.po ne.0150045
- Garg, S. K., Shukla, A., & Choudhury, S. (2021). Green coffee beans. In Nutraceuticals (pp. 725-748). *Academic Press*. https://doi. org/ 10.1016/B978-0-12-821038-3. 00042-2
- Habibi, E., Baâti, T., Njim, L., M'Rabet, Y., & Hosni, K. (2021). Antioxidant and protective effects of extra virgin olive oil incorporated with diallyl sulfide against CCl4-induced acute liver injury in mice. Food Science & Nutrition, 9(12). 6818-6830. https://doi.org/10.1002/fsn3.2638
- Hanafi, N. (2012). Low doses of gamma radiation may impair testicular tissue in a rat treated ccl4 model: Role of BM transplantation. Journal of Biological Sciences, 12(3), 128-137.
- Heddle, J. A., Hite, M., Kirkhart, B., Mavournin, K., MacGregor, J. T., Newell, G. W., & Salamone, M. F. (1983). The induction of micronuclei as a measure of genotoxicity: A report of the US Environmental Protection Gene-Tox Agency Program. Mutation Research/Reviews in Genetic Toxicology, 123(1), 61https://doi.org/10.1016/ 118. 0165-1110(83)90047-7

- Högstedt, B., & Karlsson, A. (1985). The size of micronuclei in human lymphocytes varies according to inducing agent used. *Mutation Research/Genetic Toxicology*, 156(3), 229-232. https://doi.org/ 10.1016/0165-1218(85)90067-9
- Hsu, Yu-Wen, Ya-Yu Chen, and Chia-Fang Tsai. (2022). "Protective Effects of Chlorogenic Acid against Carbon Tetrachloride-Induced Hepatotoxicity in Mice" *Processes 10*, no. 1: 31. https://doi.org/10.3390/pr100100 31
- Hutachok, N., Koonyosying, Ρ., Pankasemsuk, T., Angkasith, P., Chumpun, C., Fucharoen, S., & Srichairatanakool, S. (2021).Chemical Analysis, Toxicity Study, and Free-Radical Scavenging and Iron-Binding Assays Involving Coffee (Coffea arabica) Extracts. Molecules, 26(14), 4169. https://doi.org/10. 3390/molecules26144169
- Ingawale, D. K., Mandlik, S. K., & Naik, S. R. (2014).Models of hepatotoxicity and the underlying cellular. biochemical and immunological mechanism (s): a critical discussion. Environmental toxicology and pharmacology, 37(1), 118-133. https://doi.org/10.1016/j.etap.201 3.08.015
- Lee, H. Y., Lee, G. H., Yoon, Y., & Chae, H. J. (2019). R. verniciflua and E. ulmoides extract (ILF-RE) protects against chronic CCl4induced liver damage by enhancing antioxidation. *Nutrients*, 11(2), 382.
- Lettéron, P., Labbe, G., Degott, С., Berson. A., Fromenty, B.. Delaforge, M., ... & Pessayre, D. (1990). Mechanism for the protective effects of silymarin tetrachlorideagainst carbon induced lipid peroxidation and

hepatotoxicity in mice: evidence that silymarin acts both as an inhibitor of metabolic activation and as a chain-breaking antioxidant. *Biochemical pharmacology*, 39(12), 2027-2034. https://doi.org/10. 1016/0006-2952(90)90625-U

- Lin, B., Qi, X., Fang, L., Zhao, L., Zhang, R., Jing, J., ... & Xue, P. (2021). In vivo acute toxicity and mutagenic analysis of crude saponins from Chenopodium quinoa Willd husks. *RSC Advances*, 11(8), 4829-4841. DOI: 10.1039/D0RA10170B
- Masek, A., Latos-Brozio, M., Kałużna-Czaplińska, J., Rosiak, A., & Chrzescijanska, E. (2020). Antioxidant properties of green coffee extract. *Forests*, 11(5), 557. https://doi.org/10.3390/ f11050557
- Mesalam, N. M., Aldhumri, S. A., Gabr,
 S. A., Ibrahim, M. A., Al-Mokaddem, A. K., & Abdel-Moneim, A. M. E. (2021).
 Putative abrogation impacts of Ajwa seeds on oxidative damage, liver dysfunction and associated complications in rats exposed to carbon tetrachloride. *Molecular Biology Reports*, 48(6), 5305-5318. DOIhttps://doi.org/10. 1007/s11033-021-06544-1
- Moras M, Lefevre SD, Ostuni MA (2017) From erythroblasts to mature red blood cells: organelle clearance in mammals. *Front Physiol* 8: 1076.
- Mosallam, S. (2020). Efficacy of ascorbic acid against toxicity initiated by mono-sodium glutamate on Albino mice. J. of Pharmacy and Biological Sciences, 15(1), 1-8. DOI: 10.9790/3008-1501010108
- Naz, I., Khan, M. R., Zai, J. A., Batool, R., Zahra, Z., & Tahir, A. (2020). Pilea umbrosa ameliorate CCl 4 induced hepatic injuries by

regulating endoplasmic reticulum stress, pro-inflammatory and fibrosis genes in rat. *Environmental Health and Preventive Medicine*, 25(1), 1-15. DOIhttps://doi.org/10.1186/s121 99-020-00893-2

- OECD. (2010). In Vitro mammalian cell micronucleus test, OECD Guide lines for the testing of chemicals, 487.
- Olive, P. L., Banáth, J. P., & Durand, R. E. (1990). Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the" comet" assay. *Radiation research*, 122(1), 86-94. https://doi.org/10. 2307/3577587
- Onakpoya, I., Terry, R., & Ernst, E. (2010). The use of green coffee extract as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. *Gastroenterology research and practice*, 2011. https://doi.org/10.1155/2011/382 852
- Pegoraro, C. M. R., Nai, G. A., Garcia, L. A., Serra, F. D. M., Alves, J. A., Chagas, P. H. N., ... & Zocoler, M. A. (2021). Protective effects of Bidens pilosa on hepatoxicity and nephrotoxicity induced by carbon tetrachloride in rats. *Drug and chemical toxicology*, 44(1), 64-74. https://doi.org/10.1080 /01480545.2018.1526182
- Perdani, C. G., & Pranowo, D. (2019). Total phenols content of green coffee (Coffea arabica and Coffea canephora) in East Java. In *IOP Conference Series: Earth* and Environmental Science (Vol. 230, No. 1, p. 012093). IOP Publishing. https://doi.org/10. 1088/1755-1315/230/1/012093
- Revuelta-Iniesta, R., & Al-Dujaili, E. A. (2014). Consumption of green coffee reduces blood pressure

and body composition by influencing 11β -HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee. *BioMed research international*, 2014. https://doi.org/10.1155/2014/482 704

- Rizk, S., Taha, H., Abdel Moneim, A. E., & Amin, H. K. (2021). Neuroprotective effect of green and roasted coffee bean extracts on cerebral ischemia-induced injury in rats. *Metabolic Brain Disease*, 36(7), 1943-1956. https: //doi.org/10.1007/s11011-021-00769-6
- Sandoval-Herrera, N., Castillo, J. P., Montalvo, L. G. H., & Welch, K. C. (2021). Micronucleus Test Reveals Genotoxic Effects in Bats Associated with Agricultural Activity. *Environmental Toxicology and Chemistry*, 40(1), 202-207. https: //doi.org/10.1002/etc.4907
- Sayed, E. A., Badr, G., Hassan, K. A. H., Waly, Н.. Ozdemir, B.. Mahmoud, M. H., & Alamery, S. (2021). Induction of liver fibrosis by CCl4 mediates pathological alterations in the spleen and nodes: The potential lymph propolis. therapeutic role of Saudi Journal of Biological Sciences, 28(2), 1272-1282. https ://doi.org/10.1016/j.sjbs.2020.11. 068
- Schmid, W. (1976). The micronucleus test for cytogenetic analysis. *In Chemical mutagens* (pp. 31-53). Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0892-8_2
- Shah, M. D., D'souza, U. J., & Iqbal, M.
 (2017). The potential protective effect of Commelina nudiflora L. against carbon tetrachloride (CCl 4)-induced hepatotoxicity in rats, mediated by suppression of

oxidative stress and inflammation. *Environmental health and preventive medicine*, 22(1), 1-19. DOIhttps: //doi.org/10.1186/s12199-017-0673-0

- Sheweita, S. A., Abd El-Gabar, M., & Bastawy, M. (2001). Carbon tetrachloride changes the activity of cytochrome P450 system in the liver of male rats: role of antioxidants. *Toxicology*, 169(2), 83-92.
- Singh, A. K., Rana, H. K., Singh, V., Yadav, T. C., Varadwaj, P., & Pandey, A. K. (2021). Evaluation of antidiabetic activity of dietary phenolic compound chlorogenic acid in streptozotocin induced diabetic rats: molecular docking, molecular dynamics, in silico toxicity, in vitro and in vivo studies. *Computers in Biology and Medicine*, 104462. https:// doi.org/10.1016/j.compbiomed.2 021.104462
- Buraczewska, Sommer, S., I., & Kruszewski. M. (2020).Micronucleus assay: the state of art. and future directions. International journal of molecular sciences, 21(4), 1534. https://doi.org/10.3390/ijms2104 1534
- Suzuki, A., Kagawa, D., Ochiai, R., Tokimitsu, I., & Saito, I. (2002). Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. *Hypertension Research*, 25(1), 99-107. https ://doi.org/10.1291/hypres.25.99
- Thomson, E. J., & Perry, P. E. (1988). The identification of micronucleated chromosomes: a possible assay for aneuploidy. *Mutagenesis*, 3(5), 415-418. https://doi.org/10. 1093/mutage/3.5.415
- Tripathi, R., Pancholi, S.S., and Tripathi, P. (2012). Genotoxicity of

ibuprofen in mouse bone marrow cells in vivo. *Drug and Chemical Toxicology*, 35 (4), 389–392. https://doi.org/10.3109/01480545 .2011.630670

- Venkatakrishna, K., Sudeep, H. V., & Shyamprasad, K. (2021). Acute and sub-chronic toxicity evaluation of a standardized green coffee bean extract (CGA-7[™]) in Wistar albino rats. SAGE open medicine, 9.doi: 10. 1177/2050312120984885
- Villota, H., Moreno-Ceballos, M., Santa-González, G. A., Uribe, D., Castañeda, I. C. H., Preciado, L. M., & Pedroza-Díaz, J. (2021). Biological Impact of Phenolic Compounds from Coffee on Colorectal Cancer. *Pharmaceuticals*, 14(8), 761. https://doi.org/10.3390/ph140807 61
- Weber, L. W., Boll, M., & Stampfl, A. (2003). Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. *Critical reviews in toxicology*, 33(2), 105-136. https://doi.org/10.1080/ 713611034
- Xiao, J., Liong, E. C., Ching, Y. P., Chang, R. C. C., So, K. F., Fung, M. L., & Tipoe, G. L. (2012). Lycium barbarum polysaccharides protect mice liver from carbon tetrachlorideinduced oxidative stress and necroinflammation. Journal of ethnopharmacology, 139(2), 462-470. https://doi.org/10.1016/j. jep.2011.11.033
- Yamamoto, K. I., & Yasumoto, K. (1980). A comparison of diameters of micronuclei induced by clastogens and by spindle poisons. Mutation Research/ Fundamental Molecular and Mechanisms of Mutagenesis, 71(1), 127-131.