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Abstract

Throughout the article, we study the oscillation of a general class of first-order neutral
differential equations in presence of variable delays under the effect of impulses.

Due to its importance in applications, there are many papers concerning with the property of
oscillation and non-oscillation of neutral delay differential equations. Although, a lot of works are
concerning with the oscillation of neutral delay differential equations without impulse or
impulsive neutral with constant delays, however few papers dealt with the impulsive neutral and
those with variable delays. In this paper, we establish sufficient conditions of certain neutral
equations with variable delay arguments. New oscillation criteria are deduced. Our results are
based on using equivalence transformation and two useful lemmas to prove the obtained criteria.

The results of this paper improve those of [20] by adding several non-linear delay functions to
the equations instead of having one delay term. Where it is assumed that the two variable delays
satisfying a Lipschitz condition.

Moreover we discuss more general non-linear delay functions comparing with those used in [14].
Our results improve and extend some recent results in the literature. An illustrative example is
given.
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1. Introduction

Consider the following neutral impulsive equations:

[r(n) — Payr(A)] + @) (r(p@)) = v (r(6(m)) = 0,1 # 1) = 1.2, ..

() = () o) = 5 (r (A(ny)) ) "

In which, {n j}jEN represents the moments of impulse, A, p and @ are the delay functions,

P(n),Q(n) and V(n) are continuous non-negative functions. Also, P(n) €

PC([no, ®), R),Q(m),V(m) € C([no,®),R*),A (n), p(n) and 6(n) € C([no, ), R) are
increasing functions such that

limy o A (M) = limy_oo p (N) = lim;_o, 8 () = 0.
Throughout the paper, we assume that:
(A,) The functions Q(n) and ¥(n) are non-decreasing functions and satisfying:
rQ(z) >0, r¥(z) > 0.
(A,) There exist some positive costants 8, and B, such that
|Q(r)| = Bilr], and [P ()| = B.|r|

(A3) For I; € C(R, R), there exists a sequence of positive real numbers b; satisfying

b, < 48
-

<1

In the last decades, there has been a great interest in studying differential equations, see for
example ([12,16, 24, 27]). Recently many authors were concerning with the oscillation of neutral
impulsive differential equations (see [1, 2, 6, 8-11,13,17-19,21-23, 25]) due to its importance in
some models of real phenomena which include derivatives on the part of the used variable.
Although, many papers discussing the oscillation of linear and nonlinear impulsive equations with

constant delays ([3, 4, 6]), however few of them dealt with variable delays ([5, 7, 8, 15, 26]).
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In 2019, Santra et al. [20] discussed the oscillatory behavior of the non-linear neutral equations

with constant delay:

[r() = Pr(n = D] + Qm2(r(n —p)) = 0,0 # n;j = 1,2, ...;
r(nf) =50 (). r(nf —2) =1 (r(nj - /1))-

They also investigated several criteria of Eq. (2) with several ranges for the neutral coefficient P(

)

n)-

In [14], the authors established sufficient conditions of the oscillation of the neutral equations with

variable coefficients

[r()) — PDr(2)] + @r(pm)) = Vr(6(m)) = 0,n # n,,j = 1,2, ..;

A 3)
r(n}) +byr(n;) = air(n;).n = n;.

In this article, we discuss the oscillatory behavior of (1) in presence of positive and

negative variable delay coefficients.

2. Preliminaries.

Now, we give two useful lemmas to prove our results.

Lemma 2.1.

Suppose that (n) be an eventually positive solution of (1) and for a continuous function y(n),
w(n) =rn) — P)rAm) -

fnp—l(ym)) Q)2 (r(p(v))) dv—[,., oy V¥ (r(e(v))) dv, (4)

where  y(n) <t,07'(y(m)) < tand p~*(y(m) >n forn € (n;,nj41,0 <mo <my <+ <
nj = at j — oo.

Let @w(n) satisfies the following conditions:

() £:1Q (P~ (v()) [~ (v )Y = B2V (672 (v(m) ) [672 (¥ ()] = 0.
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POf) zp(n),  Aln) = m
? {P(n;r) = 1/bjp(77j)r A(n;) =

p~*(y(m) n
(C) If r}lrg sup{P(n)+pB; f Qw)dv + B, f V(w)dv <1,
1 6=1(v(m)
{m(n) > 0, forn = n,,
then +
w(n]- ) >0, forne (771' ,nj+1].

Suppose that r(n) be an eventually positive solution of Eq. (1) such thatr(n), r(A(1)) > 0,
r(p(m) and r(6(n)) also be positive. From (1) and (2), we get

@' () = [r(n) = PrAm)]’ — Q@)1 Y™ = V¥ Er@mNIg-1., o
== rMr(p(p~ (y(m)) = V(O (ymNY OO~ (r(m))). ()
By (4,), we obtain
@' () < =R~ (r(m)r(p (p‘l(y(n))) = BV (O~ (ym)r(@(6~ (y(m))) <
—B1Q( 7y~ ()] = B2V (O NI (r )] r (¥ () (6)
Hence by the condition (C;), we conclude that

w'(n) <0, ()
foralln € (n;, n;41] First, we show that w(n}) < @(n;). Since

@(nf) =rm) — P(Hr@m))

p~(v(ny)) n;j
J

0w (r(pe))dv- | -

6= (v(n;)

V(v)¥ (r(G(v))) dv

nj
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=1, (r(n;)) = PODHLEAMN))
J-p‘l(y(nj))

nj
Q)N (r(p(v))) dv — f V(v)¥ (r(@(v))) dv, (8)
mj o= (v(ny)

For A(n;) = n; , applying the condition (C;)

@(n}) <r(n;) = bPMHTAM)))

p~(v(n)) nj
— f Q)0 (r(p(v))) dv — f V)¥ (r(@(v))) dv
nj 6= (y(n;
<r(n;) = Pm)r(@)))
p~(v(n)) n;
[T e (reen)av- [ veyw (roe0))av
nj o=1(v(n))
So,
w(nf) <@ (n;) 9)
For (n;) # n; , we get
@(n}) =1 (r(n;)) - PTHr M)
p~(v(np) nj
- j Q) (T(P(V))) dv — j 14DL 4 (T(H(V))) dv
nj o=1(v(n))
<r(n;) — Pmj)r(An;))
oY (v(n))) n;
[0 ema(reen))av— [ vew (r(ow))av
nj 6=1(v(nj)
=T (/1(771));
which implies that w(n}) <@ (n)). (10)

Hence —oo < h < oo, |h| = sup{fw(n}), lim @ (n;)},n € [np, ) for h = n,.
]—)00

-22-



S. Euat Tallah et al. J. Sci. Res. Sci., 2022, 39, (1): 18-30
Now, we claim that @ (n;) = 0 for j=h, h+1,.... If not, there exists m = h such that:

T(My) <0 for n = n,.

Since @w(n) is non-increasing on [n,, ), then there exists a positive constant e satisfying

o(My) = —€<0.
Further from (1), we get
-1

r(n) < —e+ P(n)r(/l(n)) + fnp (vm) Q(v)2 (r(p(v))) dv — Z‘l(y(n)) V(v)¥ (r(@(v))) dv.
(11)

There exist two cases:

Case 1: If r(n) is unbounded then 3 a sequence of points {S,} such that S, =7, then

lim r(S,) = w0 and r(S,,) = max{r(n),n,, <n < S, }.

n—-oo

Then the inequality (11) becomes

r(Sy) < —e + P(S)r(A(Sn)

+ fs Y ama (r(p))) dv + f T v (r(em))) v

n 0~1(y(Sn))
< —e+ (P + BT QI+ By [ ) VIIAVIT(S,)
Then r(Sp) < —u+r(Sy), (12)

which implies that 0 < —e. This is a contradiction with the assumption that € > 0.

Case 2: If r(n) is bounded such that lim supr(n) = M < .
77—)00

Here, we can take the sequence of points {S,} as lim r(S,) = M and r(E(Sn))z
n—-oo
max{r(t):61(Sp) <n < 6,(S)},

where 8, (S,,) = min{A(S,,), p(S,)} and §,(S,) = max{A(S,,),0(S,)}. Itis clear that
lim £(S,) = o and lim supr(&(S,)) < M. Then we get,
n—oo n—oo
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r(Sp) < —&+ P(SOr(A(S)

+ J; T (r(pv))) v + f T v (r(0w)) v

n 071y (Sn)
< —e+ (PGS + A JL Qv+ By [ 6.0 VOIBITES)

< —e+71(E(S0)). (13)

Taking limit sup. at n — oo, we obtain 0 < —e& which is again a contradiction. From the two cases,

we can see that w(n;) = 0 forn € (;,1;41], j=h h+1, ...

Finally, to prove that @ (n) > 0 for j=1, 2,... If it not satisfied, suppose that there exists m > 0 at

which w(n,,) = 0.

Integrating (7) from n,,, to n,,4+1, We get

zD'(77m+1) =
NMm+1 ,

w(nh) — j BT~ y)] = BV O MmN (y)'}r(y())dn
MTm

<@Mm) S@Mm) =0, (14)
which is a contradiction. Ultimately, w(n) > 0 for n > n,.
Lemma 2.2.
Suppose that the functions ¢(t)and B(t) € C(R*,R*) such that B(t) <tfor t>t, and
tlil?o B(t) = oo. If the function A(t) satisfies
lim inf th(t) $(s)ds > =, (15)
then the inequality ' (t) + ¢ (t)r(B(t)) < 0 has no eventually positive solution.
3. Main Results.

Now, we give sufficient conditions for the oscillation of Eqg. (1).

-24-



S. Euat Tallah et al. J. Sci. Res. Sci., 2022, 39, (1): 18-30

Theorem 3.1.

Let (C,) — (C5) hold. If

n

liminf | (51067 )™ ()] = A2V (07 (8™ ()]
14V
P~ (v(vm)) o) 1
1 + P(y(s)) + ﬁl fy(n) Q(V)dv + 32 f@—l(y((y(n))) V(V)dv dS' > zi (16)

then Eq. (1) is oscillatory, where 8~1(y (1)) < n,and p~t(y(m)) > 7.
Proof. Suppose that (1) be an eventually positive solution of Eq. (1).
But since w(n) < r(n), then by Lemma 2.1, we have

r(n) = @(n) + Pr(Am) +

fnp—l(ym)) Q2 (r(p))) dv + [1-1(, 0y VOO (r(6) ) v

-1 17

m)
QWw(p())dv + B, j V)@ (6(v))dv

6-1(y(m)

p
) = o) + PDr(Am) + 6 |

n

> w(n) + P@(Am) + B (v(n) [ Y wddv + B,m(8D) [-1(, ) VWY

p~t(y(m) n
> w(n) + Pw (A1) + frw () f Qv +po@ [ v
n “(r(n

> w+ P+ B S ™ QWY + By [Ty VPV

Then

rr) = e+ PO) + 8117 ) QI+ B2 1y VI (D)
Substituting from (17) into (7), we obtain

@' () < —{(5:Q0~ () [P~ ()] = B2V (672 (v(m) ) [0~ (v GD)T')-
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P~ (r(ym))

y(n)

{1 +P(y(s)) + B J QWY + B2 1 cyen) V(v)dv} ds<0.  (18)

But from (15) and (16), we obtain that (18) has no positive solution. This is a contradiction, then
the proof is complete.

Corollary 3.2. Let the conditions(C;) — (C53) be hold. If
B (@) ()] = B2V (672 (r@))) [0 (r )1}

> [e x minysy, {n — vy}~ 2 e, (19)
then Eqg. (1) oscillates.
Proof.
Going through as in Corollary 3.2. of [14], the proof is complete.
4. Example.

Consider the impulsive neutral equation:

([rm =22 —2m)] + 5 (0= Z) @ + Irtn - 2D19)
— Sy - 2n)(1 +lrt =) = 0,n £ n;) = 1,2,...; (20)
\ r(nf) ==5r(), r(nf = 2) = 5(r(n) - 2),

where [; = j/j + 1 and u > 0. Taking y (7)) = t — 97/4,P(n;) = 1/20j and b; = j + 1/.

Since Q(r(p(M))) = r( — 51/4)(1 + Ir(n — 2)|*) and ¥ (6())) = r(n — 2m)(1 +

|r(n — 2)|*), we can take 8, = S, = 1. Now since

B0 (P (r@)) [~ (r )Y’ — B2V (9_1()/(7]))) 61 (y)] == - = (e-m L ety >0,
s = Jip =g e %P<n>=%x$=§;z

condition (C,). Finally, we check the condition
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n !
lim inf f IRCTCRGOIERUO) By CRUONICRGONEE
14V

P~ (¥ (rm)) )
1+ P(y(s)) + ,Blf Q(Ww)dv + ﬁzf V(v)dvids
() o= (v((ram))
Qo om
li fﬂ 8 5%4. ~s+q ><1+1_|_ —s+£+2ﬂ Zes4+e 4
R R A e lIx[lt+gtge 9 9 9
—S+2T 1
+ 5 lds = —

Using Theorem 3.1, then Eq. (20) oscillates.

Conclusion. The aim of this paper is to discuss the oscillation of a general class of first-order
impulsive neutral equations with positive and negative delays (1). New results are given to
improve and extend some recent papers like [14] and [20]. An example is given to illustrate our

results.
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