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            Telomeres are tandem repeats of DNA that are present at the end 

of a linear chromosome. They play a critical role in providing 

chromosome-end protection. There are certain binding sites of proteins, 

called shelterins, in the telomere structure that play a critical role in 

telomere protection. Telomeres are elongated by telomerase enzymes. In 

normal human somatic cells, telomerase is inactivated, and consequently, 

telomeres shorten with each cell cycle. Short telomeres can play opposing 

roles in carcinogenesis. First, short telomeres can play an essential role in 

stopping the occurrence of cancer. Second, short telomeres can lead to 

genome instability, which may result in the formation of some cancer 

cells. However, cancer cell telomeres can be lengthened by the 

reactivation of telomerase or alternative lengthening of telomeres (ALT) 

mechanisms. ALT is a homologous recombination-based mechanism that 

depends on the RAD52 gene. This review summarises the role of short and 

long telomeres in the initiation and growth of cancer cells. 

 

INTRODUCTION 

Historical Background:  

            Telomeres were discovered by Muller (1938). He noticed that the ends of 

irradiated chromosomes in Drosophila melanogaster were protected against mutagenic 

X-rays. Chromosome ends have a specific protective structure, saving them from 

chromosome breakage, inversion, or deletion. Muller called this special chromosome end 

“telomere” (from the Greek words telo, meaning “end,” and mere, meaning “part”) 

(Muller, 1938). 

             In 1941, Barbara McClintock explained the fusion of chromosome ends that 

leads to dicentric chromosomes and revealed that the damage to chromosome ends can 

be repaired. Accordingly, telomeres play a critical role in chromosome protection and 

integrity (McClintock, 1941). 

              In 1961, Leonard Hayflick found that diploid normal human cells had limited 

time for duplications. Cells can divide only 40–60 times. This maximum time of cellular 

multiplication is called the “Hayflick limit”. Consequently, cells reach a specific type of 

cellular arrest and undergo cell senescence upon reaching this limit (Hayflick & 

Moorhead, 1961).  

            In 1971, James Watson proposed the existence of the “end replication problem”, 

based on the semi-conservative DNA replication mechanism.  
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             According to the mechanism of 

DNA replication, Watson anticipated that 

after several cell divisions chromosomes 

would lose their ends. Eventually, 

chromosome end shortening with each cell 

division would lead to cell senescence or 

death. Additionally, he assumed that a 

protective mechanism would exist to 

prevent the chromosome end reduction 

(Watson, 1972). Moreover, as proposed by 

Alexsey Olovnikov in 1971, cellular aging 

may occur as a result of telomere 

shortening. Telomere erosion may reach 

nearby essential genes, and thus, influence 

human aging (Olovnikov, 1973). 

            In 1978, Blackburn and Gall found 

that extrachromosomal telomeres in 

Tetrahymena thermophila contained 20–

70 tandem repeats. This repeat was a 

hexanucleotide of 5′-CCCCAA-3′ 

sequence on one strand and 5′-TTGGGG-

3′ on the complementary strand (Greider & 

Blackburn, 1985). 

          The enzyme that elongates 

telomeres was discovered by Blackburn 

and Carol Greider in 1988. It was initially 

named terminal telomere transferase but 

later changed to telomerase (Greider & 

Blackburn, 1985).  

         Telomerase activity in humans was 

first reported by Morin in 1989. Moreover, 

he revealed that human telomeres consist 

of repeats of the TTAGGG sequence 

(Morin, 1989). In 1994, Shay et al. 

demonstrated telomerase activity in 

approximately 90% of human cancers 

(Kim et al., 1994). Moreover, they found 

that telomerase immortalised normal cells 

(Bodnar et al., 1998). 

Telomere Structure and Function: 

             Telomeres are nucleoprotein 

structures that exist at the ends of linear 

chromosomes. Telomeres consist of TG 

tandem repeats that vary among different 

organisms. For instance, telomeres in 

protozoans contain approximately 20-70 

TTGGGG tandem repeats (Blackburn, 

Greider, & Szostak, 2006). In yeast, the 

GGTTACA repeat extends up to 

approximately 300 bp (Pfeiffer & Lingner, 

2013). Telomeres in plants comprise 

TTTAGGG repeats in the range of 2–100 

kb (Fajkus et al., 2019). Telomeres in 

vertebrates consist of TTAGGG tandem 

repeats (Shay & Wright, 2019). Human 

telomeres are normally between 10 and 15 

kb in length (Heidenreich & Kumar, 2017; 

Pfeiffer & Lingner, 2013; Webb, Wu, & 

Zakian, 2013). Telomeres consist of two 

parts: subtelomeres and telomeric repeats. 

The telomere repeat contains double-

strand and single-strand regions (Fig. 1) 

(Baird, 2018; de Lange, 2018). Single 

strands in mammalian telomeres are 

mostly 50–400 bp long. Six proteins, 

called shelterin complex proteins, bind 

telomeres to provide telomere stability 

(Heidenreich & Kumar, 2017; Sfeir & de 

Lange, 2012). The tandem repeat single 

strand at the end of telomeres, called the 3 

overhang, is created by nucleolytic 

degradation (Wu, Takai, & de Lange, 

2012). The 3 overhang folds back and 

invades the telomeric double strand to 

form a T-loop structure (Fig. 2) (Doksani, 

Wu, de Lange, & Zhuang, 2013; 

O'Sullivan & Karlseder, 2010).  
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Fig. 1. Telomere structure includes tandem repeats of DNA that exist at the end of the 

linear chromosome, and consist of double-stranded DNA and 50–300 nucleotide single-

stranded G-overhangs. 

 

            

         Many proteins are associated with 

telomeres. These proteins can be broadly 

grouped into three main types, 

nucleosomes, shelterin complexes, and 

chromosomal transcription factors (de 

Lange, 2018; Kar, Willcox, & Griffith, 

2016; Tardat & Dejardin, 2018).  

           Nucleosomes are one of the main 

players in telomere protection. They are 

involved in protein-protein and protein-

DNA interactions between shelterin 

subunits and tandem repeat sequences 

(Bandaria, Qin, Berk, Chu, & Yildiz, 

2016; Tardat & Dejardin, 2018). As a 

result of histone methylation, telomeres in 

higher eukaryotes are mostly 

heterochromatin (Chow et al., 2018; 

Galati, Micheli, & Cacchione, 2013). The 

existence of telomeres in a 

heterochromatin form increases genome 

stability (Schoeftner & Blasco, 2009). 

Moreover, histones play an important role 

in telomere capping and homologous 

recombination in telomeres (Chow et al., 

2018). In addition, heterochromatin at 

telomeres results in the silencing of nearby 

genes (Jezek & Green, 2019).  

 
Fig. 2. T-loop structure. Single-stranded telomeric DNA folds back and invades into the 

double-stranded telomeric DNA providing telomere protection from exonuclease enzyme 

activities. Moreover, T-loop protects telomeres from end-to-end fusion. 
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            Shelterin complex proteins are 

involved in telomere structure. They 

consist of six proteins: repressor and 

activator protein 1 (RAP1), telomeric-

repeat-binding factor 1 and 2 (TRF1 and 

TRF2), protection of telomeres 1 (POT1), 

TRF1-interacting nuclear protein 2 

(TIN2), and TIN2-interacting protein 

(TPP1) (Martinez & Blasco, 2011; Shay & 

Wright, 2019). These proteins are involved 

in telomere length regulation, prevention 

of DNA damage response (DDR) signals, 

and protection of telomeres from DNA 

damage (de Lange, 2018). 

             TRF1 and TRF2 proteins bind to 

double-stranded DNA in telomeres, 

whereas POT1 binds to the telomeric 

single-strand (Erdel et al., 2017). TRF1 

and TRF2 play critical roles in negatively 

regulating the telomere length (J. Lin et 

al., 2013). Moreover, both TRF1 and 

TRF2 inhibit the non-homologous end 

joining (NHEJ) mechanism (Schmutz & 

de Lange, 2016). 

             POT1 binds to a single strand and 

protects telomeres from end fusion 

(Denchi & de Lange, 2007). POT1 also 

binds to the double-strand, but indirectly 

via TPP1 (Hu et al., 2017). TPP1 is 

essential for enhancing the role of POT1 in 

telomeric single strands (Hu et al., 2017). 

Additionally, TIN2 is involved with other 

shelterin proteins in binding single strands 

(Pike, Strong, Ouyang, & Greider, 2019). 

RAP1 as a complex with TRF2 and its 

Myb domain bind to telomere to suppress 

telomeric homologous recombination 

(Srinivas, Rachakonda, & Kumar, 2020).  

             Many other proteins are involved 

in telomere biology. They contribute in 

telomere regulation and maintenance 

(Arnoult & Karlseder, 2015; Pinto, Li, 

Nicholls, & Liu, 2011). These proteins can 

interact with telomeres directly or via 

interactions with shelterin proteins (Pinto 

et al., 2011). CST complex proteins are 

conserved telomere protection component 

1 (CTC1), suppressor of cdc13a (STN1), 

and telomeric pathway with STN1 

(TEN1). These proteins bind to telomeric 

single strands and are involved in telomere 

capping and length regulation (Rice & 

Skordalakes, 2016). Moreover, these 

proteins contribute to telomere replication 

by interacting with DNA ploα-primase 

(Rice & Skordalakes, 2016). They also 

facilitate telomere elongation by unfolding 

G-quadruplex structures (Zhang et al., 

2019). The two subunits of the CST 

complex, STN1-TEN1, resolve the 

replication fork and participate in the 

telomerase-mediated extension of the 

telomeric single-strand (Chastain et al., 

2016; Gu et al., 2018).  

             Different additional proteins that 

are involved in the DDR machinery are 

associated with telomeres (Arnoult & 

Karlseder, 2015). These proteins are 

Werner (WRN), RecQ-family DNA 

helicases, and bloom (BLM). They are 

indirectly involved in telomere biology 

through their association with TRF1 and 

TRF2 (Zimmermann, Kibe, Kabir, & de 

Lange, 2014). RecQ helicase proteins 

contribute to the unwinding of the G-

quadruplex structure and initiation of 

DNA replication (Higa, Fujita, & Yoshida, 

2017). 

           Telomeres play a critical role in 

genome stability (Chiba et al., 2017). 

Accordingly, short telomeres, recognised 

as DNA strand breaks, lead to the 

activation of DNA damage signals(de 

Lange, 2018). Additionally, reduction of 

telomere length may cause chromosome 

end-to-end fusions (T. T. Lin et al., 2010; 

T. T. Lin et al., 2014). Moreover, telomere 

shortening activates double-strand break 

repair mechanisms, non-homologous end 

joining (NHEJ), or homologous 

recombination (HR). Consequently, these 

mechanisms may lead to improper end-to-

end chromosomal fusion. According to 

telomere shortening, cells undergo 

senescence, apoptosis, or genome 

instability. Therefore, telomeres play a 

critical role in protecting chromosome 

ends from degradation, DNA damage 
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responses, and end-to-end fusion (Fig. 3). 

             The T-loop and G-quadruplex 

structures play a major role in telomere 

protection. However, the flexibility of 

these structures is required during DNA 

replication to allow telomere elongation. 

Telomere reduction ultimately results in 

telomere uncapping. As a result, many 

types of genome aberrations can easily 

occur. However, histones, shelterin 

complex proteins, and other proteins are 

important players in telomere capping and 

protection. Telomere shortening impairs 

the binding of these proteins to telomeres, 

leading to unprotected telomeres. 

 

 
 

Fig. 3. End-to-end fusion. Telomere erodes with every cell cycle and can lead to 

critically short telomere, and then chromosomes will lose their cap protection. 

Unprotected telomeres contribute to genome instability, such as end-to-end fusion, which 

may cause chromosomal breakage. 

 

Telomere Elongation:  

           In adult humans, telomerase is not 

active in normal somatic tissues or stem 

cells. Consequently, telomeres shorten 

with each cell division (Blasco, 2005). In 

contrast, telomeres in cancer cells are 

elongated via at least two main pathways. 

Approximately 90% of cancer cells are 

elongated via the reactivation of the 

telomerase enzyme, while only 10% are 

elongated via a homologous 

recombination-based mechanism called 

alternative lengthening of telomeres (ALT) 

(Gaspar et al., 2018). However, the 

coexistence of both telomerase and ALT 

has been found in different types of 

cancers, such as peritoneal mesothelioma 

(Villa et al., 2008), gastric carcinomas 

(Omori et al., 2009), glioblastoma 

multiforme (Henson et al., 2005), soft 

tissue sarcomas (Yan, Benhattar, Coindre, 

& Guillou, 2002) like liposarcomas (Costa 
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et al., 2006; Montgomery, Argani, Hicks, 

DeMarzo, & Meeker, 2004) and fibrous 

histiocytomas, Wilms tumours (Venturini 

et al., 2011), osteosarcomas (Sanders et 

al., 2004), and adrenocortical carcinoma 

(Else, Giordano, & Hammer, 2008).  

            Telomerase reactivation in cancers 

occurs through various genetic and 

epigenetic mechanisms. These 

mechanisms lead to the amplification of 

telomerase reverse transcriptase (TERT) 

and an RNA component (TERC). 

Moreover, mutations within the TERT 

promoter and genomic rearrangement of 

TERT lead to telomerase reactivation. 

Additionally, epigenetic modifications 

through TERT promoter methylation have 

been found to cause telomerase 

reactivation (Barthel et al., 2017; Gaspar 

et al., 2018). 

            ALT is a mechanism used by 

cancer cells to elongate telomeres in the 

absence of telomerase (Fig. 4). Cells use a 

homologous recombination mechanism to 

maintain telomeres in the absence of 

telomerase. ALT is a RAD52 dependent 

mechanism. Telomere lengths in cancer 

cells that use ALT mechanism are 

heterogeneous, they can be extremely long 

(˃50 kb) or short (˂5 kb) (Bryan, 

Englezou, Gupta, Bacchetti, & Reddel, 

1995; Xu, Li, & Stohr, 2013). 

 
Fig. 4. Alternative lengthening of telomeres (ALT) mechanism. In the absence of 

telomerase, telomeres in cancer cells can be elongated by homologues recombination-

based mechanism that is called ALT. Single strand in short telomere invades into a 

homologous long telomere of another chromosome and extends to the end of this 

telomere. Then, the second strand of the short telomere undergoes synthesis, eventually 

leading to the elongation of the short telomeres.  

 

Telomeres in Cancer Cells:  

           Telomere length is an obvious sign 

of cancer. Cancer cell association with 

short or long telomeres has been widely 

documented. 

           Cancers that are initiated in 

proliferative tissues mostly contain short 

telomeres (Shay & Wright, 2011). 
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Additionally, cancer occurrence is more 

frequent in older people than young 

people; furthermore, it is well known that 

older people's somatic cells display shorter 

telomeres compared to young people. 

Telomeres that are critically short are more 

likely to cause a high risk of cancer (Ma et 

al., 2011). Oncogenic changes and short 

telomeres are the main reasons for 

genomic instability, which eventually 

leads to the occurrence of many cancers 

(Maser & DePinho, 2002). However, short 

telomeres can increase the occurrence of 

epithelial cancers as a result of non-

reciprocal translocations (Artandi et al., 

2000). Moreover, bladder cancer has been 

found to be significantly associated with 

short telomeres (Broberg, Bjork, Paulsson, 

Hoglund, & Albin, 2005). Additionally, 

short telomeres have been found in 

hereditary breast cancers (Martinez-

Delgado et al., 2013). A study on zebrafish 

concluded that telomere shortening plays a 

critical role in the incidence of cancer (Lex 

et al., 2020). Short telomeres lose the 

binding sites of shelterin proteins. 

Consequently, telomeres are uncapped. 

Uncapped telomeres cause many types of 

genome instability, such as end-to-end 

fusion, chromosome breakage, and 

translocations. Accumulation of these 

genetic changes can easily initiate cancer 

cell types. Telomere shortening leads to 

cell senescence, which is mostly followed 

by cancer initiation. 

             Associations between various 

types of cancer and long telomeres have 

been widely documented. These cancers 

include basal cell carcinoma, lung cancers, 

melanoma, tumours of the urogenital 

system, glioma, and lymphoma (Haycock 

et al., 2017; McNally, Luncsford, & 

Armanios, 2019; Rode, Nordestgaard, & 

Bojesen, 2016). Additionally, different 

studies have found an association between 

cancers and long telomeres, such as B-cell 

lymphoma, neuroblastoma, renal cell 

carcinoma, melanoma, osteosarcoma, adult 

glioma, lung adenocarcinoma, and 

meningioma (Hosnijeh et al., 2014; Pierce, 

Kraft, & Zhang, 2018). Telomere 

elongation via telomerase reactivation or 

ALT mechanisms plays a critical role in 

allowing cancer cells to duplicate many 

times with long telomeres. Thus, long 

telomeres allow cancer cells to divide 

rapidly multiple times. 

Conclusion 

            Telomeres play a critical role in the 

protection of chromosome ends. In 

addition, they play important roles in 

maintaining genome stability. Telomeres 

are elongated by the telomerase enzyme; 

however, telomerase is not active in 

normal somatic cells. On the other hand, 

telomerase is activated in most cancer cells 

and is utilised to elongate telomeres. A 

small fraction of cancer cells elongates 

their telomeres via ALT mechanisms. 

Associations between cancer and long 

telomeres have been widely documented 

(Haycock et al., 2017; McNally et al., 

2019). Cancer cells benefit from long 

telomeres to replicate their chromosomes 

many times before stopping when 

telomeres become short. To summarise, 

both short and long telomeres are involved 

in the occurrence of cancer. Short 

telomeres clearly participate in cancer 

initiation, while long telomeres are 

implicated in the continuation of cancer 

cell growth. 
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