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 Abstract 

Background: Chronic stress has been linked to mood and anxiety disorders and 

alteration of cognitive functions, such as memory. Intermittent calorie restriction (ICR) 

is a repeated mild stress that enhances the cell ability to combat more severe stress. Aim: 

Examination of the effects of ICR on rat behaviour and Tau hyperphosphorylation in 

chronic immobilization stress (CIS) rat model. Methods: 32 rats were divided into 4 

equal groups: control, ICR (subjected to ICR protocol), CIS (subjected to CIS protocol), 

and CIS+ICR (subjected to both CIS and ICR protocols). After performing behavioural 

(open field and Barnes maze) tests, serum level of corticosterone, tumor necrosis factor-

α (TNF-α) and interleukin-6 (IL-6) were determined, and hippocampal tissue level of 

phosphorylated Tau (phospho-Tau), noradrenaline, and serotonin were measured. 

Results: We found that, ICR significantly altered the stress-induced anxiety-like 

behavior and memory disturbances (P<0.001). Rats exposed to both ICR and CIS 

protocols had significantly lower levels of phospho-Tau, corticosterone, and TNF-α, and 

enhanced levels of noradrenaline and serotonin than those subjected to CIS alone 

(P<0.01).  Conclusion: our results suggest that ICR protects against chronic stress-

induced anxiety-like behaviour, memory disturbance and Tau hyperphosphorylation, 

possibly through inhibition of hypothalamic pituitary adrenal (HPA) axis, anti-

inflammatory effects, and enhancement of noradrenaline and serotonin hormones. 

Keywords 
 

• calorie restriction; 

• locomotor activity 

• Stress 

• Tau proteins 
 

Bull. of Egyp. Soc. Physiol. Sci. 
 (Official Journal of Egyptian Society for Physiological Sciences) 

 (pISSN: 1110-0842; eISSN: 2356-9514) 

 

 

 

 

Received:  10 Feb 2020  
Accepted:  1 May 2020 
Available online:  1 July 2020 

 

Corresponding author: Dr. Dalia Fathy El Agamy,  Shebin El-Kom, Faculty of Medicine, Menoufia University, Egypt 
Tel: 00201157855383, E-mail: dalia.elagami@med.menofia.edu.eg; dalia_fathe@yahoo.com 
 
 

mailto:dalia.elagami@med.menofia.edu.eg
mailto:dalia.elagami@med.menofia.edu.eg
mailto:dalia_fathe@yahoo.com
mailto:dalia_fathe@yahoo.com


Ahmed, et al.,                                                                                                       114 

INTRODUCTION  

Stress is a serious phenomenon in the 

modern world that acts as a risk factor for the 

development of several diseases in the long term 

[1]. Stress is associated with neuropsychiatry 

disorders such as anxiety and major depression [2]. 

Stressor exposure induces various physiological 

responses to maintain integrity; stress activates 

hypothalamic-pituitary-adrenal (HPA) axis and 

compensatory increase in the brain serotonin and 

noradrenaline to cope with stress demands [3, 4]. 

The hippocampus, the main part of the brain 

relevant to memory and learning, is very sensitive 

to corticosterone and cytokines. Prolonged 

exposure to corticosterone impairs hippocampal 

and amygdala circuits [1]. Hippocampal Tau is a 

major cytoskeletal microtubule-associated protein 

that promotes microtubule assembly and 

stabilization. Tau has an essential role in memory 

and learning [5, 6]. When Tau is 

hyperphosphorylated, it accumulates in the cells 

leading to Tau missorting at dendritic spines and 

incompetency in performing its functions resulting 

in cognitive and mood deficits [2, 5]. Time 

restricted feeding protocols were frequently used 

in behavioural studies, as the behaviour of the 

organism is in accordance with 24 hour light/dark 

cycles [7]. Intermittent calorie restriction (ICR) is 

a food deprivation period, which is repeated 

between fasting and non-fasting duration, with no 

malnutrition effects [1]. ICR was evidenced to 

have a good impact on various health measures 

[8]. It has a repeated mild beneficial stress effects 

on the cell similar to that induced by ischemic 

preconditioning [9]. In the brain, ICR enhanced the 

adaptive stress responses to cope with more severe 

stress and increase resistance to oxidative and 

metabolic stress [8, 10]. We aimed to investigate 

the possible protective effects of ICR on rat 

behaviour and hippocampal Tau 

hyperphosphorylation in CIS rats, and demonstrate 

the possible associated changes in systemic 

corticosteroids and inflammatory mediators and 

hippocampal tissue level of stress hormones.  

Material and Methods 

Animals: Thirty two male Wistar albino rats (100-

150 g) were used in this study. The animals were 

housed in the animal house of Faculty of 

Medicine, Menoufia University, Egypt in groups 

of 4 per cage. They were kept at room temperature, 

26±1 °C, on artificial light/dark cycle of 12 hour 

with water and food available adlibitum. The 

animals were acclimatized to laboratory conditions 

one week before the beginning of the experiment. 

The experimental procedures were performed in 

accordance with the internationally accepted 

ethical guidelines for the care and use of 

laboratory animals and were approved by the 

ethical committee of the Faculty of Medicine, 

Menoufia University, Egypt (Institutional Review 

Board approval No. is 191219PHYS59).  

Experimental Design and Collection of Samples 

Rats were randomly divided into 4 equal groups 

(n=8). The control group: rats were not underwent 

any protocols for 12 week duration, the ICR group: 

rats underwent the ICR protocol for 12 weeks, the 

CIS group: rats were not underwent any protocols 

for 6 weeks then, they underwent the CIS protocol 

daily for the next 6 weeks of the experiment 

duration, and CIS+ICR: rats underwent ICR 

protocol for 6 weeks followed by both CIS and 

ICR protocols for the next 6 weeks. After the 12 

week duration, behavioral tests were performed. 

Then, body weight was measured and fasting 
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retro-orbital blood samples were collected via 

heparinized microcapillary tubes. Blood was left to 

clot for 30 minutes, then, centrifuged at 2000 rpm 

for 10 min. The clear supernatant serum samples 

were stored at -20 °C until use.  Rats were 

sacrificed by cervical decapitation and the adrenal 

glands were rapidly removed and weighed. Brain 

was rapidly dissected, removed, immersed in ice-

cold saline and separated into two hemispheres. 

Hippocampi from both hemispheres were dissected 

and immediately stored at -80 °C for further 

analysis. 

Intermittent Calorie Restriction Protocol 

Rats from ICR and CIS+ICR groups were 

deprived of food for 24 h every other day between 

10:30 and 11:00 AM for 12 weeks [11]. 

Chronic Immobilization Stress (CIS) Protocol 

Rats from the CIS and CIS+ICR groups underwent 

the CIS protocol daily, as previously described 

[12, 13] at 9:00 AM for 90 minutes for 6 weeks 

starting from the 7th week of the experiment. In 

brief, rats were put on a wooden plate with their 

trunks wrapped. Thus, the movement of the trunk 

was prevented while the head and limbs move 

freely. It is a simple and a suitable method for 

induction of physiological and psychological stress 

in rodents. 

Behavioral Tests 

Rats’ behavior was recorded at 8:00 AM by 

investigators who were unaware of the treatment 

groups. The tests were performed in the following 

order: (1) open field test (OFT). (2) Barnes maze 

test. Rats were observed on alternate basis from 

the 4 studied groups to avoid circadian influences. 

Open Field Test (OFT) 

The anxiety-like behavior in rodents is usually 

measured in the OFT by assessing animal 

locomotor and behavioral activity in an open field. 

The apparatus adopted is wooden, open topped 

box (100x100 cm) with 40 cm high walls. The 

floor is divided into 25 squares (20x20 cm), 

defined as 9 central and 16 peripheral squares. At 

the beginning of the test, the rat was placed in the 

centre of the apparatus and its behavior was 

recorded in 10 minutes for further analysis. The 

time spent in the central area (TCA) and number of 

returns to the center (NRC) were quantified. The 

central area of a novel environment is perceived to 

be anxiogenic and aversive. The TCA and NRC 

are therefore an indicator of anxiety and emotional 

reactivity. The rearing (standing on hind limbs), 

grooming (licking body and paws, and face 

washing), and defecation (fecal droppings) 

numbers were also recorded which indicates the 

anxiety state of the animals. 70% ethyl alcohol is 

used to clean the walls and floor of the apparatus 

between each examination. 

Barnes Maze Test 

For assessment of spatial learning and memory we 

used the Barnes maze method [14-16]. The maze 

consists of a circular platform (90 cm in diameter) 

with 18 equally spaced holes (5 cm diameter; 7.5 

cm between holes) along the perimeter. The maze 

was elevated 100 cm above the floor. A small dark 

recessed chamber is present below the surface of 

the platform called the escape box (28x22x21cm) 

which can be reached by the rat through the 

corresponding hole on the surface of the platform. 

The test depends upon rats’ inherent aversion to 

open spaces and seeking for a quiet space in the 

escape box. The animals were firstly trained (3 

trials/day with 15 minute interval for 4 consecutive 

days); the rat was placed in the centre of the maze, 

adapted for 10 seconds then, a buzzer (90dB) was 
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switched on to induce escape behavior, and the rat 

was allowed to explore the maze. Once the rat 

entered the target escape box, the buzzer was 

switched off, the hole was covered, and the rat was 

allowed to stay in it for 1 minute. The animal was 

gently guided by the experimenter if it failed to 

reach the box within 3 minutes. The trial concludes 

when the rat enters the escape box or 3 minutes 

elapses. Spatial visual cues should be maintained 

fixed throughout the experiment, including the 

position of the experimenter. One piece of clean 

tissue paper was used for each rat trial and the 

apparatus and the escape box were cleaned with 

70% alcohol after each trial. The position of the 

escape box remained at fixed location relative to 

the spatial cues for the duration of the experiment. 

This was called the acquisition phase, which 

indicates the spatial acquisition or learning of the 

animal. This process typically took 4.8 min per rat 

and was done with 2 rats at a time.  

Twenty four hours after the final session of 

acquisition training, rats undergo probe trial phase. 

The phase was conducted to determine if the 

animal remembers the location of the target hole 

for assessment of short term spatial memory 

retention. The probe trial was conducted in a 

similar manner to the acquisition trials. The animal 

was placed in the centre of the platform and left to 

explore the maze for only 90 seconds. All steps 

were recorded with a Sony video digital camera. 

The recorded variables included escape latency 

(the interval of time to reach the target box in 

seconds) and number of errors (number of head 

deflection into the incorrect holes) during both the 

acquisition phase and the probe phase.   

 

 

Tissue Homogenate Preparation and Analysis 

The hippocampi were homogenized in PBS (0.1mg 

tissue:1µl PBS), PH 7.2-7.4 (Biodiagnostic 

company, Egypt) by a glass homogenizer. The 

samples were then centrifuged at 3000 rpm for 20 

min at 4C° (Narco-Bio system, UK). The 

supernatant was taken and kept at -80 C° for 

further analysis of hyperphosphorylated Tau 

protein (phospho-Tau), noradrenaline, and 

serotonin.  

Measurement of Serum Corticosterone, Tumor 

Necrosis Factor-α (TNF-α), and Interleukin-6 

(IL-6), and Hippocampal Tissue Level of 

Phospho-Tau  

Serum level of corticosterone (Assaypro LLC, St. 

Charles, MO, USA), TNF-α and IL-6 

(Quantikine® ELISA, R&D Systems Inc., MN, 

USA), and tissue level of phospho-Tau at Ser 199 

site (Sigma-Aldrich, UK) were measured by 

enzyme linked immunosorbent assay (ELISA) 

technique according to manufacturer’s 

instructions. An automatic optical reader 

(SUNRISE Touchscreen, TECHAN, Salzburg, 

Austria) was used and the absorbance was taken at 

450 nm.  

Measurement of Serotonin and Noradrenaline 

Levels in Hippocampus 

Hippocampal serotonin and noradrenaline levels 

were determined by high performance liquid 

chromatography (HPLC) method with diode array 

detector (Agilent Technologies 1200 series), as 

previously described [17]. In brief, the 

homogenate sample was injected into the Zorbax 

Extend C18 column (150x4.6 mm, 5 µ). The 

mobile phase consisted of 97:3 phosphate buffer 

(20 mM, pH 3)/acetonitrile with a flow rate of 1.5 

mL/min. UV detection was at 270 nm. Separation 
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of serotonin and noradrenaline were done after 12 

minutes. The concentration of each monoamine in 

the sample was measured by comparing the 

chromatogram of the sample to that of the standard 

curve that was made by the Eurochrom HPLC 

Software, version 1.6.  

Statistical analysis: 

Data were expressed as mean ± SD. All statistical 

analysis was done using SPSS software version 

16.0. The Mann–Whitney U test was used for 

testing significance. The probability value < 0.05 

was considered statistically significant. 

Results 

The ICR group showed insignificant changes in all 

parameters as compared to control group (P>0.05) 

Δ Body Weight and Relative Weight of the Adrenal 

gland 

Delta body weight was calculated and insignificant 

change was observed when the control, CIS, and CIS 

+ICR groups were compared to each other (P>0.05) 

(Table 1).  

A significant increase in the relative weight of the 

adrenal gland and serum corticosterone level was 

observed in CIS group when compared to control group 

(P<0.001). The CIS+ICR group showed a significant 

decrease in the relative adrenal weight and serum 

corticosterone level when compared to CIS group 

(P<0.001 and P=0.002 respectively) to a level that was 

still significantly higher than control group (P<0.001) 

(Table 1). 

Animal Behavior 

Rats in CIS group spent more time away from the 

opened central area evidenced by a significant 

decrease in the TCA (P=0.001) and NRC 

(P<0.001) as compared to control group. There 

was also a significant increase in grooming 

(P=0.005), rearing (P=0.003), and defecation 

(P=0.007) as compared to control. Rats in 

CIS+ICR group showed a significant increase in 

TCA (P=0.002) and NRC (P=0.001) and a 

significant decrease in the number of grooming 

(P=0.003), rearing (P<0.001), and defecation 

(P=0.001) as compared to CIS group, and these 

changes in CIS+ICR group were insignificant 

when compared to control group (P>0.05) (Table 

2). 

The behavioral and locomotor performance of rats 

in the Barnes maze test were recorded (Figure 1). 

The learning curve for each group was descending 

during the 4 days of the acquisition phase. 

However, CIS group showed significant increase 

in the mean number of errors during days 1, 2, 3, 4 

of the acquisition phase when compared to control 

group (P<0.001). The CIS+ICR group showed 

significant decrease in the mean number of errors 

during days 1, 2, 3, 4 of the acquisition phase 

when compared to CIS group (P=0.003, P=0.002, 

P=0.022, and P<0.001 respectively) and the same 

group showed significant increase in the mean 

number of errors in those days when compared to 

control group (P=0.005, P=0.044, P=0.002, and 

P=0.008 respectively). The mean time of escape 

latency was also insignificantly changed when ICR 

group was compared to control group in days 1, 2, 

3, and 4 of the acquisition phase (P>0.05). The 

CIS group showed significant increase in the mean 

time of escape latency during days 1, 2, 3, 4 of the 

acquisition phase when compared to control group 

(P=<0.001). The CIS+ICR group showed 

significant decrease in the mean time of escape 

latency during those days when compared to CIS 

group (P<0.001, P<0.001, P=0.002, and P=0.006 

respectively) and significant increase when 
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compared to control group (P4=0.01, P=0.01, 

P=0.025, and P=0.003). 

During the probe phase, the mean number of errors 

and the mean time of escape latency were 

significantly increased in CIS group as compared 

to control group (P<0.001), and a significant 

decrease in both parameters was observed in 

CIS+ICR group when compared to CIS group 

(P=0.004 and P<0.001 respectively) to a level that 

was still significantly higher than that in control 

group (P=0.001 and P=0.002 respectively) (Figure 

1). 

Hippocampal Phosphorylated Tau Protein and 

Serum TNF-α, and IL-6  

Levels of phospho-Tau, TNF-α and IL-6 were 

significantly increased in the CIS group when 

compared to the control group (P<0.001). The 

CIS+ICR group showed significantly lower levels 

of phospho-Tau, TNF-α and IL-6 when compared 

to the CIS group (P<0.001, P=0.002 and P<0.001 

respectively), but still significantly higher when 

compared to the control group (P=0.043, P=0.004 

and P=0.034 respectively) (Figure 2). 

Table 1. Effect of ICR on Δ body weight (g), relative adrenal weight (%), and serum corticosterone 

(ng/ml) in all study groups. 

 Control ICR CIS CIS +ICR 

Δ Bogy Weight (g) 149.5±18.02 131.7±30.9 135.8±27.2 143.6±29.1 

Relative Adrenal Weight 

(%) 
0.012±0.007 0.016±0.004 0.061±0.016* 0.029±0.012#* 

Serum Corticosterone 

(ng/ml) 
2.2±0.39 2.6±0.42 8.8±0.55* 5.2±0.31#* 

Data are expressed as mean±SD (n=8). *: Significant difference as compared to control group. #: Significant difference 
as compared to CIS group. ICR: intermittent calorie restriction; CIS: chronic immobilization stress; CIS+ICR: combined 
chronic immobilization stress and intermittent calorie restriction group.  
 

Table 2. Intermittent CR improves behavioral and locomotor performance of rats in the OFT in the 

different studied groups. 

 Control ICR CIS CIS +ICR 

TCA (seconds) 11.4±5.08 9.7±4.24 4.7±2.67* 10.2±4.26# 

NRC 5.6±2.12 5.7±2.26 1.8±.79* 5.4±2.46# 

Grooming 5.1±2.28 5.7±2 8.7±2.5* 4.9±1.97# 

Rearing 4±2 4.7±1.7 7.3±1.7* 3.1±1.45# 

Defecation 3.3±1.25 3.4±1.35 5.5±1.65* 2.4±1.26# 

Data are expressed as mean±SD (n=8). *: Significant difference as compared to control group. #: Significant difference 
as compared to CIS group. ICR: intermittent calorie restriction; CIS: chronic immobilization stress; CIS+ICR: combined 
chronic immobilization stress and intermittent calorie restriction group. OFT: Open field test, TCA: time spent in the 
central area, NRC: numbers of returns to the center. 
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Figure 1. Intermittent CR restores the mean number of errors/day and the mean time of escape latency/day (seconds) 
during the acquisition phase [A, B] and the probe phase [C, D] of Barnes maze test in CIS in rats. Data are expressed as 
mean±SD (n=8). *: significant difference as compared to the control group. #: significant difference as compared to the 
CIS group. ICR: intermittent calorie restriction; CIS: chronic immobilization stress; CIS+ICR: combined chronic 
immobilization stress and intermittent calorie restriction group. 
 

 
Figure 2. Intermittent CR restores hippocampal tissue level of phospho-Tau (pg/ml) [A], and serum level of TNF-α 
(pg/ml) [B] and IL-6 (pg/ml) [C] in CIS in rats. Data are expressed as mean±SD (n=8). *: significant difference as 
compared to control group. #: significant difference as compared to CIS group. ICR: intermittent calorie restriction; CIS: 
chronic immobilization stress; CIS+ICR: combined chronic immobilization stress and intermittent calorie restriction 
group; phosphor Tau: phosphorylated Tau protein; TNF-α: tumor necrosis factor-α; IL-6: interleukin-6. 
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Serotonin and Noradrenaline Levels in the Rat 

Hippocampus 

The CIS group showed significantly decreased 

level of hippocampal serotonin and noradrenaline 

when their values were compared to the 

corresponding values in the control group 

(P=0.001 and P<0.001 respectively). Both 

serotonin and noradrenaline were significantly 

increased in CIS+ICR group to a level that was 

significantly changed from the CIS group 

(P=0.013 and P<0.001 respectively) and 

insignificantly changed from the control group 

(P>0.05) (Figure 3). 

 

 
Figure 3. Intermittent CR increases hippocampal tissue levels of noradrenaline (mg/ml) [A] and serotonin (mg/ml) [B] in 
CIS in rats. Data are expressed as mean±SD (n=8). *: significant difference as compared to control group. #: significant 
difference as compared to CIS group. ICR: intermittent calorie restriction; CIS: chronic immobilization stress; CIS+ICR: 
combined chronic immobilization stress and intermittent calorie restriction group. 
 
Discussion 

Chronic stress is associated with amnestic, 

cognitive and anxiety disorders. ICR is a positive 

stressor that improves cognitive function [1]. In 

the present study, ICR improved the anxiety-like 

behavior and the impairment of memory and 

learning that were observed in CIS rats without 

significant loss of body weight. This was 

associated with a significantly decreased level of 

phospho-Tau, relative adrenal weight, serum 

corticosteroid, TNF-α, and IL-6, and significantly 

increased levels of serotonin, and noradrenaline. 

In the present study, we observed an anxiety-like 

behavior in CIS rats in the open field test. The 

pathways were concentrated in the corner areas 

with decreased locomotor activities with 

significant increase in the number of grooming, 

rearing and defecation which is indicative of the 

development of a state of emotional stress in rats. 

Similar results were shown in other reports using 

different models of stress [18, 19].  

Rats subjected to Barnes maze test in our study, 

and consistent with Woo et al. [20], showed 

impaired learning and memory in the CIS group 

indicated by a significant increase in the mean 

number of errors/day and the mean time of escape 

latency during both acquisition and probe phases. 

That increase was maximum on the first day of the 

acquisition phase and a descent was noticed in the 

learning curve in all groups the later days which is 

likely not due to spatial learning, but rather due to 

habituation to the environment resulting in 
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decreased anxiety and increased the motivation to 

escape over repeated trials [21], ICR could 

significantly improve the depressive behavior and 

learning and memory functions in chronic stress 

conditions [1]. 

Elevated serum corticosterone level and relative 

adrenal weight in the CIS rats, in our study, was an 

indicator of a successful model of stress in rats, 

because stress induces activation of the HPA axis 

[22]. Glucocorticoids are potent stress hormones 

that facilitate short-term and long-term adaptation 

to stressful conditions [23]. Prolonged 

glucocorticoid exposure increases apoptosis in the 

hippocampus, thereby causing memory decline, 

mood and behavior changes, and anxiety-like 

features [24]. Chronic corticosteroid exposure 

promotes hippocampal Tau hyperphosphorylation 

and accumulation [25]. ICR could reduce plasma 

level of stress hormones (corticosterone) [1]. 

Recently, Tau was proposed as a critical 

mechanism of induction of neuropathological and 

brain structure changes by chronic stress and 

glucocorticoids [2]. Consistent with Carroll et al. 

[26], CIS significantly increased phospho-Tau that 

was related to anxious behavior and memory 

impairment [27]. And ICR could significantly 

reduce phospho-Tau in the CIS+ICR group. 

Supporting our result, ICR upregulates Sirtuin-1 

that decreased Tau phosphorylation in a rat model 

of diabetes [28]. 

Glucocorticoids enhances inflammatory processes 

[29]. TNF-α and IL-6 are key inflammatory 

cytokines that play an important role in the 

pathogenesis of anxiety and depression in stress 

[30, 31]. Dysregulation of TNF-α or IL-6 induces 

Tau hyperphosphorylation and impairs cognitive 

ability [32]. ICR decreased TNF-α and IL-6 in CIS 

in rats. ICR messages the brain to decrease 

circulating inflammatory cytokines during stress 

conditions [1, 33, 34].  

Intermittent CR can modulate monoamine 

neurotransmitters, serotonin and noradrenaline 

[35]. Serotonin and noradrenaline are stress 

hormones that regulates emotion, cognition, 

motivation and social interactions [36, 37]. 

Noradrenaline and serotonin release increased in 

the acute response to stress however, chronic stress 

exposure leads to degeneration of noradrenergic 

neurons and attenuation of serotonergic 

neurotransmission which is associated with long 

persistent cognitive and mood changes [38, 39].  

Noradrenergic or serotonin depletion results in 

increased level of accumulated 

hyperphosphorylated Tau and suppression of 

neurogenesis. This was linked to depression, 

impaired spatial memory, and decreased 

hippocampal inhibition of the HPA axis 

exacerbating stress axis overactivity [38, 40]. 

Significantly increased noradrenaline and 

serotonin content in the hippocampus of CIS+ICR 

rats was observed. ICR significantly enhanced the 

serotonin and norepinephrine levels in the brain of 

rats which are crucial in the regulation of adult 

hippocampal neurogenesis and activation of 

neurogenic precursors and stem cells in the 

hippocampus [38, 41]. Conclusion: ICR is a short-

term regimen that can partially protect against 

behavioral changes associated with stress through 

inhibition of HPA axis, decreased Tau 

hyperphosphorylation, decreased inflammatory 

markers and increased hippocampal noradrenaline 

and serotonin neurotransmitters.   
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