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            This study investigated the antimicrobial activity of body and ovary 

homogenates of emerging queens of the honeybee Apis mellifera L. 

Queens’.  Fourth-instar larvae were challenged with a sublethal dose of 

Paenibacillus larvae to investigate the effect against multidrug-resistant 

bacteria (Escherichia coli 1 and 2 and Klebsiella pneumoniae) and the 

causative agent of American Foulbrood (Paenibacillus l. l). The agar disk 

diffusion test was used. Against the selected pathogenic bacteria, both the 

body and the ovary homogenates showed antibacterial activity. A highly 

significant change in the antibacterial activities of total body homogenate 

was detected for treated queens against E. coli 2 as well as K. pneumoniae 

(0.65 ± 0.02 and 0.65 ± 0.01, respectively) compared with healthy queens 

(0.45 ± 0.02 and 0.45 ± 0.02, respectively). On the other hand, the ovary 

extracts of challenged queens showed highly significant increases in 

antibacterial activity against P. l. larvae, E. coli 1, and K. pneumonia (0.92 

± 0.05, 0.85 ± 0.4, and 0.67 ± 0.0004, respectively) compared with the 

healthy queens (0.55 ± 0.02, 0.65 ± 0.23, and 0.49 ± 0.001, respectively). 

These findings could provide us with essential points on the development 

and production of new antibiotic agents against bacterial diseases. 

 
 

     INTRODUCTION 

 

    To fight infections, insects rely on their inducible systemic humoral immune 

system, which produces a battery of antimicrobial peptides (AMPs) in response to 

infection by bacteria, fungi, or parasites (Yamauchi, 2001; Klaudiny et al., 2005). 

Upregulation of various AMPs is known to occur in response to oral bacterial infections 

(Evans, 2004; Kačániová et al., 2018). Various AMPs are synthesized and secreted in the 

fat body (Angus et al., 2001), and released into the hemolymph, forming a general 

nonspecific line of defense. Honeybee AMPs consist of at least four peptides, namely, 

apidaecin (Casteels et al., 1989), abaecin (Casteels et al., 1990), hymenoptaecin (Casteels 

et al., 1993), and defensin (Casteels-Jonsson et al., 1994), each of which has a rather 

broad spectrum of activity (Tzou et al., 2002). All peptides were found to show inhibitory 

activity against bacteria in vitro (Casteels-Josson et al., 1994). Another identified AMP is 
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vitellogenin, which is synthesized by the fat body and released in the female hemolymph, 

having a bactericidal effect (Zhang et al., 2011). AMPs are low-molecular-weight 

proteins with broad-spectrum antimicrobial activity against different environmental 

pathogens (Guaní-Guerra et al., 2010; Da Silva and Machado, 2012). These peptides are 

usually positively charged, enabling them to be soluble in aqueous conditions and 

permeate lipid-rich membranes for rapid infection (Aerts et al., 2008). 

Mayers et al. (2009) developed the agar disk diffusion method, which is the 

method for routine antimicrobial testing in many clinical laboratories (Balouiri et al., 

2016). After inoculating agar plates with the tested microorganism’s inocula, filter paper 

disks containing the test compound at a certain concentration are placed on the agar 

surface. The plates are incubated under suitable conditions, where the antimicrobial agent 

diffuses into the agar and inhibits the growth of the tested microorganism. The zone with 

growth inhibition is then measured. This provides qualitative results by classifying 

bacteria as resistant, intermediate, or susceptible (Jorgensen and Ferraro, 2009). This 

approach is simple to use, inexpensive and provides researchers with the ability to test a 

wide range of microorganisms and antimicrobial agents. 

Multidrug-resistant pathogens have been found all over the world in large 

numbers. Currently available antibiotics are unable to treat these multidrug-resistant 

infections. As such, there is a global push to find antibiotic alternatives (Farmanullah et 

al., 2020; Abou Nader et al., 2021). To minimize the threat posed by drug-resistant 

bacteria to public health, new antimicrobial drugs are currently being developed. Our 

research attempts to contribute new information regarding the effect of AMPs of queen 

honeybee larvae on multidrug-resistant bacteria. 

 

              MATERIALS AND METHODS 

 

Source and Rearing of Honeybees: 

             This study used two colonies of Craniolian hybrid honeybees (Apis mellifera 

carnica) in a private apiary. Tested queens were obtained using the grafting technique 

(Doolittle, 1889), which is used for rearing queens to produce a large number of them on 

a commercial scale. Routine methods of keeping and developing the colonies were 

carried out during the experimental period. The total developmental period of the bred 

honeybee queens was estimated at nearly 16 days. The honeybee brood frame containing 

1-day-old larvae was selected. The selected larvae were transferred to cups fixed on 

horizontal wooden bars in a special grafting frame. Three days later, the cup cells 

containing the fourth-instar larvae were treated with a sublethal dose of P. l. larvae 

bacteria or treated with water (positive control), via the queens’ food. 

Source of the Bacterial Pathogen: 

             The bacterium used in this study, Paenibacillus larvae larvae, was isolated from 

ropy remains of honeybee larvae collected from the Agriculture Research Center, Plant 

Protection Institute, Department of Apiculture Research. Ropy larval remains of dead 

honeybee larvae (collected from infected colonies) were suspended in 10 ml of sterile 

distilled water and kept at room temperature for 10 min, after which the suspension was 

heat-shocked at 80ºC for 15 min (effective time to kill non-spore-forming bacteria). The 

J-agar medium was prepared by mixing 900 ml of distilled water with 5.0 g of tryptone, 

15.0 g of yeast extract, 3.0 g of K2HPO4, 2.0 g of glucose, and 20.0 g of agar; then, the 

pH was adjusted to 7.3–7.5 and distilled water was added up to a volume of 1 L 

(Shimanuki and Knox, 1988). The mixture was autoclaved at 121ºC and 1 atm for 15 

min. The bacterial slants were refreshed (renewed) using J-agar slants, incubated to 

become active (vegetative cells) P. l. larvae bacteria, and then stored at 4ºC. Different 
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multidrug-resistant bacteria (Escherichia coli 1 and 2 and Klebsiella pneumoniae) were 

isolated from previous studies by Mekkawy (2017) and identified using Vitek 2. 

Immunization of Honeybee Queens Induced by A Bacterium, P. l. larvae: 

              In our previous investigation, a stock suspension of a sublethal dosage of P. l. 

larvae (107 CFU/queen) was established (Gomaa et al., 2021). It was used for inoculation 

by adding 10 µl of bacterial suspension to the food of a group of honeybee queens at the 

fourth-instar larval stage (Decanini et al., 2007). Two groups of controls were used: the 

first was fourth-instar larvae of queens the food of which had been treated with 10 µl of 

autoclaved distilled water (positive control), while the second group was healthy 

untreated honeybee queen larvae (negative control). 

Total Body Homogenate: 

             Healthy, water-treated, and bacterially treated adult queens were collected after 

emergence. They were crushed in a sterile Eppendorf tube using Ultrasonic 

Homogenizer, 4710 Series, at 30 Hz for 2 min on ice, after which 250 µl of phosphate-

buffered saline (PBS) (OXOID) was added and pipetted well. The samples were then 

centrifuged (Eppendorf Centrifuge, 5402) at 4000 rpm for 15 min upon cooling. The 

obtained supernatant was decanted into another sterile Eppendorf tube and stored at 

−20ºC. 

Ovary Extract: 

            Healthy, water-, and bacterially treated adult queens were dissected and their 

ovaries were collected. The ovaries were crushed in a sterile Eppendorf tube using a 

sterilized bristle on ice, after which 100 µl of PBS was added and pipetted well. The 

samples were then centrifuged (Eppendorf Centrifuge, 5402) at 5000 rpm for 15 min 

upon cooling; the supernatant was decanted into another sterile Eppendorf tube and 

stored at −20ºC until used. 

Assaying of Antibacterial Activity: 

              Tests were conducted to determine whether the total body homogenate and ovary 

extracts exhibited antibacterial activity. Supernatants of bacterially treated queens were 

assayed and compared with those of controls. The agar disk diffusion test was used by the 

work of Heatley (1944). The plates of media were inoculated with 1 ml bacterial 

suspensions (P. l. larvae, E. coli 1 and 2, and K. pneumoniae) on the agar surface. Then, 

sterilized filter paper disks (about 6 mm in diameter) containing 10 µl of each honeybee 

queen’s testing sample were placed in the center of the Petri dishes with agar bacterial 

medium. The Petri dishes were incubated under the conditions shown in Table 1. 

Antimicrobial agents diffused from the queens’ samples into the agar. The inhibition of 

germination and growth of the tested microorganisms was investigated and then the 

diameters of the inhibition zones were measured in millimeters with a ruler. The 

measurements were repeated five times for each sample. 

 

Table 1. Types of bacteria are used to determine the antibacterial activity of emerging 

honeybee queens. 
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Data Analysis: 

               Data are expressed as mean ± standard error (SE). The significance of 

differences of means was determined using Student’s t-test for paired samples. 

 

               RESULTS  

 

Antibacterial activity of the body homogenate 

            The bactericidal activity of total body homogenate against the bacterium P. l. 

larvae and multidrug-resistant bacteria is shown in Figure 1. The mean dimensions of the 

inhibition zones against P. l. larvae were 0.82 ± 0.06, 1.3 ± 0.07, and 0.84 ± 0.05 cm in 

healthy queens, water-fed queens, and bacterially fed queens, respectively. The 

antibacterial activity of bacterially treated queens did not differ significantly (P > 0.05) 

from that of healthy queens but was significantly decreased (P ≤ 0.01) compared with that 

of the water-fed group. The mean dimensions of inhibition zones of healthy, water-fed, 

and treated queens against E. coli 1 were (1.3 ± 0.12, 1.5 ± 0.2, and 1.25 ± 0.05 cm, 

respectively). In E. coli 2, the zones were (0.45 ± 0.02, 0.92 ± 0.2, and 0.65 ± 0.02 cm) 

for healthy, control, and treated queens, respectively. Inhibition zone dimensions of K. 

pneumoniae were (0.45 ± 0.02, 0.5 ± 0.01, and 0.65 ± 0.01 cm, respectively) (Table 2). A 

highly significant change (P ≤ 0.01) was detected in the antibacterial activity of treated 

queens against E. coli 2 compared with that of healthy queens, but there was no 

significant change compared with water-fed queens. In K. pneumoniae, there was a 

highly significant increase in the antibacterial activity of bacterially treated queens 

compared with that of healthy and water-fed ones. In contrast, no significant differences 

were observed in treated queens against E. coli 1 (Fig. 2). 

 

 
Fig. 1. Antibacterial zone activity of the body homogenate for emerging queens, namely, 

A. mellifera healthy queens (negative control), water-fed queens (positive control), and 

bacterially fed queens (treated) against P. l. larvae, E. coli 1, E. coli 2, and K. 

pneumoniae. 
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Table 2. Antibacterial effect of the body homogenate for A. mellifera for healthy, water-

fed, and bacterially fed queens against P. l. larvae and multidrug-resistant 

bacteria E. coli 1, E. coli 2, and K. pneumoniae. 

Bacteria 

Antibacterial zone activity (cm) 

Mean ± SE 

Healthy +ve Control Treated 

  Paenibacillus larvae larvae 0.82 ± 0.06 1.3 ± 0.07 0.84 ± 0.05 

E. coli 1 1.3 ± 0.12 1.5 ± 0.2 1.25 ± 0.05 

E. coli 2 0.45 ± 0.02 0.92 ± 0.2 0.65 ± 0.02* 

Klebsiella pneumoniae 0.45 ± 0.02 0.5 ± 0.01 0.65 ± 0.01* 

          N=3, where three replicates were used for each treatment. 

         *Significant (P ≤ 0.01). 

 

 
Fig. 2. Antibacterial activity (cm) of the body homogenate for A. mellifera queens 

(Normal: healthy queens; Control: water-treated queens; Treated: bacterially treated 

queens) against P. l. larvae and different multidrug-resistant bacteria: E. coli 1, E. coli 2, 

and K. pneumoniae. 

 

Antibacterial Activity of The Ovary Extract: 

               The bactericidal activity of the honeybee queens’ ovary extract against the 

bacteria P. l. larvae, E. coli 1, E. coli 2, and K. pneumoniae as determined using the agar 

disk diffusion technique is shown in Figure 3. The mean dimensions of the inhibition 

zones were 0.55 ± 0.02, 0.98 ± 0.03, and 0.92 ± 0.05 cm for healthy queens, water-fed 

queens, and bacterially fed queens, respectively. The ovary extract of treated queens 

showed a highly significant increase (P < 0.01) in antibacterial activity against P. l. 

larvae compared with the healthy group and no significant change compared with the 

water-fed group (Table 3). The mean dimensions of the inhibition zones of healthy, 

water-fed, and treated queens against E. coli 1 were (0.65 ± 0.23, 0.56 ± 0.02, and 0.85 ± 

0.4 cm, respectively). In E. coli 2, inhibition zones were (0.7 ± 0.001, 0.6 ± 0.001, and 

0.65 ± 0.3 cm) for healthy, water-fed, and treated queens, respectively. Inhibition zone 

dimensions of K. pneumoniae were (0.49 ± 0.001, 0.51 ± 0.0003, and 0.67 ± 0.0004 cm, 

respectively) (Table 3). A highly significant change (P ≤ 0.01) was detected in the 

antibacterial activity of treated queens’ ovary extract against E. coli 1 compared with that 

of the healthy group, but no significant change was detected compared with water-fed 
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queens. For K. pneumoniae, there was a highly significant increase in the antibacterial 

activity of bacterially treated queens compared with that of healthy and water-fed queens. 

In contrast, no significant differences were observed in treated queens against E. coli 2 

compared with the levels in healthy and water-fed groups (Fig. 4). 

 

Table 3. Antibacterial effect of the ovary homogenate for A. mellifera for healthy, water-

fed, and bacterially fed queens against P. l. larvae and multidrug-resistant 

bacteria: E. coli 1, E. coli 2, and K. pneumoniae. 

Bacteria 

Antibacterial zone activity (cm) 

Mean ± SE 

Healthy +ve Control Treated 

Paenibacillus larvae larvae 0.55 ± 0.02 0.98 ± 0.03 0.92 ± 0.05* 

E. coli 1 0.65 ± 0.23 0.65 ± 0.02 0.85 ± 0.4* 

E. coli 2 0.7 ± 0.001 0.6 ± 0.001 0.65 ± 0.3 

Klebsiella pneumoniae 0.49 ± 0.001 0.51 ± 0.0003 0.67 ± 0.0004* 
N=3, where three replicates were used for each treatment. 

 *Significant (P ≤ 0.01). 

 

 
Fig. 4. Antibacterial zone activity (cm) of the ovary homogenate of A. mellifera queens 

(Normal: healthy queens; Control: water-treated queens; Treated: bacterially treated 

queens) against P. l. larvae and different multidrug-resistant bacteria: E. coli 1, E. coli 2, 

and K. pneumoniae. 

 

               DISCUSSION  

 

Several authors identified proteins that are immune responsive (Evans, 2004; 

Evans and Lopez, 2004; Guidugli et al., 2005; Randolt et al., 2008), causing the 

production of antibacterial proteins and peptides (more than 50 factors). These proteins 

start to accumulate in the hemolymph within a few hours after bacterial treatment 

(Hultmark, 1993). Most of these peptides and proteins act by disintegrating the bacterial 

membrane or interfering with membrane assembly (Otvos, 2000). The interactions of 

plasma components and material within hemocytes produce an inducible bactericidin, 

which has limited specificity because it can be induced by heterologous (nonspecific) 

antigens (Bakula, 1971). In these experiments, immunity was not linked to any 
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immunoglobulin-like components in the hemolymph. Insects, like all other invertebrates, 

lack immunoglobulins, but they do have several components with varying degrees of 

specificity, such as lectins, cytokine-like molecules, and AMPs (Ottaviani, 2005). The 

plasma lysozyme hydrolyzes bacterial peptidoglycan and sends a signal to the fat body to 

begin making antibacterial proteins. These substances can directly inhibit bacterial 

growth (Morishima et al., 1992). 

AMPs are a class of peptides having antibiotic and antifungal effects. They are 

also known as host defense peptides and are involved in inflammation, wound healing, 

regulating the adaptive immune system, and homeostasis (Auvynet and Rosenstein, 

2009). These peptides are evolutionarily conserved molecules that are involved in the 

defense of most living organisms. The biochemical properties of AMPs vary, but they 

typically act directly against microbes via a mechanism involving membrane disruption 

and pore formation, which leads to leakage of the cell contents and cell death (Lapis, 

2008). They can also target intracellular components including DNA, enzymes, and even 

organelles (Teixeira et al., 2012). AMPs from the defensin family may play vital roles in 

orchestrating innate immune responses and contribute to the interplay between innate and 

adaptive immunity (Kruse and Kristensen, 2008; Gomes and Fernandes, 2010). 

Furthermore, abaecin is an AMP that is highly effective against hymenopteran-infecting 

gram-negative bacteria (Kim et al., 2007), such as in A. mellifera (Cateels et al., 1990), 

Bombus pascuorum (Rees et al., 1997), and B. ignitus (Choi et al., 2008). It is rapidly 

produced in the fat body after septic injury or immune challenge, and then released into 

the hemolymph where it acts against microorganisms (Cateels et al., 1990; Choi et al., 

2008). Understanding how the insect immune system combats pathogens may aid the 

development of new strategies to block the transmission of disease agents (Christophides, 

2005). 

Multidrug-resistant pathogens have been found in large numbers all over the 

world. Traditional antibiotics are ineffective at treating multidrug-resistant bacteria 

(Farmanullah et al., 2020), so there is a worldwide push to find antimicrobial alternatives 

(Rima et al., 2021). AMPs have emerged as promising agents to combat antibiotic-

resistant microorganisms. They are essential components of innate immunity, allowing 

humans to resist microbial infection. Their role has evolved from that of simple 

endogenous antibiotics to that of multifunctional mediators, and antibacterial activity is 

most likely not their only major function (Zaiou, 2007). Our study was therefore 

conducted to determine the antibacterial activity of the total body and ovary homogenates 

of treated emerging queen honeybees against multidrug-resistant bacteria. Immunization 

of honeybee queens was performed using a sublethal dose of the bacterium P. l. larvae. 

In insects, immune priming includes challenge with a non-pathogenic microbe or 

exposure to a low dose of pathogenic microbes, which gives significant protection against 

subsequent pathogenic infection (Patrnogic et al., 2018). The results obtained here proved 

that healthy and bacterially treated queens attained acceptable antibacterial activity 

against gram-positive bacteria P. l. larvae and gram-negative multidrug-resistant bacteria 

(E. coli 1, E. coli 2, and K. pneumoniae); particularly significant increases of antibacterial 

activity against P. l. larvae and E. coli 1 were found from the queens challenged with 

bacteria. AMPs could have a considerable impact given the treatment failures associated 

with multidrug-resistant bacteria, which have become a global concern to public health 

(Guschin et al., 2015; Martin et al., 2015). AMPs have the potential to become a new 

generation of promising antimicrobial agents in future anti-infection applications (Abou 

Nader et al. 2021). Natural products remain a major source of new therapeutic 

compounds (Balouiri et al., 2016). Such products are derived from prokaryotic bacteria, 

eukaryotic microorganisms, plants, and diverse animals. These peptides could be applied 
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to produce new therapeutic agents (Diamond et al., 2009) that are complementary to 

antibiotics because they can inhibit bacteria (Farmanullah et al. 2020) as well as an 

unusually broad range of microbes (Auvynet and Rosenstein, 2009). 
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