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Abstract 

A brief review of the Hamiltonian theory of self gravitating perfect fluid, which has been 
established by Kijowski et al (1990), has been discussed in this work.  The formulation of the 
spherically symmetric cosmological problem has been derived. The most general 3-
dimensional metric in the case of spherically symmetric space-time has been considered.  In 
addition, the parameters which govern the dynamics have been fixed.  The dynamical 
equations have been derived.  The problem of homogeneous Universe has been considered for 
the Ultrarelativistic ideal gas.  The dynamical equations have been derived.  Three analytical 
solutions have been obtained. 
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1. Hamiltonian formulation of general relativity  

     To investigate the Hamiltonian formulation of general relativity ([1],[2]) we can 

proceed as follows. Let M be the space-time manifold with coordinates ( x );  = 
0,1,2,3 and let    M be the three-dimensional initial-value surface. Cauchy data 

for the free gravitational field are described by the Riemannian metric klg  on  

(Latin indices run from 1 to 3) and by the so called ADM momentum klP , where  

 klklkl KgKgP  det      (1.1) 

klK   is the extrinsic curvature tensor  of   and kl
kl gKK  .  

Four of ten Einstein equations do not contain time derivative of klP  and klg  

namely 

    0
det

1 2
2
1  PPP

g
gR kl

kl       (1.2)  

where kl
kl PgP  , and  

0l
lkP              (1.3)  
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where " " denotes the covariant derivative on  with respect to the metric 

connection generated by g. These 4 equations can be treated as Hamiltonian 

constrains for the Hamiltonian system  kl
kl gP , . There are 4(per point) 

"Lagrange multipliers" N  (lapse function) and kN  (shift   vector), canonically 

conjugate to the four constraints [2]. The dynamics of the data   kl
kl gP ,  

resulting from the remaining 6 Einstein equations which can not be uniquely defined 

unless the parameters ),( kNN  are described at each point of  and at each instant  

of  time  t = x0 .   

The formulation of the general relativity coupled to hydro-dynamics has been 
proposed by Kijowski, Smolski and Gornicka (see [3] - we will refer to this paper by 
KSG ). It shows that the phase space, describing both gravitational and thermo-
mechanical degrees of freedom (2+4 per point), can be described by the same 

mutually conjugate objects  kl
kl gP , , as in the vacuum case.  Zero on the right 

hand side of equations (1.2) and (1.3) is replaced by corresponding components of 
the matter-energy-momentum tensor. However, the equations can no longer be 
considered as constraints. They enable us to calculate uniquely the lapse and the 

shift in terms of the data  kl
kl gP , .  Finally, the time evolution of the system is 

uniquely generated by a regular,    non-constrained Hamiltonian   

 kl
kl gPHH , .  

The goal of "KSG" investigation was a construction of a non-constrained 

Hamiltonian  kl
kl gPHH , , such that the evolution equations generated by H 

are precisely the Einstein-Euler equations for the self-gravitating perfect fluid whose 
mechanical and thermo-dynamical properties are described by [4].  

 VSS ,e           (1.4)  

where S is the molar entropy, e is the internal energy per mole and V is the molar 
volume.  

In the absence of gravitational interaction, the "KSG" suggest the following 
treatment of the hydrodynamics as field theory.  The 3-dimensional material space Z 
is considered with an appropriate geometric structure. Points of Z correspond to 
particles of the matter.  The configuration can represented as mapping   

ZM : .  

Given a coordinate system ( az ), a =1, 2, 3; the mapping is described by three 

functions   xz aa  .   
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In order to add thermal properties to the above theory one more potential is 

needed [6].  Therefore a new dimension 0z has been added.  This way the 4-

dimensional matter space-time Z is obtained with 0z play the role of a "matter 
time".  The configuration of the material is now given by four functions:  

ZM :  

 = 0, 1, 2, 3. It has been proved in "KSG" that the following expression for 
temperature: 

0
0





 

u
x

uT 



         (1.5)  

together with the choice of minus the free energy (   TSTVf  e, ) as a 

Lgrangian of the theory:  

  







 TfgTVf

V
gL ,

1
,

1


    (1.6)  

where gg det  and 
V

1
   is the molar matter density.  

Finally, the theory of self gravitating fluid has derived by "KSG" from the 

Lagrangian .. matgrav LLL    , where .gravL  is the Einstein-Hilbert Lagrangian:  

 gR
G

g
Lgrav 16.         (1.7)  

R  is the 4- dimensional scalar curvature invariant and .matL  is the matter 

Lgrangian which has been given as before in (1.6)  

In Hamiltonian formulation [4], the complete Cauchy data for the theory consist 
of Cauchy data for both gravitational and hydro-thermo-dynamical field are 

 0,,, 
 pgP kl

kl
 [7], where 




 




L
p  are momenta 

canonically conjugate to hydro-thermo-dynamical potentials  . It has been proven 

that momentum canonically conjugate to 0  is equal the entropy current: 

  uSgp 0 .        (1.8)  
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The Hamiltonian giving the time derivatives of Cauchy data in terms of the 
functional derivatives of the Hamiltonian can be written as [7]: 

  00

16

1



 


 ppPggP

G
H kl

klkl
kl    (1.9) 

where dot denotes the time derivative.  

Due to the invariance of the theory with respect to space-time deffeomorphisms, 
we are allowed to impose the following gauge conditions:  

   xx  .          (1.10)   

The gauge conditions (1.10) imply also: 0 , 0k  and 10  .  So the 

Hamiltonian reads:  

    kl
klkl

kl PggP
G

SH 


 
16

1
   (1.11) 

The quantity   S  is equal to the total entropy of the system. In the case of 

spatially-compact space-time, the total gravitational energy vanishes identically 

 0H  and the global Hamiltonian  H  is determined by the total 

entropy of the system:   and the quantity S  plays the role of minus the 

Hamiltonian density on the Cauchy surface .  

To express the Hamiltonian in terms of canonical parameters  kl
kl gP ,  we use 

the constraint equations corresponding to components 00T , 0
kT  of the energy 

momentum tensor as three parameters X, Y and Z defined as follows: 

     PgX
n

np
PPP

g
gR

G kl
kl ,

1det

1

16

1
2

2
2

2
1 














e


  (1.12) 

and       l
lkk P

G
Y 

8

1
,  

with its scalar  

 
 22

22
1

1 n

pn
ZYYgY jk

jk




  e

      (1.13)  

and  
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g
Z

1
 ,            (1.14)  

with 

ZVZ
n

2

2
2 1

11 


.         (1.15)  

From which the following can be obtained  

12  ZVYXVe           (1.16)  

  X
ZV

YZV
Vp 




1
,

2
e          (1.17)  

where  the  pressure  ),Vp e  i s  determined using the s ta te  equat ion.   

So the Hamiltonian density (or the entropy density):  

      ZYXUZYXVZYXSU ,,:,,,,,  e    (1.18) 

and the  Hamiltonian evolution equations are 

kl

kl

g

U
GP

16          (1.19)  

klkl P

U
Gg

16         (1.20)  

 

Spherically symmetric closed universe  

In the case of spherically symmetric compact universe, we have the general form 
of 3-dimensional metric [8], [9], [10], [11]:  

 222222
)3( sinsin   ddedeSd    (2.1) 

Noting that the radial variable   ,0  and   and   are functions of   and 

time tx 0
.  

The ADM momenta in this case are [2]:  
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      (2.2) 

where a  and  b are functions of   and  t.  

Using (1.11) with the fact that the total gravitational energy vanishes identically 

 0H  in the case of spatially-compact space-time and substituting with 

equations (2.1) and (2,2) with using (1.12) to (1.17) we get for evolution equations 
(1.18) and (1.19) will be as defined in (1.18) 
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U
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16

16

16

16









     (2.3)  

with  

 22 sin,sin BBAA       (2.4)  

where  

beB

aeA












2
1

2
1

2
           (2.5)  

 

Cosmological model with Ultrarelativistic ideal gas  

As has been mentioned above, the specification of the equation of state fixes the 

Hamiltonian of the system (i.e. the entropy function  VSS ,e ). So the 

dynamical equations (2.3) are well defined.  

It is interesting to solve the evolution equations (2.3) in the case when metric 
functions  and  and momenta functions A and B depend on time only. This 
corresponds to the homogeneous cosmological model. The most important feature of 
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this problem, in our theory with spherical symmetry, that the vanishing of the space 
derivatives in equations (2.3) implies that the following relations are always fulfilled 
the following:  

              (3.1)  

BA 2 .            (3.2)  

The right hand side of equation (2.19) will therefore be:  

  AABABA 






16

3

16

1
.   (3.3)  

Performing the integral with respect to  for both sides of (1,11) with help of (3.3) 
and (1,18), we get:   

    AAS 


 
16

3
4 .       (3.4)  

Accordingly, the system (2.3) will reduce to two equations:  





U

A 16          (3.5)  

A

U




 16          (3.6)  

(The gravitational constant G is taken to be unity) where U here is expressed as:  

SU
3

4
 .           (3.7)  

We have therefore a Hamiltonian system with one degree of freedom  and its 
canonical .momentum A.  The geometrical parameter Y is always zero because it 
vanishes at the poles and is  independent. This means that the shift vector 
vanishes identically.  The second feature of this case is that the matter 
distribution is just a constant. The three geometrical parameters X, Y and Z are given 
by:  

 23
2
36

16

1
AeeX 


       (3.8)  

0Y              (3.9)  
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3 eZ              (3.10)  

The molar volume and molar energy are therefore given by: 

Z
V

1
              (3.11)  

Z

X
e              (3.12)  

and the Hamiltonian is given by:  

  







ZZ

X
SZXFU

1
,

3

4
,0,

3

4 
    (3.13)  

Suppose that we have the entropy of a monatomic ideal gas which described by:  

  VmRS 2
3

ln  e         (3.14)  

where  m is rest mass per mole and R  is the gas constant.  We restrict ourselves to 
the ultrarelativistic ideal gas where  0m , as: 

 VRS 2
3

ln e           (3.15)  

The dynamics in this case is given by the following Hamiltonian:  

    2
2
3

5

6

6ln 
4

3
1n 

4

1
   ,0, AeeeR

Z

X
RZXFS  









   (3.16)  

Therefore, equations (3.5) and (3.6) become: 

  










 



23
2
1

23
2
1

2

2

6
4  

Aee

Aee
RA 



       (3.17)  

  









 



23
2
1

3
2

2

2
4  

Aee

Ae
R 



       (3.18)  

Dividing (3.17) by (3.18)  we get 

  22-2
4
1  )  - (3-   eAeAA   .         (3.19)  

Performing the following substitution:  
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eaA  .               (3.20) 

In (6.19) we get:  

)   (1  3-  2
4
1 aaa   .          (3.21)  

From which we get: 

0   
2

3
  ) 

4

1
  1 (ln  2 



  a

dt

d
.        (3.22)  

Which implies that:  

1) - ( 4  
) 

2

3
- ( 2 C

ea           (3.23)  

where C is a constant of motion. Substituting by (3.23) in (3.17), we get: 

  1  
)(4

  2 2
3/2

2

   C 

C
ee

e
R .      (3.24)  

If we make the following substitution and then integrating:  

 23    Ce ,           (3.25)  

we get:  

 ttCarc -    15 , 
3  1-  

3-  1-  
(  F max o

o 









sin)cos

)3(

1
4/1 


    (3.26)   

 

where 

2

3/0 





Ce
RC

4
   , tmax is  the t ime for  which  tends to infinity and F 

the elliptic integral of the first kind. This  solution contains two arbitrary constants 
C and tmax . From (3.26) we get inversely:  

  
     

2
3

3131

1












t Cn- - 

t - Cn e
e

C/

          (3.27)   

where Cn( t ) is Jacobean elliptic function and  ttCt o  max . With some 

analysis we can see that the function 
e  has minimum at tt max  and the 

value of the function at this time is:  
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0
max
   tt

e ,         (3.28)  

and have maximum when:  

K2)( max  ttCo ,       (3.29)  

where K is a complete elliptic integral of the First kind (can be obtained from 
mathematical tables) and the value of' the function at this time is:  

3/2Cee 
         (3.30)  

From (3.20) and  (3.23) we can have the solution for A as:  

][4 22/2  eeeA C  ,       (3. 31)  

which implies that the inequality:  


2

3
C             (3. 32)  

must, be fulfilled always which is true for the maximum value of 
e  given by 

(3.29).  It is clear from this discussion that the collapse occurs in finite time.  

The expressions for physical parameter's V as molar volume, e as the molar 
energy, p the pressure, and T the temperature are derived in the following form:  

  
     

3
3

3131

111












t Cn- - 

t - Cn e

Z
V

C/

  


    (3. 33)   

     
  

2

3 1

3131

16

6







 










t - Cn e

t Cn- - e

Z

X
C/

C

  e


   (3. 34)  
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   (3. 35)  

     
  

2

39
4

1

3131
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t - Cn e

t Cn- - 

R

e

Z

X

R
T

C/

C

  


 (3. 36) 

In this model we note that parameter
e is always decreasing with time as the 

space collapse.  This supports the conjecture of recontraction of the closed 
universe [12]. The parameter A  increases with time until its evolution reversed 
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and begin to decrease.  The pressure and temperature are increasing continually 
as collapse is going on.   
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  الʸلʳص العرȁي 

  للʦʵʲد الʸرئʻة ʶǺرȂاً  2007اسʳʯدام ʯؕالʦج 
  لʯعʥʻʻ مȎʦʯʴ الʱʸرة (الʠرȖȂ اللʮʹي) 

  
في هذا الʴʰث تʦ تȄʨʢع ʡرȄقة تʴلʽلʽة عامة لʱعʧʽʽ الاحداثʽات الاسʨʱائʽة لقʢب الʺʳرة      

، وأǽʹاً تعʧʽʽ مʽل الʺʳرة على الاسʨʱاء الʶʺاوȑ، وʨʡل 2000.0) للʴقʰة الزمʽʻة (الʢرȘȄ اللʻʰي
عقدة الʸعʨد لʻفس الʴقʰة.  أʣهرت الʱʻائج الʺʸʴʱل علʽها دقʱها مع مقارنʱها بʽʤʻراتها، حʽث 
اسʵʱدامت لهذه الʶʴاǼات أحدث بʽانات للʨʷʴد الʺفʨʱحة الʺرئʽة ʸǼرȄاً الʺʨʷʻرة في ʱؗالʨج 
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