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Abstract: The objectives of the current study were to investigate the oppor-

tunity of estimating soil salinity from hyperspectral data and identifying the 

most informative spectral zones for estimation. Electrical conductivity (EC) 

measurements of ninety topsoil samples (0–30 cm) collected fromToshka, 

Egypt, were used as data set. Analytical spectral device was employed to 

collect the reflectance spectral signatures of soil samples. Both linear regres-

sion and HSD Tukey’s analyses displayed that the SWIR1 and SWIR2 zones 

are the most suitable for soil salinity prediction while, blue, green and NIR 

were the wickedest. Moreover, EC estimation was better in case of lower soil 

salinity (0-2 dS m-1) than higher levels (8<dS m-1). Partial-least-squares-

regression (ΡLSR) was employed to establish soil salinity prediction model 

using the training set of soil samples (n=75). The PLSR model was set up 

using the most informative wave bands (SWIR1 and SWIR2). The result 

showed that PLSR linear model gave a precise prediction of soil salinity (R2 

= 0.93). The results revealed that employing reflectance values in SWIR in 

the model variables increases the precision of soil EC prediction. 

 

 

1 Introduction 

 

 Soil salinization problems mostly show up be-

cause of the accumulation of salts in soil, which 

move up and precipitate at the soil surface. Ac-

cording to Aldabaa et al (2015) and Pessoa et al 

(2016) salts accumulate in soils often from either 

geological formation including (halite, shale and 

gypsum) or anthropogenic practices. Dehaan and 

Taylor (2002) mentioned that various factors may 

cause soil salinization, while the most important 

factor like the upward movement of salty water to 

soil surface. The salts usually accumulate in sur-

face soils because of capillary rise. Subsequently, 

the signs of increasing salts content at surface layer 

are possible to be varied because of the factors that 

influence the extent of salinization are witnessed at 

soil surface. 

On the other hand, for better soil management, op-

erative agricultural management plans are needed es-

pecially in semi-ᶏrid and ᶏrid areas. Fast and steady 

soil salinity monitoring is vital for making such effec-

tive plans (Pessoa et al 2016). 

During the last two eras several researchers have 

studied the capabilities of remote sensing data for 

monitoring and estimating various soil properties in 

various countries (Poggio and Gimona 2017, Xu et al 

2018, Angelopoulou et al 2020, Mahajan et al 2021).  
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Remote sensing uses the different sensors data 

from space to detect salinization. The sensors rec-

ord the amount of returned electromagnetic ener-

gy from the sensed targets. The wavelengths 

ranged between 400 to 2400 nm are frequently 

used for different resources studies. The incidence 

of salts at the soil could be sensed using remote 

sensing data in following two approaches; direct 

way on barren soils, using the efflorescence of the 

crusted salts, or through detecting the reflectance 

spectra of the growing vegetation as these are or 

affected by salinity (Abd-Elwahed 2005). 

Several studies used remote sensing data to 

study extremely saline soils while disregarding 

soils with low salt content, which should be the 

primary focus of soil deterioration research  Moni-

toring and evaluation of low soil salinity values is 

considered difficult, which mostly related to the 

quality and the nature of remote sensing sensors. 

The data type and quality usually do not allow 

collecting information on soil depth (third dimen-

sion). Moreover, the consequence of salinity on 

electromagnetic features requires more investiga-

tions to recognize how it can be related and esti-

mated from remote sensing data Farifteh and Far-

shad (2002).  

Hyperspectral remote sensing information is 

mostly related with the target properties and sen-

sors type (Richards and Jia 2006, Camps-Valls et 

al 2011). Hyperspectral remote sensing has high 

potential and progressively employed in various 

applications (for example: food safety, quality 

control and for quantitative assessment of soil and 

vegetation attributes) (Minu et al 2016). 

The results of Dwivedi and Sreenivas, (1998), 

Abd-Elwahed (2005), Singh et al (2017) estab-

lished the importance of remote sensing proce-

dures in soil salinity monitoring and detection. 

According to Singh et al (2017), some spectral 

confusion may be occurred when dealing with soil 

salinity. The key reason of spectral misperception 

was the confusion of various salinity levels with 

soil textures, land cover, and calcium carbonate 

content. Moreover, reflectance declines, and de-

tecting salts became difficult with increasing soil 

water content, and the occurrence of iron oxides. 

Likewise, the incidence of OH- groups reducing 

the reflectance in both MIR and NIR spectral 

ranges (Mougenot et al 1993 and Minu et al 

2016). Positive results were obtained by Ben-Dor 

et al (2002), Hu et al (2019), Schreiner et al 

(2021) in employing the hyperspectral data to 

study soil salinity and produce salinity maps. 

Under laboratory condition, Csillag et al (1993) 

recognized six spectral bands (shortwave-infrared, 

Near-Infra-Red and visible bands) related to different 

salinity levels of the soils under salinization and alka-

lization developments using modified stepwise princi-

pal component analysis band selection methodology.  

According to Abd-Elwahed (2005) most of the in-

vestigations used remote sensing approaches discrimi-

nate few classes of soil salinity (less than 4 classes). 

Generally, highly saline zones are simply identified, 

whereas low-salinity stages and the early phases of 

soil salinity are more problematic to discriminate. 

Recently, Bannari et al (2018) studied the hyper-

saline soils in the United Arab Emirates to find the 

correlation amongst soil salinity values and the soil 

samples spectral reflectance. They analyzed hyper-

spectral signatures and figured out a new exceptional 

anhydrite calcium sulfate rich soil inside the hyper-

saline coastal soil in the United Arab Emirates which 

resulted the addition of a new soil type into the 

USDA-Soil Taxonomy. 

The main objective of the current investigation is 

to determine the most sensitive, treasured spectral 

bands that could be used in estimating soil salinity. 
 

2 Materials and Methods 
 

2.1 Soil sampling and laboratory analysis 
 

Following 250-meter symmetric grid, 120 sam-

pling locations were set (Fig 1) and 365 soil samples 

(Including surface and subsurface samples) were col-

lected. The soil samples registered using a hand-held 

global positioning system (GPS) “MAGELLAN-GPS 

NAV DLX-10 TM”. From the 365, a total of 90  

surface soil samples were selected for this study. Elec-

trical conductivity (ECe) was determined according to 

Jackson (1967), in soil paste extract using EC-meter 

(Consort C932) expressed in dSm-1. 
 

2.2 Reflectance measurements 
 

The air-dried soil samples were passed through a 

2-mm sieve and then laboratory spectral measure-

ments were performed. The reflectance spectra of the 

soil samples were recorded using a Full Range Analyt-

ical Spectrum Device (ASD Field-Spec 4) with 8o 

field of view (FOV). Each soil sample covered the 

entire device FOV. Reflectance values were recorded 

in a full optical spectral range 350-2500 nm. The spec-

tral region 350-1050 nm has 1.4 nm sampling interval, 

while it was 2 nm in the spectral region of 1000-2500 

nm. The resulted data has one nanometer interval for 

the 350-2500 nm range. The spectrum specifications 

of the ASD (ASD, Boulder, CO, United States) are 

shown in Table 1 (Pimstein et al 2011). 
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Fig 1. Soil sampling location map of the study area 

 
Table 1. The Analytical Spectral Device Field Spec 

spectral specifications 

 

Spectral Range 

(nm) 

350-2500 

Resolutions (Spectral) 

(nm) 

3 : 700  

8.5 : 1400  

6.5 : 2100 

Sampling Intervals 

(nm) 

1.4 : 350-1050  

2 : 1000-2500 

 

For each soil sample, triplicate readings were 

recorded, and then a spectral reflectance of a ref-

erence white panel was recorded. For each soil 

sample the deviation of root-mean squares 

(RMSD) of the three replicates readings was aver-

aged ± 0.12% reflectance. 

The hyperspectral data that collected in the la-

boratory were then employed to derive spectral 

variables that could characterize variability of the 

soil salinity (Abd-Elwahed 2005 and Di et al 

2010). 

 

2.3 Statistical Analysis 

 

The data were analyzed in JMP_(SAS) soft-

ware (Jones and Sall, 2011). In order to recognize 

the best wave zone correlate with salinity, linear 

regression analysis and least significant differences 

test (LSD and Tukey-HSD for honest significant dif-

ference) were performed. They were used to check 

wherever the difference between data clusters. 

(McDonald 2014). 

The relationship between ECe and the spectral re-

flectance, that resampled to Landsat 8 bands; blue 

(450-510 nm), green (530-570 nm), red (640-690 nm), 

NIR (850-880 nm), SWIR1 (1570-1670 nm) and 

SWIR2 (2110-2290 nm), were examined. According 

to Medjahed et al (2016) regression model creation 

mainly relies on band selection.  

Least significant differences (LSD) are computed 

according to Williams and Abdi (2010) methodology. 

The mean reflectance spectrum range of each spectral 

band were compared using Tukey’s HSD was estab-

lished in response to the LSD test. 

 

2.4 PLSR Modeling 

 

In spite of the fact that hyperspectral data include 

huge amount of information, managing and processing 

this type of data introduce some challenges related 

to redundancy elimination. Partial-least-squares re-

gression (ΡLSR) has been used in several scientific 

fields to create linear models between multivariate 

information, particularly when dealing with a huge 
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number of data points. PLSR regression is a data 

handling approach that often used to realize rela-

tionships between two data groups. It uses a linear 

multivariate model to forecast one data group us-

ing the measured values of the other group. PLSR 

looks for maximizing the covariance between the 

two data groups.  

Before creating the model, one of the most im-

portant steps is selection of informative spectral 

bands among the enormous range of hyperspectral 

data. Two steps were applied to reduce the input 

band numbers. The first step was resampling of 

spectral resolution from 1-nm of the two bands 

(SWIR1 and SWIR2) to become 10-nm. The sec-

ond one was using PLS-stepwise band remov-

al/selection approach to select the most informa-

tive bands. According to Jin and Wand (2019), the 

stepwise-PLS approach was optimal among four 

approaches to identify informative bands to esti-

mate leaf chlorophyll content.  

In the current investigation The PLSR model-

ing was applied; to create a soil salinity estimation 

model, using JMP_(SAS) software (Jones and 

Sall, 2011). The spectral reflectance values along 

with the measured soil ECe data of 90 soil sam-

ples were used for modeling (75 samples as train-

ing set and 15 samples as validation set).  

 

3 Results and Discussion 
 

The data in Table 2 revealed that ECe  values 

in the studied soil samples ranged between 0.52 

and 89.04 dS m-1 with a mean value 16.02 dS m-1, 

the standard deviation was 18.64 and the CV% 

was 116.34%. 
 

Table 2. The statistics (descriptive) of soil salinity 

(ECe) values  

 

Statistics Min. Max. Mean. SD CV% Skewness Kurtosis 

ECe 

)1-dS m( 
0.52 89.04 16.02 18.64 116.34 2.02 4.17 

 

The spectral signature pattern for the 90 soil 

samples (four ECe classes) and the average reflec-

tance for each ECe class are shown in Fig 2. The 

reflectance pattern followed the same style; as 

though, the soil samples with higher salinity con-

tent has higher reflectance values. 

The spectral reflectance curves have similar 

trend, increasing the wavelength (λ) increased the 

reflectance. The reflectance in visible region (400 

– 700 nm) was lowest that can be explained ac-

cording to Mahajan et al (2021) by the presence of 

minerals that contain iron oxide which absorb short 

wavelengths (less than 0.54 µm). The variations 

amongst the different studied soil salinity were minor.  

Three spectral absorption concave features were 

denoted around 1400 and 1900 and 2200 nm. Accord-

ing to several researchers (Ma and Fan 2020 and Das 

et al 2021) the first two absorption features are linked 

to the water content, while the feature around (2200 

nm) is related to the OH- groups in soil clay and or-

ganic matter contents (Ben-Dor 2002, Sun et al 2018, 

Angelopoulou et al 2020v Wang et al 2021). These 

concave absorption features increase with increasing 

ECe (salinity). The highest spectral reflectance values 

were mostly located between 1300-1800 nm (SWIR2 

spectral region). 

To find out the best spectral bands for sensing dif-

ferent soil salinity levels, certain statistical processes 

were employed on the measured spectral reflectance. 

The results of regression analysis (R2 values shown in 

Table 3) showed that the highest obtained R2 values 

for each salinity class were 0.662, 0.633, 0.594 and 

0.706 for SWIR1, Blue, SWIR1 and SWIR1, respec-

tively. These results agree with those of Wang et al 

(2019), who used the SWIR bands in salinity detection 

index to map soil salinity. Tukey’s test concluded 

prominence discrepancy among the four studied sa-

linity classes compared with all other spectral zones 

for every mean, maximum and minimum of reflec-

tance (Fig 3).  The results revealed that SWIR1 and 

SWIR2 were the most favorable zones to discriminate 

among the four studied salinity classes followed by 

red, while blue, green and NIR were inadequate for 

spectral discrimination.  

The low salinity levels (0-2) show real dissimilar 

reflectance in all six spectral regions.  

In general, the results of Tukey’s HSD displayed 

that both SWIR spectral zones (1 and 2) were the most 

sensitive spectral region to discernment between the 

studied soil salinity levels followed by red band. 

These results agree with the previously obtained re-

sults from regression analysis. This result is steady 

with several previous and recent studies that suggest 

using the spectral reflectance zone ranging between 

1000 and 2500 nm to study soil salinity and discrimi-

nate between different soil salinity levels (El-Battay et 

al 2017, Bannari et al 2018, Sahbeni 2021) stated that 

the saline soil show indicative features in the 

shortwave infrared band between 1000 to 2500 nm.   
 

PLSR model for Soil Salinity  
 

PLSR was employed to figure out the best predic-

tion model of soil ECe based on the soil reflectance 

values in both SWIR1 and SWIR2 spectral zones. The 

result of the PLSR-model is shown in Fig 4. 
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Fig 2. The Spectral signatures for the collected soil samples with various ECe levels and its average spectrum 

 

Table 3. The R2 values collected from the regression analysis between reflectance values and ECe. 

 

Spectral band (range) 
0-2 dSm-1 2-8 dSm-1 8-16 dSm-1 16< dSm-1 

R2 

Blue (450-510 nm) 

Green (530-570 nm) 

Red (640-690 nm) 

NIR (850-880 nm) 

SWIR1 (1570-1670 nm) 

SWIR2 (2110-2290 nm) 

0.574 

0.547 

0.617 

0.338 

0.662 

0.569 

0.433 

0.094 

0.251 

0.359 

0.309 

0.533 

0.168 

0.321 

0.492 

0.417 

0.594 

0.017 

0.548 

0.471 

0.407 

0.396 

0.706 

0.305 
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Fig 3. Analysis of variance (ANOVA ; Tukey’s) to distin-

guish among four soil salinity classes in blue, green, red, 

NIR, SWIR1 and SWIR2 wavebands means. 
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Fig 4. Scatterplot for Predicted soil ECe values using PLSR-Model vs. measured values. (a) 75 samples training set; (b) 

15 samples validation set. 
 

It could be verified that, hyperspectral data in 

SWIR range can effectively distinguish between 

various soil ECe values of the studied soil sam-

ples. The prediction model for soil ECe showed 

high correlation (R2) for both training and valida-

tion groups 0.93 and 0.908, respectively. Mean-

while, ECe showed low RMSE (1.87 and 1.67) 

between predicted and measured soil EC values 

for both training and validation groups, respectively. 

In the current study, the linear prediction model 

showed a good ability for the soil salinity prediction. 

These results agree with the results of Farifteh et al 

(2007) and Zeng et al (2018) who considered the 

PLSR as a valuable model over other non-linear mod-

els for soil salinity prediction. They found similar ac-

curacies between PLSR-Model and other models. But, 
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it is easier and consume less time for creation. 

Instead, some investigations (Mahajan et al 2021 

and Das et al 2021) stated that non-linear predic-

tion models gave better results under their exper-

imental conditions. It could be concluded that us-

ing PLSR model to develop soil ECe (salinity) 

detection, prediction and mapping using hyper-

spectral remote sensing data is suggested. 

 

4 Conclusions 
 

It could be concluded from the results of the 

current study that hyper-spectral remote sensing 

displayed adequate capability to study, distinguish 

and predict soil salinity in various levels. Increas-

ing soil salinity levels increased its reflectance for 

the whole spectrum (350 -2500 nm). The most 

sensitive wavelengths for soil salinity prediction 

were identified to be in SWIR region (1570 -2290 

nm). The reflectance values in these wave bands 

exhibited a salinity related features to predict soil 

salinity. Multivariate PLSR-modeling approach 

using SWIR bands were found good for soil salin-

ity (ECe) prediction for. The advantages of utiliz-

ing hyperspectral information in soil salinity fore-

cast are the lower costs compared to the conven-

tional field-based methods and simplicity of using 

these models on satellite image for salinity map-

ping. It is proposed that these prediction models 

subject more investigations and prior to employ-

ment in soil mapping. 
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