

EGYPTIAN ACADEMIC JOURNAL OF BIOLOGICAL SCIENCES ZOOLOGY

ISSN 2090-0759

WWW.EAJBS.EG.NET

B

Vol. 12 No. 2 (2020)

www.eajbs.eg.net

Citation: Egypt. Acad. J. Biolog. Sci. (B. Zoology) Vol. 12(2) pp: 205-213(2020)

Egypt. Acad. J. Biolog. Sci., 12(2): 205-213 (2020)

Egyptian Academic Journal of Biological Sciences B. Zoology ISSN: 2090 – 0759 http://eajbsz.journals.ekb.eg/

Study of UGT1A1 Gene Mutation in People Suspected of Hyperbilirubinemia and Its Relationship with Fatty Liver Syndrome by Tetra ARMS-PCR Technique

Ali Janbaz¹ and Abolhasan Rezaei^{2*}

1- M.Sc in Genetics, Department of Biological Sciences, Islamic Azad University, Tonekabon Branch, IRAN *2- Department of Biological Sciences, Faculty of Genetics, Islamic Azad University, Tonekabon Branch, IRAN

Email: a.rezaei@tonekaboniau.ac.ir

ARTICLE INFO

Article History Received:30/9/2020 Accepted:19/12/2020

Keywords: Hyperbilirubinemia, Fatty liver diseases, Mutation

ABSTRACT

Hyperbilirubinemia is one of the most common disorders in the world. The disease has spread out the Middle East to Africa. The importance of this disease is high due to its widespread prevalence in the world. In this study, to investigate hyperbilirubinemia and the difference between the mutations in the UGTA1 gene with hyperbilirubinemia and the fatty liver syndrome was selected from the SNPs involved in expressing the UGTA1 gene named rs372326047.DNA genomic was extracted and one pair of primer for amplifying of the rs372326047 was designed with the help of the Oligo Version 7.0. After the PCR reaction, samples were sequenced to determine of the fragment of UGTA1 gene. Figures 1 and 2 showed the sequences were analyzed using the Blast program. Results observed that no mutation between UGTA1 gene. In Table 1. Ten cases from forty samples were selected including, healthy, carrier, sick and different parameters that were questioned from them. Patients have been heart diseases, diabetichepatic, and some patients did not have a history of inheritance diseases in family, rate of Hb in some cases was high (more than ten). Most of the cases also had high anemia and regarding some cases, the history of hyperbilirubinemia and its relationship with fatty liver diseases in family was positive and some cases was negative. Table 2. One-way ANOVA followed by Tuckey's post hoc test and HWE frequency of allelic and genotyping of nucleotide of TT, TC and CC of rs372326047 of UGTA1 gene in cases and normal population respectively. Therefore, the results of this study show that there is no relationship between mutations in the rs372326047 of UGTA1 gene in hyperbilirubinemia and its relationship with fatty liver syndrome.

INTRODUCTION

The severity of hyperbilirubinimia is determined by the amount of hemoglobin synthesis that is associated with a defect at the molecular level. Studies have shown that increased HB in patients with hyperbilirubinemia is associated with improved disease phenotypes (Amandito et al., 2018; Judith Meza-Junco et al., 2009). Studies have shown this trait can be due to mutations in the UGTA1 gene or point mutations in the UGTA1 gene promoter, which is a pan cellular type in high red blood cells. Studies have shown that HB diversity in a single genetic population is not inherited, but depends on many gene sites

(Higgs et al. 2012; Kukreti et al. 2010). GWAS (Genome-Wide Association Study) studies have shown that the region of polymorphisms of UGTA1 gene is placed on chromosome 2 (Ambalavanon et al., 2011). However, the mechanism of the effect of these polymorphisms on the variation of HB level is still unknown but more researchers proposed that the basis of genetic variation in HB levels with GWAS studies (Higgs et al. 2012; Agrawal et al. 2009). Serum bilirubin, the end product of heam metabolism, has been found to possess potential antagonizing oxidative stress and inflammatory properties by acting as an antioxidant and cytoprotectant in vitro and in vivo. Besides, there has been accumulating evidence frequently documenting not only oxidative stress, but insulin resistance was considered to be major triggers to NAFLD pathogenesis and progression (Choi et al., 2013). NAFLD is frequently demonstrated to be strikingly associated with the risk of metabolic syndrome, type2 diabetes, and cardiovascular diseases independent of other classical risk factors (Dam-Larsen et al., 2004; Lalymp 2005). Therefore, a straightforward hypothesis has been proposed that bilirubin may contribute to protection against NAFLD risk, probably based on the antioxidant effects of bilirubin. So far, several previous studies have been performed to examine the association between bilirubin levels and the risk of NAFLD (Menzel et al. 2007; Rinella et al., 2006; Rodrigues et al., 2012). However, most of these studies were performed based on relatively small sample sizes. Moreover, certain limitations of evaluating causal relation and reliability of the results have been posed when interpreting the association by the crosssectional or case-control study. In addition, the majority of these studies only accessed the effect of one type bilirubin on the risk of NAFLD but not all subtypes.

In this study, we aimed to respond to three questions including is their relation between a mutation in UGTA1 gene and hyperbilirubinimia in the Iranian population. Is there a relationship between the mutation in UGTA1 and fatty liver syndrome? Is there a relationship between a mutation in UGTA1 gene, hyperbilirubinimia, and fatty liver syndrome?

MATERIALS AND METHODS

The Samples:

The samples including forty numbers, twenty samples are healthy and twenty samples are cases collected from Mazandaran province. Interview face to face and questionnaires had done from healthy and cases group. The questionnaires were like :(age, sex, the behavior of feeding, pedigree family of both hyperbilirubinimia and fatty liver syndrome, marital status, and what treatment have you received).

Isolation of DNA Genomic for Tetra ARMS PCR and PCR Sequencing of UGTA1 Gene:

DNA genomic were isolated from 100CC of fresh blood from healthy and cases using standard kit GENET Bio(blood extraction kit-10000. The primers were designed according to the region of our SNPs in this study from 300bp from before and after the position of SNPs of rs372326047 of UGTA1 gene.

SNP(rs37232604)	Forward Primer	Reverse Primer 5'→3'
FNormal	GCTATGGUAATTGCTGATGCTTT	TCCACCATAGGGCGTTTATCC
FMutant	TCTCAAACACGCATGCCTTT	CAATGACAACAACCACAACAACA

According to above primers, PCR program for Tetra ARMS PCR and its reaction were applied for getting sharp band on the gel electrophoresis as follows:

Template DNA (100ng/µl)	3.0
Forward primer (10pmol/µl)	0.5
Reverse primer (10pmol/µl)	0.5
dNTP mix (2.5mM each).	1.0

10X buffer	2.5
MgCl ₂	2.5
Taq enzyme (3U/ μl)	0.5
ddw	14.5
Total Reaction volume	25.0 µl

Moreover, for PCR-Sequencing of rs372326047 were designed primer with Primer3 online software according below:

SNP	Forward Primer	Reverse Primer	Product size
Rs372326047	TTCTGTAAGCAGGAACCCTTCT	ACTTCTCAGTGTGGTGGATCA	250bp

RESULTS

In this study, forty samples were collected from hospitals in Mazandaran province. All of the cases and the healthy group were used questionnaire reports for them. Table 1 showed the program of the questionnaire for both group, healthy and cases in Table 1. Ten cases from forty samples were selected including, healthy, carrier and sick, and different parameters that were questioned from them. Patients had heart diseases, diabetic-hepatic, and some patients did not have a history of inheritance diseases in family. Most of the cases also have high anemia and regarding some cases the history of both hyperbilirubinimia and fatty liver syndrome diseases in family was positive and some cases was negative. The primers are conferred (SNPs) of rs372326047 of UGTA1 gene both hyperbilirubinimia and fatty liver syndrome diseases by the identity of forty samples with the either wild type or the mutant (homozygosity and heterozygosity situation between normal and mutants) were studied (Table 2). According that the frequency of genotyping, allelic and HWE of nucleotides CC, TC more than TT in normal and TT, TC and CC of UGTA1 gene in cases was high respectively. One way of ANOVA followed by Tuckey's post hoc test also showed no significant variation between the frequency of allelic and genotyping of nucleotide of TT, TC and CC in rs372326047 of UGTA1 gene in cases and normal population respectively.

Table 1. questionnaire report of cases and healthy including blood group, the history of inheritance and both hyperbilirubinimia and fatty liver syndrome and the clinical symptoms showed. According that cases have been diseases and some patients negative about the history of inheritance of family and hyperbilirubinimia

	negan	ve about the	motory or miler	itunee or	fulling une	njperennuenninu	
Sex (male	Blood	The history of	The history of both	The rate of	Transfusion	The checking samples	The clinical
and female)	group	inheritance	hyperbilirubinimia and	HB before			symptoms
		diseases in family	fatty liver syndrome	injection of			
			diseases in family	blood			
Male	B+	NO	Yes	<10	One time for per	RBC are highly microsetic and	High anemia
					30 days	WBC and plackets are normal	
Male	AB+	Heart diseases	No	<10	One time for per	RBC are highly microsetic and	Hyper anemia
					30 days	WBC and plackets are normal	
Male	B+	No	Both hyperbilirubinimia	<10	One time for per	RBC are highly microsetic and	High anemia
			and fatty liver in sister		30 days	WBC and plackets are normal	_
Female	AB-	Diabetic-Hepatic	Both hyperbilirubinimia	<10	One time for per	RBC are highly microsetic and	High anemia
		-	and fatty liver in her		30 days	WBC and plackets are normal	_
			brother			_	
Female	A+	No	No	<10	One time for per	RBC are highly microsetic and	High anemia
					30 days	WBC and plackets are normal	
Male	O+	No	No	<10	One time for per	RBC are highly microsetic and	High anemia
					30 days	WBC and plackets are normal	
Female	A+	No	No	One time for	RBC are highly	High anemia	
				per 30 days	micros etic and		
					WBC and		
					plackets are		
					normal		
Female	AB+	No	both hyperbilirubinimia	<10	One time for per	RBC are highly microsetic and	High anemia
			and fatty liver syndrome		30 days	WBC and plackets are normal	
Female	A+	No	both hyperbilirubinimia	<10	One time for per	RBC are highly microsetic and	High anemia
			and fatty liver syndrome		30 days	WBC and plackets are normal	
			(her brother and sister)				

Table 2.	Geno	typing	and a	allelic	frequencies	nucleot	ide o	of TT,	TC ar	nd CC	of rs.	372	32604	7 of
u	gta1	gene	with	both	hyperbilirub	oinimia	and	fatty	liver	syndr	ome	in	cases	and
n	orma	ıl popu	latio	n resp	ectively.									
			_											

Rs372326 047	Genotype	N (n=40)	Frequency (%)	Expected genotype frequency under HWE	Allele	Allele frequency(%)	HW (p-value)
Normal	TT	5	9.10	9.56	С	65.21	0.31 ^{NS}
	TC	18	48.30	46.76	Т	34.69	
	CC	21	42.60	51.78			
Cases	TT	24	18.0	44.34	Т	32.67	0.23 ^{NS}
	TC	11	28.0	24.23	С	67.23	
	CC	17	54.0	29.32			

NS. NS mean non-significant variation.

Tetra ARMS-PCR of UGTA1 Gene:

In Figure 1. Tetra ARMS-PCR product position of rs372326047 of UGTA1 gene was run on the 1.5% gel electrophoresis showed H. Heterozygosity (120 and 250bp), N. Normal (200 and 250bp). The result showed between forty samples, a heterozigosity variation between samples and other samples no mutation was observed. Figure 2. Showed the PCR product of the position of rs372326047 of ugtal gene were run on the 1.5% gel electrophoresis showed a fragment of 300bp. Moreover, PCR products were sequenced and no variation in the position of the rs372326047 ugta1 gene. (T no converted to A) The electrogram curves were visualized by Chromas software. (Figure 3). Tetra ARMS PCR for normal primers was analysed with a blast online program for confirmation of primers. The result showed a hundred percent is matched with UGTA1 gene (Figure 4). Moreover, Tetra ARMS PCR for mutant primers was analysed with a blast online program to confirm of primers. The result showed a hundred percent is matched with UGTA1 gene (Figure 5). In Figure 6. PCR sequencing of primers was analysed with a blast online program for confirmation of primers. The result showed a hundred percent is matched with UGTA1 gene. Moreover, in Figure 7. The position of rs372326047 of UGTA1 gene was analysed with a blast online program for confirmation of primers. The result showed the position of T no mutation was observed (blue marked).

Fig. 1. Tetra ARMS-PCR product of position of rs372326047 UGTA1 gene with both hyperbilirubinimia and fatty liver syndrome (H. Heterozygosity (120 and 250bp), N. Normal (200 and 250bp).

Fig. 2. PCR product of position of rs372326047 UGTA1 gene with both hyperbilirubinimia and fatty liver syndrome (300bp, L, 100bp).

Fig. 3. The image of electrogram of the position of rs372326047 UGTA1 gene. The result showed no variation in the position of rs372326047 UGTA1 gene. (T no converted to A) The electrogram curves were visualized by Chromas software.

	1	Sequence (5'->3')		Length	Tm	GC%	Self complementarit
Forward prime	r (GCTATGGCAATTGCTGAT	GCTTT	23	60.74	43.48	8.00
Reverse prime	r /	ACTGTCTGAGGGATTTTG	CCCA	22	61.90	50.00	3.00
Products on ta	rget templa	tes					
NC_000002.12	Homo sapie	ens chromosome 2, GRCh3	8.p13 Primary Assem	nbly			
product length	= 44						
oroduct length Features associ <u>UDP-glucuron</u>	= 44 ated with t <u>osyltransf</u> e	:his product: :rase 1-8 precursor					
product length Features associ UDP-glucuron	= 44 ated with t osyltransfe	this product: prase 1-8 precursor					
eatures associ <u>UDP-glucuron</u> <u>UDP-glucuron</u>	= 44 ated with t osyltransfe osyltransfe	this product: erase <u>1-8 precursor</u> erase <u>1-10 precursor</u>					
oroduct length eatures associ <u>UDP-glucuron</u> <u>UDP-glucuron</u> orward primer	= 44 ated with t <u>osyltransfe</u> osyltransfe	this product: erase 1-8 precursor erase 1-10 precursor GCTATGGCAATTGCTGATGCTTT	23				
eatures associ <u>UDP-glucuron</u> <u>UDP-glucuron</u> orward primer emplate	= 44 ated with t osyltransfe osyltransfe 1 233767124	this product: rase <u>1-8 precursor</u> rase <u>1-10 precursor</u> GCTATGGCAATTGCTGATGCTTT	23 233767146				
product length Features associ <u>UDP-glucuron</u> <u>UDP-glucuron</u> Forward primer Template Reverse primer	= 44 ated with t osyltransfe osyltransfe 1 233767124 1	this product: rase 1-8 precursor erase 1-10 precursor GCTATGGCAATTGCTGATGCTTT ACTGTCTGAGGGATTTTGCCCA	23 233767146 22				

Fig. 4. Tetra ARMS PCR for normal primers was analysed with a blast online program for confirmation of primers. The result showed a hundred percent is matched with UGTA1 gene.

Primer pair 1

		Sequence (5'->3')		Length	Tm	GC%
Forward prime	r T	CTCAAACACGCATGC	CTTT	20	58.68	45.00
Reverse prime	r (CAATGACAACAACCAC	AACAACA	23	58.76	39.13
Products on ta	rget templa	tes				
>NC 000002.12	Homo sapie	ens chromosome 2, GRC	h38.p13 Primary As	sembly		
product length Features associ <u>UDP-glucuron</u>	= 424 ated with t osyltransfe	his product: rase 1-8 precursor				
product length Features associ <u>UDP-glucuron</u> <u>UDP-glucuron</u>	= 424 ated with t osyltransfe osyltransfe	nis product: rase 1-8 precursor rase 1-10 precursor				
product length Features associ <u>UDP-glucuron</u> <u>UDP-glucuron</u> Forward primer	= 424 ated with t <u>osyltransfe</u> osyltransfe 1	this product: rase 1-8 precursor rase 1-10 precursor TCTCAAACAC6CAT6CCTTT	20			
product length Features associ <u>UDP-glucuron</u> <u>UDP-glucuron</u> Forward primer Template	= 424 ated with t <u>osyltransfe</u> 1 233766912	this product: rase 1-8 precursor rase 1-10 precursor TCTCAAACACGCATGCCTTT	20 233766931			
product length Features associ <u>UDP-glucuron</u> <u>UDP-glucuron</u> Forward primer Template Reverse primer	= 424 ated with t <u>osyltransfe</u> 0 <u>syltransfe</u> 1 233766912 1	his product: rase <u>1-8 precursor</u> rase <u>1-10 precursor</u> TCTCAAACACGCATGCCTTT CAATGACAACAACCAACAAACAA	20 233766931 CA 23			

Fig.5. Tetra ARMS PCR for mutant primers was analysed with a blast online program for confirmation of primers. The result showed a hundred percent is matched with UGTA1 gene.

Primer pair 1				
	Sequence (5'->3')	Length	Tm	GC%
Forward primer	TTCTGTAAGCAGGAACCCTTCT	22	59.02	45.45
Reverse primer	ACTTCTCAGTGTGGTGGATCA	21	58.67	47.62

Products on target templates

>NC_000002.12 Homo sapiens chromosome 2, GRCh38.p13 Primary Assembly

product length = 569
Features associated with this product:
 <u>UDP-glucuronosyltransferase 1-8 precursor</u>

UDP-glucuronosyltransferase 1-10 precursor

Fig.6. PCR sequencing of primers was analysed with a blast online program for confirmation of primers. The result showed a hundred percent is matched with UGTA1 gene.

Sequence ID: Query_24923 Length: 543 Number of Matches: 1

Range	1: 208	3 to 296 Graphics			▼ <u>Next I</u>	Match
Score		Expect	Identities	Gaps	Strand	
165 bi	ts(89)	7e-46	89/89(100%)	0/89(0%)	Plus/Plus	1
Query	1	GGAGAACATGGAATT	GTGGTTTTCTCTTTGGG	ATCAATGGTCTCAGAAAT	TCCAGAGAAG	60
Sbjct	208	GGAGAACATGGAATT	GTGGTTTTCTCTTTGGG	ATCAATGGTCTCAGAAAT	TCCAGAGAAG	267
Query	61	AAAGCTATGGCAATT	GCTGATGCTT <mark>T</mark> GGG 8	9		
Sbjct	268	AAAGCTATGGCAATT	ĠĊŦĠĂŦĠĊŦŦŦĠĠĠ 2	96		
	F1	··· 6 272226		1 1 4 1 1	· 1·	

Fig. 7. The position of rs372326047 of UGTA1 gene was analysed with blast online program for confirmation of primers. The result showed the position of T no mutation was observed (blue marked).

DISCUSSION

A study by Xu et al., in the year 2008 found a relationship between mutations in UGTA1 gene and fatty liver syndrome. There are many genes related to fatty liver syndrome including ABCC2, STAT6, PPARa, PEMT, PNPLA3. In PNPLA6 gene the variation of isoleucine to methionine (I148M), disease including non-alcoholic fatty liver disease (NAFLD), although its role in the development of non-alcoholic fatty liver fibrosis is not fully understood (Yang et al., 2013). In connection with mutations in the creation of the fatty liver, genetic factors play an important role. PNPLA6 is a protein with 721 amino acids which is highly expressed in hepatocytes as triglyceride hydrolysis) which represents it acts as a catabolic lipase (and an acetyl CoA) that represents anabolic lipogenetic activity (Singer et al., 2007; Thein et al., 2007; Thein et al., 2009). The aim of this study was to investigate the relationship between hyperbilirubinemia and fatty liver disease is suspected and sick individuals are PNPLA6 gene is mentioned as a gene in which mutation causes fatty liver disease it is possible that one of its SNPs, which is pathogenic, will be used in this study. The present study was to investigate the UGT1A1 mutation in individuals suspected of having hyperbilirubinemia and its association with fatty liver by ARMS-PCR. Hyperbilirubinemia is a common manifestation in infancy and is benign in most infants. The yellow color is usually caused by the accumulation of non-conjugated bilirubin pigment (indirect type) which is fatsoluble and non-polar (Thein and Menzel 2009). Although bilirubin may play an antioxidant role in small amounts, high levels of bilirubin may not. Conjugated (indirect) is potentially neurotoxic. Although the conjugated form of bilirubin is not neurotoxic, In hyperbilirubinemia indicates potentially serious liver disorders or underlying systemic diseases. ARMS (Amplification Refractory Mutation System), a simple, fast and reliable method for detection of point mutations, deletions, or additions in molecular sequences primers are based on different DNA alleles (Singer et al., 2007). The basis of this method is based on the differences between nucleotides. This method also is named PCR Amplification Specific Alleles (AS-PCR). In this method, two PCR reactions are performed using a template DNA molecule, in each reaction, a common primer is used along with one of the two allele-specific primers. The specificity of these primers for each of these alleles is due to differences in their nucleotides. It is related to the location of the difference between the two alleles. It should be noted that in this reaction, the use of Taq DNA Polymerase or a similar DNA polymerase that lacks exonuclease properties is essential. UGT1A1 gene activity is enhanced by alcohol or certain medications. Recent evidence has shown that low serum levels of bilirubinemia are a powerful physiological antioxidant that can protect against oxidative stress conditions such as atherosclerosis, coronary heart disease, and inflammation. But at high concentrations, bilirubin is a dangerous metabolite for human health, especially in infants, and toxicity with unconjugated bilirubin, which, if not treated immediately, can lead to corneal ectrosis. The results showed that TA duplication in the promoter of UGTA1 gene, hemoglobin concentration, fasting time, and BMI are the main factors determining bilirubin level (Xu et al., 2010). Research has shown that there is a link between fatty liver disease and Gilbert's syndrome. Studies have shown that there is a link between liver dysfunction and blood bilirubin levels, both conjugated and non-conjugated. There is a conjugate connection. In a study of 27000 people with fatty liver, they had a basil level high bilirubinimia has been reported. Fatty liver disease is known as the most common liver disease. Cirrhosis and Cell Cancer (NASH) is a liver disorder ranging from simple osteotosis to non-allergic cancerous hepatitis. Liver Fatty has also been linked to insulin resistance, obesity, dyslipidemia, type 2 diabetes, and cardiovascular disease. Therefore, it is considered a hepatic manifestation of metabolic syndrome. In the present study, the aim was to investigate the mutation in a part of the UGT1A1 gene, rs372326047. The results of the present study showed that, among the samples suspected of hyperbilirubinemia, in none of the samples in no mutation was observed at the study site. The age of the patients was often over 32 years old, and was collected from the region of Mazandaran province-Tonekabon city ARMS-PCR results were observed in healthy individuals. Finally, it is concluded that there is a link between mutations in the UGT1A1 gene locus and hyperbilirubinemia. Different reasons can be considered, these reasons can include the age of patients, geographical area, etc. Research on laboratory mice has shown that in newborn mice their blood bilirubin levels were very high, about 23% to 62% higher than in adult mice. In the present patients, they were often older. Meals and fiber foods are also effective in treating hyperbilirubinemia.

Suggestions: a. Given that different racial groups live in Iran, it is recommended that this screening for UGT1A1 mutations in different strains. B. For better and more review, other methods can be designed for the accuracy of primers used and reviewed the results. c. More samples can be considered, and these samples are better than regions be a different country and so-called jaundice.

Acknowledgments:

This work was financially supported by the Research Council of Islamic Azad University (Tonekabon Branch), Iran.

REFERENCES

- Amandito, R; Raihandhana, P; Clara, j; Dwi, U; Jumnalis, R; Rinawati, R; and Amarila, M. 2018. 'UGT1A1 gene and neonatal hyperbilirubinemia: a preliminary study from Bengkulu, Indonesia', *BMC research notes*, 11: 171-192.
- Ambalavanon N and Waldemar, A.Carlo. 2011, Jaundice and Hyperbilirubinemia in the Newborn in Kliegman, Stanton et al. Nelson Textbook of Pediaterics. 11th Edition. Elsevier; 312-316.
- Agrawal, S.K; Praveen, K; Ritu, R; Neeraj, S; Reena, D; Rajendra P; and Anil, N. 2009. 'UGT1A1 gene polymorphisms in North Indian neonates presenting with unconjugated hyperbilirubinemia'. *Pediatric research*, 36: 376-383.
- Choi, S.H., Yun, K. E. & Choi, H. J. 2013. Relationships between serum total bilirubin levels and metabolic syndrome in Korean adults. *Nutrition Metabolism & Cardiovascular Diseases Nmcd*, 23, 31–37.
- Dam-Larsen, S. et al. 2004. Long term prognosis of fatty liver: risk of chronic liver disease and death. *Gut.* 53;750–755.
- Judith, M.J; Quincy, S.C. Chu, Olaf C; Prabhu, R. 2009. UGT1A1 polymorphism and hyperbilirubinemia in a patient who received sorafenib, *Cancer*, 35. 1–4.
- Kukreti S et al. 2010. Structural polymorphism at LCR and its role in beta-globin generegulation. *Biochimie*, 92(9): 1199-1206.
- Lalymp, A. 2005. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. *Gastroenterology*, 129, 113–121.
- Menzel S et al. 2007. A QTL influencing F cell production maps to a gene encoding a zincfinger protein on chromosome 2p15. *Nature genetics*, 39(10): 1197-1199.
- Rinella, M; Charlton, M. 2016. The Globalization of Non-Alcoholic Fatty Liver Disease -Prevalence and Impact on World Health. *Hepatology (Baltimore, Md.)*, 19-22.
- Rodrigues, C; Elísio, C; Emília, V; Rosário, S; João, De C; Petronila, R.P; Alice, S.S; and Elsa, B-da-R. 2012. 'Bilirubin dependence on UGT1A1 polymorphisms, hemoglobin, fasting time and body mass index'. *The American journal of the medical sciences*, 646: 114-122.

- Singer, J. B; Y, Shou; F, Giles; H.M. Kantarjian; Y, Hsu; A.S. Robeva; P, Rae; A, Weitzman; J.M. Meyer and M. Dugan. 2007. 'UGT1A1 promoter polymorphism increases risk of nilotinib-induced hyperbilirubinemia'. *Leukemia*, 21:2311.
- Thein, S.L et al. 2007. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. *Proceedings of the National Academy of Sciences*, 104(27):11346-11351.
- Thein, SL et al. 2009. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. *Human molecular genetics*, 18(R2): R216-R223.
- Thein, S.L; Menzel, S. 2009. Discovering the genetics underlying fetal hemoglobin production in adults. *British journal of hematology*, 145(4): p. 455-467.
- Xu, C-F; Reck, B.H; Z, Xue; L, Huang; K.L, Baker; MChen; E.P Chen; H.E, Ellens. 2010. Pazopanib-induced hyperbilirubinemia is associated with Gilbert's syndrome UGT1A1 polymorphism. *British Journal of Cancer* 387; 108(2): 1671–1677.
- Yang, H; Qian, W; Lei, Z; Xiang-bin Z; Min, L; Xiao-F. Z, and Li-Ye Y. 2013. 'Clinical significance of UGT1A1 genetic analysis in Chinese neonates with severe. hyperbilirubinemia'. *Pediatrics & Neonatology*, 67: 611-17.