STUDY AND EVALUATION OF AROMATIC EXTRACTS AS FLUIDS FOR CALCIUM COMPLEX LUBRICATING GREASES

R.A. EL-ADLY*, M.M. KAMEL**A.M. ALY*, AND H.M. ABD EL-BARY***

*Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt. ** Chemistry Department, Faculty of Science(Assiut), Al-Azhar University, Assiut, Egypt. *** Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.

Abstract

Utility of aromatic extracts as fluid for preparation of calcium complex greases was investigated. The physicochemical properties of three grades of these extracts were initially studied. The rheological behavior (viscosity, shear stress and shear rate) of the individual aromatic extracts, and the obtained greases from those extracts at different temperatures were also illustrated. The rheological properties of both aromatic extracts and all lubricating greases were properly fit with the mathematical model of Herschel-Bulkley. Moreover, the flow behavior of the aromatic extracts as well as the corresponding lubricating greases was non-Newtonian. The study exhibited promising results concerning the thermal, mechanical and rheological properties for the prepared greases. Hence, in this work the by-product aromatic extracts act as a good alternative fluid for calcium complex lubricating greases.

Keywords: Aromatic extracts, Calcium complex greases, Rheological properties, Non Newtonian, Herschel-Bulkley

Introduction

Greases are normally given the first consideration for application in ball and roller bearings in electric motors, automotive wheel bearings, and machine tools. They are also used for the lubrication of small gear drives and for many slow-speed sliding applications ⁽¹⁾. However, chemistry of lubricating grease is quite complex, it has already been provided in the NLGI Lubricating Grease Guide ⁽²⁾. Basically, grease contains at least two components, base fluid and thickener agent. Typical multipurpose grease contains about 60-95% base fluid, 5-25% thickener and 0-10% other ingredients providing special properties ⁽³⁾. Such ingredients are corrosion and rust inhibitors, antioxidants, colour stabilizers, viscosity improvers and wear preventers ^(4, 5). The base fluids can be divided into two main groups; mineral oils and synthetic oils. Mineral oils are the employed fluids in the manufacture of the great bulk of lubricating greases due to their availability and low cost ⁽¹⁾. They consist of varying proportions of paraffinic, naphthenic and aromatic hydrocarbons. Thickener agents as the second most important component of grease are used to provide a

suitable consistency to the finished product. Different soap types ^(1,6-8) are usually used as a common thickener for grease. Generally, soap structure consists of 12hydroxystearic acids or stearic acid esters derived from vegetable or animal oils ⁽⁹⁾, and an alkali or alkaline earth metals ⁽¹⁰⁾. Soaps not only present as crystallites and dissolved molecules, but also represent as agglomerates called fibrils or fibers in a separate phase. Commercial calcium complex greases which were first described in 1940 contain acetic acid as a complementary acid ⁽¹¹⁾. Such greases have good shear stability and water resistance, low oil separation, and good load-carrying capacity. Recently, the search for alternative sources of base stocks for lubricants has gathered momentum in recent years ^(12,13). Aromatic extracts which are by-products in the refining of lubricating oil basestocks and waxes will be suggested as an alternative oily component in lubricating greases. This approach would appear to be of great economic and strategic standpoints. Accordingly, the current study is concerned with the determination of the properties of subjected aromatic extracts and their feasibilities for preparation of calcium complex lubricating greases.

Experimental

1- Raw materials used for preparation of the calcium complex greases

(a) Fluid part: Three grades of aromatic extracts; light (AE₁), medium (AE₂) and heavy (AE₃) distillates according to the class of lubricating base stock refinery stream were used. These extracts were supplied by Suez Petroleum Company. The physicochemical characterization of these fluids was carried out according to ASTM and IP standard test methods. The average molecular weights of AE1, AE2 and AE3 were measured by gel permeation chromatography (Water 600E) equipped with Styagel column operated at 40°C and flow rate of 0.4ml/min. The refractive index instrument model (Water 4110) was used as a detector and toluene (HPLC grade) as a mobile phase. (b) Fatty material: Soybean soap stock was provided by the Cairo Oil & Soap Co. (c) Alkali: Calcium hydroxide solution was used as a neutralizing agent for saponification of fatty compounds. (d) Complexing agent: Equimolar ratio of calcium acetate and benzoic acid.

2- Grease preparation and evaluation.

Seven types of calcium complex greases G₁, G₂, G₃, G₄, G₅, G₆ and G₇ were prepared according to a procedure described elsewhere^(8, 11, 14). Briefly, the procedure

consists of two steps, saponification and cooling steps. The saponification step is based on mixing of soybean soapstock and 25% wt of aromatic extracts with alkaline slurry at the temperature range of 180 and190°C. After the completion of the saponification reaction the reaction mixture is cooled while, adding the rest of the aromatic extract to attain the required grease consistency.

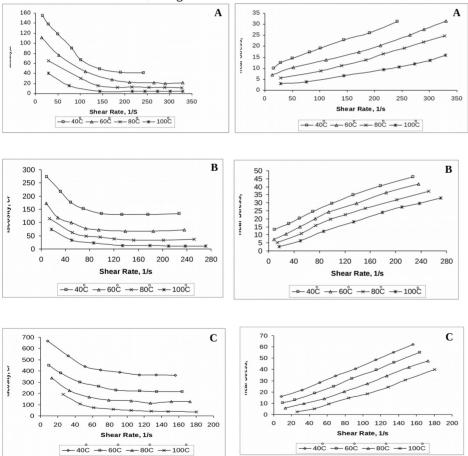
The consistency, dropping point tests, mechanical properties and the copper corrosion detection for the prepared greases were achieved according to the reference ⁽¹¹⁾. Rheological properties of both aromatic extracts and the prepared grease samples were determined at different temperatures using a programmable Brookfield rheometer model LV DV-III ULTRA (spindle SC4-18). The corresponding shear rate and shear stress were recorded every 2 minutes.

Kinematic viscosity was measured at 40°C and 100°C using capillary viscometers (ASTM D445).

Results and discussion

The physicochemical properties of three grades of aromatic extracts [light (AE₁), medium (AE_2) and heavy (AE_3) are listed in Table 1. The boiling point ranges of AE₁, AE₂ and AE₃ are 314-430 °C, 334-454 °C and 392-492 °C, respectively. Moreover, they exhibit different values of specific gravity, sulfur percentage, pour point and viscosity. Such differences are attributed to their molecular structures and refining steps since their molecular weights are 798, 755 and 725 for AE₃, AE₂ and AE₁, respectively. As shown by the n-d-M results in Table 1, the average number of aromatic rings per molecule R_A increases with increasing the boiling range and molecular weights of aromatic extracts. This may indicate that these grades contain mono-, di-, and polyaromatic compounds. Correlation of the average molecular weights, polydispersity and n-d-M results reveal the complex nature of the alkyl aromatic molecules. The carbon distribution and structural group analysis reveal that the three grades of aromatic extracts contain considerable portions of paraffinic side chains. The experimental data of the n-d-M method presented in Table 1, show also that the percentages of aromatic carbons are 22.9, 24.1 and 25.0 for AE₁, AE₂ and AE₃, respectively. Meanwhile, the paraffinic carbon portions (%Cp) of the molecules constitute higher percentages of 66.0 (AE₃), 64.2 (AE₂) and 61.0 (AE₁). The naphthenic carbon contents ($%C_N$) of the molecules are negligible.

Aromatic Extracts						
Characteristics		AE ₁	ASTM			
Density, g/ml at 15.6°C		0.9543	AE ₂ 0.9695	AE ₃ 0.9697	D.1298	
Sulfur, m%: X ray fluorescence		2.13	2.789	2.8515	IP63/55	
Refractive index, n _D ²⁰		1.5408	1.5486	1.5512	D.1218	
ASTM-Colour		L5.0	L5.0	L5.0	D.1500	
Kinematic viscosity,	at 40°C	22.077	51.696	148.543	D.445	
cSt	at 100°C	3.380	5.137	11.404	D.443	
Dynamic viscosity,	at 40°C	126,9	213,6	542,4	D 100	
cP	at 100°C	34,2	88,4	163,7	D.189	
Sp. Gr. @ 60/60 °F		0.940	0.944	0.963	D.1298	
Pour point		15	21	42	D.97	
Flash pt. PMC °C		180	194	215	D.92	
TAN mg KOH/ gm		0.267	0.382	0.534	D.664	
Molecular weight		725	755	798	GPC	
Polydispersity		1.265	1.427	1.648	GPC	
Hydrocarbon type analysis - % C _A - % C _P - % C _N Average no. of rings/ mol - R _A - R _N		22.9 61.0 6.70 1.83 0.09	24.1 64.2 7.50 2.97 0.15	25.0 66.0 8.60 3.14 0.19	D3238	
ASTM Dist. - IBP °C - 5.0%VOL@ °C - 10% VOL@ °C - 20% VOL@ °C - 30% VOL@ °C - 40% VOL@ °C - 50% VOL@ °C - 70% VOL@ °C - 80% VOL@ °C - 90% VOL@ °C - 95% VOL@ °C - FBP @ °C		256 314 330 337 344 350 356 364 371 380 396 409 430	244 334 350 371 384 391 399 405 412 420 431 439 454	327 392 404 415 425 432 437 444 450 457 467 475 492	D.1160	


Table 1 : Physicochemical characteristics of the aromatic extracts

This difference in their constituents leads to the possibility of producing different grades of greases from aromatic extracts. However, many other factors must be taken into consideration to make sure that the aromatic extracts continue to lubricate properly over a long period. The most important of these factors are: the flow properties under shearing rates at different temperatures.

Rheological properties of the aromatic extracts

STUDY AND EVALUATION OF AROMATIC EXTRACTS ... 383

The rheological behaviour (viscosity, shear stress and shear rate) of AE₁, AE₂ and AE₃ has been determined at 40, 60, 80 and 100°C. As can be shown in Figure 1, viscosity decreases with increasing shear rates. The decrease in viscosity is much more apparent at low shear rate, but at high shear rate, viscosity leveling off is observed. This shear-thinning behavior is commonly known as pseudo-plastic behavior ⁽¹²⁾. It may be explained that the shear applied in aromatic extract compounds breaks down rapidly the internal structure within the bulk, and is temperature dependent. Also, the increase in temperature tends to increase molecular motion and consequently reduce attractive forces exhibited in solution. It is also observed that the flow behaviour of these aromatic extracts is non Newtonian. The rheological properties of these extracts are well fit with the mathematical model of Herschel-Bulkley ^(11, 15) (Table2). Results show that the corresponding shear stress of AE₃ is higher than both AE₂ and AE₁.

Figure 1: Rheological behaviour for aromatic extracts at different temperatures; (A: AE₁; B: AE₂; and C: AE₃)

Table 2: Viscoelastic parameters for aromatic extracts using Herschel-Bulkley model

Ter Property	np.	40°C	60°C	80°C	100°C
	AE ₁	19.8	13.33	5.15	0.40
Consistency Index, cP	AE_2	136	75.3	43.0	1.30
	AE_3	730.4	210.3	129.8	11.34
	AE1	4.17	3.86	1.99	5.03
Yield Stress, D/cm ²	AE_2	0.59	0.60	1.57	9.26
	AE_3	2.00	0.76	1.48	9.97
	AE ₁	1.01	1.16	1.05	1.43
Flow Index	AE_2	0.92	0.81	0.84	1.30
	AE_3	1.02	0.91	0.82	1.47
	AE1	99.9	100	100	99.6
Confidence of Fit, %	ce of Fit, % AE ₂ 100 99.9	99.6	99.3		
	AE_3	100	100	99.7	99.8

Evaluation of the prepared calcium complex greases from aromatic extracts

Seven samples of calcium complex greases were prepared as described in the experimental section. Three prepared samples based on individual aromatic extracts (G_1 , G_2 and G_3) and the other four samples based on mixed aromatic extracts (G_4 , G_5 , G_6 and G_7) shown in Tables (3 and 4) respectively. Results show that properties (oil separation, oxidation stability, total acid number, apparent viscosity, mechanical properties and dropping point) of the blended calcium complex grease based on mixed aromatic extracts are more efficient than those obtained by individual ones. Particularly, the G_6 type which contains a mixture of 40% of each AE₂ and AE₃ is the better formulated calcium complex grease. This is certainly attributed to the type of aromatic extracts (AE₂ and AE₃) which have a great compatibility with soap texture resulting in improving the grease backbone as well as the thermal and mechanical stabilities.

Property			Grease Typ	Test Method	
		G1	G ₂	G ₃	Test Method
	AE ₁	80			
	AE ₂		80		
	AE ₃			80	
Grease Constituents, %	Soybean soap stock	17-18	17-18	17-18	
	Calcium hydroxide	2-3	2-3	2-3	
	Equimolar ratio:				
	Benzoic acid/ Calcium	0.1-0.15	0.1-0.15	0.1-0.15	
	acetate				
Penetration,	Un-worked	277	275	272	
mm x 10	Worked, 60 strokes	283	278	274	ASTM D 217
Dropping Poin	t, °C	208	212	215	ASTM D 566
Copper Corros	ion, 3h/100 °C	Ia	Ia	Ia	ASTM D 4048
Oxidation Stat	Oxidation Stability @ 96h, pressure		3.3	3.3	ASTM D 942
drop, psi		3.2	5.5	5.5	N31W1 D 342
Intensity of (C=O) group @ 96h		1.81	1.83	1.83	ASTM D 942
Intensity of (OH) group @ 96h		1.43	1.44	1.44	ASTM D 942
Alkalinity, wt%		0.40	0.40	0.41	ASTM D 664
Total acid number, mg KOH⁄gm@96h		0.852	0.911	1.185	ASTM D 664
Oil Separation, wt%		2.3	2.1	1.9	ASTM D 1724
Grease Code a	Grease Code according to:				
	NLGI	2	2	2	
	Egyptian standard	LB	LB	LB	
Apparent Visc	osity, cP @ 90 °C	14755	17155	22001	ASTM D 189

Table 3: Physicochemical properties of the prepared calcium complex greases based on the individual aromatic extracts

	Durante		Grease Type				
	Property	G ₄	G ₅	G ₆	G ₇	Test Method	
	AE ₁	40	40		30		
	AE ₂	40		40	30		
	AE ₃		40	40	20		
Grease	Soybean soap stock	17-18	17-18	17-18	17-18		
Constituents	Calcium hydroxide	2-3	2-3	2-3	2-3		
%	Equimolar ratio: Benzoic acid/ Calcium acetate	0.1-0.15	0.1-0.15	0.1-0.15	0.1-0.15		
Penetration	Un-worked	274	273	271	272.5	ASTM D 217	
mm x 10	Worked, 60 strokes	277	276	272	275	A31M D 217	
Dropping Poir	nt, ⁰C	210	211	216	213	ASTM D 566	
Copper Corros	sion, 3h/100 °C	Ia	Ia	Ia	Ia	ASTM D 4048	
Oxidation Stability @ 96h, pressure drop, psi		3.4	3.4	3.5	3.3	ASTM D 942	
Intensity of (C=O) group @ 96h		1.81	1.80	1.81	1.81	ASTM D 942	
Intensity of (OH) group @ 96h		1.42	1.41	1.40	1.43	ASTM D 942	
Alkalinity, wt%		0.41	0.40	0.42	0.41	ASTM D 664	
Total acid number, mg KOH⁄gm @96h		0.942	0.984	1.14	1.06	ASTM D 664	
Oil Separation, wt%		2.2	2.1	1.8	2.0	ASTM D 1724	
Grease Code a	Grease Code according to:						
	NLGI	2	2	2	2		
	Egyptian Standard	LB	LB	LB	LB		
Apparent Visc	osity, cP @ 90°C	16631	20201	22555	21201	ASTM D 189	

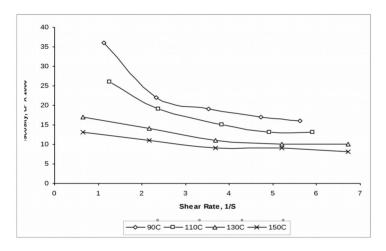
Table 4: Physicochemical properties of the prepared calcium complex greases based on the mixed aromatic extracts

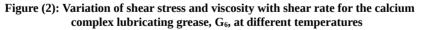
Rheological properties of the prepared calcium complex greases

The rheological properties (viscosity, shear stress and shear rate) of the synthesized greases G_1 , G_2 , G_3 , G_4 , G_5 , G_6 and G_7 are studied at 90, 110, 130 and 150°C. A linear relationship between shear stress and shear rate for all samples at different temperatures is observed. Investigation of apparent viscosity-shear rate relationship at the same previous temperatures for all samples of greases displays two distinct flow regions. The first region at low shear rate from 0.5 to $2.0s^{-1}$ reveals that the apparent viscosities decrease with increasing temperature. This indicates that the rheological flow (deformation) of the studied grease is temperature dependent. But the flow curves at high shear rates 2.5 to 7.0 s⁻¹ show steady portion in the second region. This implies that all grease samples exhibit independence of temperature after shear rate of $2.5s^{-1}$. It can be also seen that the apparent viscosities of these greases decrease in the following order: $G_6 > G_3 > G_7 > G_2 > G_4 > G_1$ at all

STUDY AND EVALUATION OF AROMATIC EXTRACTS ... 387 the investigated temperatures. Results of the dependence both shear stress and apparent viscosity on shear rate for (G_6) are shown in shows Figure (2).

It has been found that the rheological properties of all lubricating greases correlate well with the mathematical model of Herschel-Bulkley^(11, 15) (Table5). Results show that consistency index values obtained by Herschel-Bulkley decrease by increasing temperature while the reverse behavior is obtained in case of flow behaviour index. The sequence indicates that all grease samples under study exhibit non-Newtonian flows.


Property	emp.	90°C	110°C	130°C	150°C
Flopenty		30 C	110 C	150 C	130 (
	G1	15798	11278	7865	3780
	G ₂	19247	15357	9452	4351
	G ₃	24371	18425	11298	6873
	G 4	17494	13854	7582	4128
Consistency Index, cP	G 5	22683	14982	9674	6247
	G ₆	24185	18795	11583	7186
	G ₇	23726	15547	10864	6457
	G1	84.5	54.2	39.7	26.4
Yield Stress, D/cm ²	G ₂	88.7	57.5	43.1	31.2
	G ₃	92.6	61.8	46.5	37.8
	G ₄	86.1	55.8	41.6	27.8
	G 5	87.2	56.6	44.2	29.6
	G ₆	91.3	60.4	45.7	35.7
	G ₇	90.7	58.8	44.9	36.2
	G1	0.47	0.61	0.77	0.91
	G ₂	0.43	0.57	0.68	0.84
	G ₃	0.38	0.51	0.64	0.72
	G 4	0.45	0.59	0.66	0.86
Flow Index	G 5	0.42	0.56	0.65	0.83
	G ₆	0.41	0.55	0.64	0.79
	G ₇	0.44	0.57	0.67	0.81
	î	· · · · ·	100	100	100
	~		99.9	100	99.9
~			99.7	99.8	99.8
0			99.9	100	100
	~	< compared by the second s	99.9	100	100
	×		99.8	99.8	99.9
			99.9	99.9	100


1600 1400 1200

1000 800 600

כווכססי הורווי

Table 5: Viscoelastic parameters for prepared greases based on aromatic extracts at different temperatures using Herschel-Bulkley Model

Acknowledgment

The authors would like to thank late: Dr. Samir El-Sayed Mohamed, Associate Prof. of Petroleum Chemistry Egyptian Petroleum Research Institute (EPRI). They wish Allah gives him mercies and good deeds.

References

 Boner, G.J.; Manufacture and Application of Lubricating greases, Robert E. Krieger Co., New York, (1971).

- M. Erlish; (ed.) NLGI lubricating Grease Guide, National lubricating Grease Institute, (1984).
- 3. ATANU A.; SEVIM Z. E.; and JOSEPH M. P., J. Agric. Food Chem., 52, 6456 (2004).
- 4. Lian, Y.; and Xue Q.; Zhang X.; and Wang H., J. Lubr. Sci., 7, 261 (1995).
- 5. Vinogradov, G.V., Rheological and thermo-physical properties of greases, Gardon and Breagh Science Publications, (1989).
- 6. Earle, C. E.; US Patents 2,274,673, (1942)
- 7. Fraser, H. M.; US Patent 2,397,956, (1946).
- El-Adly, R. A.; Elham M. Y.; and Abd El-Ghaffar M. A., J. Pigment and Resin Tech., 33, 6, (2004).
- 9. Hurd, P.W.; Chemistry of Castor Oil and its Derivatives, NLGI Spokesman, 60, 14-23 (1996).
- Schumann, K.; Siekmann, K., Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, Vol. A 24, 247-266, (1993).
- 11. Aly ,A.M. , "Study and evaluation of the aromatic extracts as fluids for lubricating greases", PhD. Thesis, Al Azhar University, (2010).
- 12.El-Adly, R.A.; Moustafa, Y.M.; and Omar, A.M., J. Pigment and Resin Technology, 26, 4, (1997).
- El-Adly, R.A.; Youssef, E.A.M.; and Abd El-Ghaffar, M.A., paper submitted at the 16th Annual Conference "Corrosion Problems in Industry", Hurghada, Egypt, 9-11 Dec. (1997).
- 14. El-Adly ,R.A., J. Synthetic Lubrication, 16, 4 (1999).
- 15. Radulescu A.V.; Radulescu I., Mechanika, 3, 59, (2006).