

RECORDS OF PHARMACEUTICAL AND BIOMEDICAL SCIENCES

Chemical Investigation of the Red Sea Gorgonian Coral *Rumphella torta*

Nermeen A. Eltahawy^a, Eman S. Habib^a, Hashem A. Hassanean^a, Safwat A. Ahmed^a, Reda F. A. Abdelhameed^a, and Amany K. Ibrahim^a*

^a Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, 41522, Ismailia, Egypt

Abstract

Received on: 08. 05. 2020 Revised on: 25. 05. 2020 Accepted on: 01. 06. 2020

Correspondence Author: Tel: +20 01092638387 E-mail address: am_kamal66@yahoo.com

Natural products can provide new structures for medicinal products which can't be obtained from other sources such as combinatorial synthesis. Aquatic environment provides a countless and varied source for new drugs to combat major diseases. It also affords an ecological advantage that includes a diversity of marine plants and animals. Marine invertebrates are known to develop secondary metabolites that may have potential as candidates for new drugs. Recent studies show that octocorals, like gorgonians can generate secondary metabolites which have powerfull pharmacological activities. In this work, chemical investigation of the gorgonian coral Rumphella torta, collected from the Red Sea led to isolation of eight known compounds which are firstly reported from the species, Cholesterol (1), four fatty acids, Myristic acid (2), Palmitic acid (3), Arachidic acid (4) and Stearic acid (5), Chimyl alcohol (6), Hexadecanoic acid 2, 3-dihydroxy-propyl ester (7) and Thymine (8). The structures of these isolated compounds were determined by spectroscopic methods, including 1D and 2D-NMR, as well as mass spectrometry and by comparison to the literature.

Keywords: Gorgonian coral, Rumphella torta, Chimyl alcohol, Ester, Thymine.

1. Introduction

The marine environment is an outstanding store house of new bioactive natural products, with structural and chemical properties not commonly found in terrestrial products (**Liu, 2019**). The marine entities also are considered a rich source of nutraceuticals and possible candidates for treatment of many human diseases (**Malve, 2016**). More than 70% of the planet's surface is aquatic environment that owns unique biological and chemical characters that play a critical role in detection of multiple drug leads (**Anjum** *et al*, **2016**). Many marine-living organisms are soft bodied and/or sessile. Consequently, they have produced toxic secondary metabolites as a defensive mechanism to protect themselves against predators (**Eltamany**, **2015**). Due to its biodiversity and seasonal

variations in air and water temperatures, the Red Sea is considered a one of the most important sources for marine research (Abdelhameed et al, 2017). Numerous natural product classes were isolated from Red Sea marine organisms such as alkaloids, terpenes, sterols and steroidal glycosides, and other compounds that were previously mentioned in details (El-Ezz et al., 2017). Gorgonians are Cnidarians, that means stinging celled animals. They belong to Alcyonacea Order, that are further classified into three Suborders: Holaxonia, Scleraxonia, and Calcaxonia. They are also members of Octocorals which are the subclass Octocorallia. These are corals with their polyp structure which typically have eight-fold symmetry or eight-branched tentacles. Like the soft corals, the Gorgonians are sessile colonial animals. There are over 1200 recognized Gorgonian species (Animal-World References, and Erhardt et al, 2005). The gorgonian coral Rumphella torta belongs to phylum Cnidaria, class Anthozoa, order Gorgonacea, suborder Holaxonia, family Gorgoniidae (Hayward et al, 1990). We report, in this study, the isolation and identification of eight compounds from the Gorgonian coral Rumphella torta. The isolated compounds are known but firstly reported from the species.

2. Materials and Methods

2.1. General experimental procedures

¹H NMR (400 MHz), ¹³C NMR (100 MHz), DEPT-135 and 2D NMR spectra were registered on a Varian AS 400 (Varian Inc., Palo Alto, CA, USA) using the residual solvent signal as an internal standard. High-resolution mass spectra were recorded using a Bruker BioApex (Bruker Corporation) machine. Pre-coated silica gel G-25 UV254 plates were used for thin layer chromatography (TLC) (20 cm×20 cm) (E. Merck, Darmstadt, Germany). Silica gel (Purasil 60A, 230–400 mesh) was used for flash column chromatography (Whatman, Sanford, ME, USA).

2.2. Gorgonian coral material

The gorgonian coral Rumphella torta was collected by hand using SCUBA from Safaga in the Egyptian Red Sea. The soft coral material was immediately frozen and kept at -20°C until processed. The voucher spicemen was deposited in the herbarium section of Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt under registration numbers (SAA-1). The identification and description of the soft coral was provided by Prof. Tarek A. Temraz, Department of Marine Science, Faculty of Science, Suez Canal University, Ismailia, Egypt.

2.3. Extraction and Fractionation of Marine Material

The frozen chopped small pieces of gorgonian coral *Rumphella torta* (4Kg weight) was extracted with methanol- CH_2Cl_2 (1:1) (5L X 4) at room temperature. The combined extract was concentrated under vacuum resulting in 250 g residue. The crude extract (250 g) was slurred with silica gel and the mixture was transferred to a top of a sintered glass Büchner filter funnel (12 X 500 cm) packed with 500 g silica gel and connected to vacuum pump. Step gradient elution with a nonpolar solvent (*n*-Hexane) with increasing the polarity using EtOAc then MeOH to give eight fractions (RT-1~ RT-8). Fraction RT-2 (20g) was

Eltahawy et. al

sequentially re-chromatographed over silica gel column using gradient elution of *n*-hexane: EtOAc to give three sub fractions RT-2-1~ RT-2-3. Compound 1 (10 mg) and compound 2 (6 mg) were obtained after further purification of sub fraction RT-2-1 on silica gel column using gradient elution of *n*-hexane: EtOAc. On the same way, further purification of sub fraction RT-2-2 on silica gel column using gradient elution of *n*-hexane: EtOAc gave compound 3 (5mg) and compound 4 (6mg). Also, compound 5 (4 mg) was separated from the sub fraction RT-2-3 after re-chromatographing over silica gel column using gradient elution of nhexane: EtOAc. Fraction RT-3 (23g) was successively re-chromatographed over silica gel column using gradient elution of CHCl₃: MeOH to give compound 6 (30mg) as a pure one and one sub fraction RT-3-1 that was chromatographed over Sephadex LH-20 column and eluted with CHCl₃: MeOH (1:1) to give compound 7 (5 mg). Furthermore, re-chromatographing of the sub fraction RT-5 (15 g) over silica gel column using gradient elution of CHCl₃: MeOH resulted in the two sub fractions RT-5-1 and RT-5-2. RT-5-1 was further chromatographed over Sephadex LH-20 column and eluted with CHCl₃: MeOH (1:1) to give compound 8 (10 mg).

3. Results and Discussion

3.1. Structure Elucidation of the Isolated Compounds

Compound 1 (figure 1) was obtained as white amorphous powder, and its molecular formula was determined to be $C_{27}H_{46}O$ by HRESIMS (m/z 387.3642 [M+H]⁺) (calc.

387.3627), representing five degrees of unsaturation. The ¹H and ¹³C-NMR spectral data of compound **1** are listed in (table 1). The ¹H-NMR spectrum, table (1), represented five methyl resonances, two of them are connected to sp³ carbon at $\delta_{\rm H}$ 0.92 (s) and 0.68 (s) assigned to H₃-18 and H₃-19 respectively. The other three are connected to sp2 carbon at δ_H 0.80 (d, 6.1) assigned to H₃-21 and at $\delta_{\rm H}$ 0.85 (d, 6.3) assigned to H_3 -26 and H_3 -27 which is in correspondence with the steroidal structure (Kalinowski et al, 1984). Also, a resonance at $\delta_{\rm H}$ 5.30 (m) of the most downfield chemical shift was assigned to H-6 which demonstrates that it is attached to an olefinic sp^2 cacbon. The ¹³C-NMR spectrum, table (1), showed 27 carbon resonances, which represented five methyl groups (CH₃), eleven methylenes (CH_2) , eight methines (CH), and three carbons (C). ¹³C-NMR quaternary The showed resonance spectrum for one oxygenated carbon at δ_C 71.6 that could be attributed to the carbon C-3. Comparing the chemical shift values of H-3/C-3 with the data reported by (Kalinowski et al, 1984) supported the β configuration of the OH moiety at C-3. The signals of the side chain at C-17, (table 1), are comparable with those reported by (Altena et al, 1999). The above-mentioned are in good agreement with those reported for cholesterol (Kalinowski et al, 1984).

Compound **2** (figure 1) was obtained as white powder, and its molecular formula was determined

to be C₁₄H₂₇O₂ by HRESIMS m/z 227.2017 [M-H]⁻ (calc. 227.2011). The ¹H-NMR spectral data of compound **2** are listed in (table 2). The structure elucidation of compound **2** started with the analysis of its ¹H- NMR exhibited the structure of saturated fatty acid. The NMR data of Compound **2** was compared with a reference data and found to be matched with myristic acid (**Dung** *et al*, **2012**). Compound **3** (figure 1) was obtained as white

powder, and its molecular formula was determined to be $C_{16}H_{31}O_2$ by HRESIMS m/z 255.2330 [M-H]⁻ (calc. 255.2324). The ¹H-NMR spectral data of compound **3** are listed in (table 2). The NMR data of Compound **3** was compared with a reference data and found to be matched with the saturated fatty acid, palmitic acid (**Sheng** *et al*, **2012**).

Compound **4** (figure 1) was obtained as white powder, and its molecular formula was determined to be $C_{20}H_{39}O_2$ by HRESIMS *m/z* 311.2950 [M-H]⁻ (calcd 311.2950). The ¹H-NMR spectral data of compound **4** are listed in (table 2). The structure elucidation of compound **4** started with the analysis of its ¹H- NMR exhibited the structure of saturated fatty acid. The NMR data of Compound **4** was

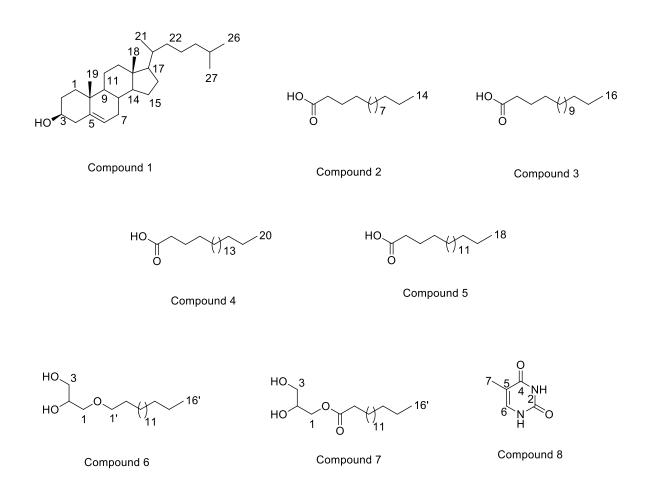


Figure 1: Chemical structures of the isolated compounds: cholesterol (1), myristic acid (2), palmitic acid (3), arachidic acid (4), stearic acid (5), ((2R)-1-(hexadecyloxy) propane-2, 3-diol) chimyl alcohol (6), 1-Mono palmitin (7), (5-Methyl-1H-pyrimidine-2,4-dione) Thymine (8).

Compound 1					
No	δ_{C}	δ_H (No. of H, mult., J_{Hz})	No	δ_{C}	δ_H (No. of H, mult., $J_{\rm Hz}$)
1	38.1	0.93 (1H, m), 1.87 (1H, m)	15	24.8	0.93 (1H, m), 0.97 (1H, m)
2	32.9	1.99 (1H, m), 1.55 (1H, m)	16	21.6	-
3	71.6	3.55 (1H, m)	17	56.7	1.35 (1H, m)
4	42.7	2.22, 2.33 (2H, d, <i>J</i> = 13.1)	18	12.3	0.92 (3H, s)
5	142.3	-	19	19.9	0.68 (3H, s)
6	121.5	5.30 (1H, m)	20	32.5	1.82, 1.86 (1H, m)
7	40.2	1.94 (1H, m), 1.13 (1H, m)	21	19.4	0.80 (3H, d, <i>J</i> = 6.1)
8	36.3	0.92 (1H, m)	22	36.8	1.25 (1H, m), 1.82 (1H, m)
9	50.8	1.07 (1H, m)	23	24.8	1.03 (1H, m), 1.56 (1H, m)
10	37.2	-	24	40.0	1.99 (1H, m), 1.56 (1H, m)
11	23.2	0.90 (2H, m)	25	28.5	1.51 (1H, m)
12	24.5	1.1, 1.34 (2H, m)	26	23.0	0.85 (3H, d, <i>J</i> = 6.3)
13	38.1	-	27	23.0	0.85 (3H, d, <i>J</i> = 6.3)
14	57.2	1.0 (1H, m)			

Table 1: ¹H (400 MHz) and ¹³C NMR (100 MHz) for compound 1 in CDCl₃.

Table 2: ¹H (400 MHz) for compounds 2, 3, 4, and 5 in CDCl₃.

Compound 2		Compound 3		Compound 4		Compound 5	
No	δ_H (No. of H,						
	mult., <i>J</i> _{Hz})						
1	-	1	-	1	-	1	-
2	2.34 (2H, t, J=7.6)	2	2.34 (2H, t, J=7.6)	2	2.35 (2H, t, J=7.6)	2	2.29 (2H, t, J=7.6)
3	1.60 (2H, m)	3	1.62 (2H, m)	3	1.56 (2H, m)	3	1.58 (2H, m)
10	1.30~1.25 (20 H,	12	1.29~1.25 (24 H,	16	1.30~1.25 (32	14	1.19~1.27 (28 H, m,
(CH ₂)	m, H4~H13)	(CH ₂)	m, H4~H15)	(CH ₂)	H, m, H4~H19)	(CH ₂)	H4~H17)
14	0.88 (3H, t,	16	0.87 (3H, t,	20	0.88 (3H, t,	18	0.81 (3H, t,
14	0.00 (311, 1,	10	0.07 (311, 1,	20	0.00 (311, t,	10	0.01 (311, 1,
	<i>J</i> =7.3)		<i>J</i> =7.3)		<i>J</i> =7.3)		<i>J</i> =7.3)

compared with a reference data and found to be matched with arachidic acid (**Termsarasab** *et al*, **2012**).

Compound **5** (figure 1) was obtained as white powder, and its molecular formula was determined to be $C_{18}H_{35}O_2$ by HRESIMS m/z 283.2644 [M-H]⁻ (calcd 283.2637). The ¹H-NMR spectral data of compound **5** are listed in (table 2). The structure elucidation of compound **5** started with the analysis of its ¹H- NMR exhibited the structure of saturated fatty acid. The NMR data of Compound **5** was compared with a reference data and found to be matched with stearic acid (**Sultana** *et al*, **2020**).

Compound 6 (figure 1) was obtained as white powder, and its molecular formula was determined to be $C_{19}H_{40}O_3$ by HRESIMS m/z 317.3056 [M+H]⁺ (calcd 317.3056). The ¹H and ¹³C-NMR spectral data of compound **6** are listed in Table (3). The 1 H-NMR spectrum, table (3), displayed signals at $\delta_{\rm H}$ 0.87 (3H, t, J= 7.2 Hz, H₃-16'), 1.26 (overlapped H, m), 1.63 (2H, m, H₂-2') and 1.53 (2H, m, H₂-3') that are corresponding to aliphatic hydrocarbons. Moreover, ¹H NMR spectrum showed characteristic resonances of a 1, 1'dioxy-2,3diol unit of the hydrocarbon chain at $\delta_{\rm H}$ 3.55 (1H, m, H-1),3.47 (1H, t, J= 2.8, H-1), 3.86 (1H, m, H-2) and 3.65 (1H, m, H-3). The ¹³C-NMR spectrum, (table 3), showed 19 carbon resonances that was identified as one methy at $\delta_{\rm C}$ 13.9 (C16[°]), seventeen methylenes, three of them are oxymethylenes at δ_C 72.3, 64.1 and 70.2 (C-1, C-3 and C-1` respectively) in addition to one oxymethine at $\delta_{\rm C}$ 71.7 (C-2).

The above data are in good agreement with that reported for (2R)-1-(hexadecyloxy) propane-2, 3-diol (chimyl alcohol) (**Ouijano** *et al* **1994, Chao** *et al*, **2007**).

Compound 7 (figure 1) was obtained as white powder, and its molecular formula was determined to be $C_{19}H_{38}NaO_4$ by HRESIMS m/z 353.2669 $[M+Na]^+$ (calcd 353.2668). The ¹H and ¹³C-NMR spectral data of compound 7 are listed in table 3.

The ¹H-NMR spectrum, (table 3), displayed signals at $\delta_{\rm H}0.80$ (3H, t, J= 6.6 Hz, H₃-16'), 1.19 (overlapped H, m), 2.28 (2H, t, H₂-2') and 1.63(2H, q, H₂-3') that are corresponding to aliphatic hydrocarbons. Moreover, ¹H NMR spectrum showed characteristic signals at δ_H 4.11 (1H,m, Ha-1), 4.12(1H,m, Hb-1), 3.86 (1H, m, H-2), 3.35(1H,dd, Ha-3), 3.62(1H, dd, Hb-3). The ¹³C-NMR spectrum, (table 3), showed 19 carbon resonances that was identified as one methy at $\delta_{\rm C}$ 14.2 (C16[°]), sixteen methylenes, two of them are oxymethylenes at δ_C 70.4 and 63.4 (C-1 and C-3 respectively) in addition to one oxymethine at $\delta_{\rm C}$ 62.5 (C-2). Also, one ester signal is identified at δ_{C} 70.4 (C-1`).

The above data and discussion are in good agreement with the data reported for 1-Mono palmitin (**Jumina** *et al*, **2018**).

Compound **8** (figure 1) was obtained as white powder. The ¹H and ¹³C-NMR spectral data of compound **8** are listed in (table 4).

The ¹H-NMR spectrum, (table 4), displayed signals at $\delta_{\rm H}$ 12.96 (1H, brs, NH-3) and $\delta_{\rm H}$ 12.14 (1H, brs, NH-1) for two exchangeable imido protons.In addition, ¹H-NMR spectrum showed one methine signal at $\delta_{\rm H}$ = 7.24 (1H, s, H-6) and one methyl signal at $\delta_{\rm H}$ 1.94 (3H, s, H-7).

The ¹³C-NMR spectrum, (table 4), showed five carbon resonances that was identified as two imides carbonyl δ_C 166.2 (C-4) and δ_C 153.2 ppm. (C-2)

	Com	pound 6	Compound 7			
No	δ_{C}	δ_H (No. of H, mult., $J_{ m Hz}$)	No	δ_{C}	δ_H (No. of H, mult., $J_{ m Hz}$)	
1	72.3	3.55 (2H, m)	1	70.4 (CH ₂)	4.11 (1H, m) 4.12 (1H, m)	
2	71.7	3.86 (1H, m)	2	65.2 (CH)	3.86 (1H, m)	
3	64.1	3.65 (2H, m)	3	63.4 (CH ₂)	3.53 (1H, dd) 3.61(1H, dd)	
1`	70.2	3.47 (2H, t, <i>J</i> =2.8)	1`	174.0 (CO)	-	
2`	29.4	1.63 (2H, m)	2`	34.1(CH ₂)	2.28 (2H, t)	
3`	25.9	1.53 (2H, m)	3`	24.9 (CH ₂)	1.63 (2H, q)	
4`-13`	29.4	1.26 (20H, m)	4`-13`	29.1-29.7	1.19 (20H, m)	
14`	31.9	1.26 (2H, m)	14`	31.9 (CH ₂)	1.19 (2H, m)	
15` 16`	22.5 13.9	1.26 (2H, m) 0.87 (3H, t, <i>J</i> =7.2)	15` 16`	22.7 (CH ₂) 14.2(CH ₂)	1.19 (2H, m) 0.80 (3H, t, <i>J</i> =6.6)	

Table 3: ¹H (400 MHz) and ¹³C NMR (100 MHz) for compounds 6 and 7 in CDCl₃.

Table 4: ¹H (400 MHz) and ¹³C NMR (100 MHz) for compound 8 in C₅D₅N.

	Compound 8					
No	δ_{C}	δ_H (No. of H, mult., $J_{\rm Hz}$)				
1	-	12.14 (1H, brs)				
2	153.2 (C)	-				
3	-	12.96 (1H, brs)				
4	166.2 (C)	-				
5	108.7 (C)	-				
6	137.8 (CH)	7.24 (1H, s)				
7	12.3 (CH ₃)	1.94 (3H, s)				

signals. In addition, it showed one quaternary δ_C 108.7 (C-5), one methine δ_C 137.8 (C-6), and one methyl δ_C =12.3 (C-7) signals.

The above data are in good agreement with the data reported for (5-Methyl-1H-pyrimidine-2,4-dione) Thymine (**Guo-qiang** *et al*, **2012**).

4. Conclusion

In the current paper, chemical investigation of the

secondary metabolites isolated from the crude extract of the Red Sea gorgonian coral *Rumphella torta*, resulted in the isolation of eight compounds, Cholesterol (1), Myristic acid (2), Palmitic acid (3), Arachidic acid (4) Stearic acid (5), chimyl alcohol (6), Hexadecanoic acid 2, 3-dihydroxy-propyl ester (7) and Thymine (8). these isolated compounds are known but firstly reported from the species.

Acknowledgement

We are grateful to Prof. Tarek Temraz, Marine Science Department, Faculty of Science, Suez Canal University, Ismailia, Egypt for his identification of gorgonian coral *Rumphella torta* collected from The Egyptian Red Sea.

Conflict of interest

There is no conflict of interest

References

Abdelhameed, R.F., Ibrahim, A.K., Temraz, T.A., Yamada, K., Ahmed, S.A. Chemical and biological investigation of the Red Sea sponge *Echinoclathria* species. *Int. J. Pharm. Sci. Res.* **2017**, 9, 1324– 1328.

Altena, I. A., Butler, A. J., Dunne, S. J., A New Cyclized 9,11-Secosterol Enol-Ether from the Australian Sponge Euryspongia arenaria, *J. Nat. Prod.* **1999**, 62, 1154-1157.

Animal-World References: Marine and Reef.

Anjum, K., Abbas, S.Q., Shah, S.A., Akhter, N., Batool, S., Shams ul-Hassan, S., Marine sponges as a drug treasure. *Biomol Ther*, **2016**, 24, 347-362.

Chao, C., Huang,H., Wu, Y., Lu, C., Chang-Feng Dal, C., Sheu, J., Glycolipids from the Formosan Soft Coral Lobophytum crassum., *Chem. Pharm. Bull.*, **2007**, 55, (12), 1720-1723.

El-Ezz, R. A., Ibrahim, A., Habib, E., wahba, A., Kamel, H., Afifi,A., Hassanean, H., Ahmed, S., Review of natural products from marine organisms in the Red sea. Vol. International Journal of Pharmaceutical Sciences and Research, **2017**, 8(3), 940-974. Eltamany, E.E., **2015**. Bioactive metabolites from some marine organisms, a thesis for PhD degree, Faculty of pharmacy, Suez Canal University.

Erhardt, H., and Moosleitner, H., Marine Atlas Volume 2, Invertebrates (Baensch Marine Atlas), Mergus Verlag GmbH, Revised edition, **2005**.

Guo-qiang, L., Zhi-wei, D., Jun, L., Zheng, F., Wen-han, L., Chemical constituents from starfish *Asterias rollestoni*, J. Chinese Pharm. Sci., **2004**, 13, 81-86.

Hayward, P.J., Ryland, J.S. (Ed.)., The marine fauna of the British Isles and North-West Europe: 1. Introduction and protozoans to arthropods. Clarendon Press: Oxford, UK, **1990**.

Jumina, J., Nurmala, A., Fitria, A., Pranowo, D., Sholikhah, E.N., Kurniawan, Y.S., Kuswandi, B., Monomyristin and Monopalmitin Derivatives : Synthesis and Evaluation as Potential Antibacterial and Antifungal Agents, *Molecules*, **2018**, 23, 3141-3151.

Kalinowski, H. A., Berger, S., Braum, S., ¹³*C-NMR Spektroskopie* (George ThiemeVerlaged.) Stuttgart, New York, **1984**, Vol.2, p. 393.

Liu, M., El-Hossary, E.M., Oelschlaeger, T.A., Donia, M.S., Quinn, R.J., Abdelmohsen, U.R., Potential of marine natural products against drugresistant bacterial infections. *Lancet Infect Dis.* **2019**, 19, 237-245.

Malve, H., Exploring the ocean for new drug developments: Marine pharmacology. *Journal of Pharmacy & Bioallied Sciences*, **2016**, 8(2), 83-91. Ouijano, L., Cruz, F., Navarrete, I., Gdmez, P., Rios, T., Alkyl glycerol monoethers in the marine sponge *Desmapsamma anchorata, Lipids*, **1994**, 29, 731-734.

Sheng, G., Jin-ao, D., Jin-long, Z., Ye-fei, Q., Yeping, T., Da-wei, Q.; Resource chemical constituents from sarcocarp of *Ziziphus jujba* var. spinosa, *Chinese Traditional and Herbal Drugs.*, **2012**, 43, 1905-1909.

Sultana, N., Guria, C., Saxena, V.K., Selective conversion of stearic acid into high-added value octadecanedioic acid using air and transition metal acetate bromide catalyst: Kinetics, pathway and process optimization, *Arabian Journal of Chemistry*, **2020**, 13(1), 2368-2383.

Termsarasab, T., Cho, H., Kim, D.H., Chong, S., Chung, S.; Shim, C., Moon, H.T., Kim, D., Chitosan oligosaccharide-arachidic acid-based nanoparticles for anti-cancer drug delivery, *International Journal of Pharmaceutics*, **2013**, 11, 1-8.