Al-Azhar Bull. Sci. Vol. 22, No. 2 (Dec.): pp. 1-15, 2011.

# METAL COMPLEXES OF NEW PYRIMIDINE AZODYE LIGANDS SYNTHESIS, SPECTRAL STUDIES, THERMAL ANALYSIS, X-RAY DIFFRACTION AND USES IN INK SYNTHESIS.

ALI. M. HASSAN, A.M.NASSAR, Y.ABO ZAID, N.ABD EL-RAHMAN, M.ABO ALI and T.M.KEHELA

Chemistry Department, Faculty of Science Al-Azhar University

# Abstract

Novel azodye ligands 2-Amino-3- (4-chloro phenylazo )-7-(4-fluorophenyl)-5-(thiophen-2-yl)-6,7-dihydropyrazolo (1,5-a) pyrimidine ( $L_1$ ) and 2-Amino-3- (4-chlorophenylazo )-5,7-Di(thiophen-2-yl)-6,7-dihydropyrazolo(1,5-a) pyrimidine ( $L_2$ ) and their complexes with Fe (III), Co (II), Ni (II) and Cu (II) have been synthesized. The stereochemistry and the mode of bonding of the complexes were achieved based on elemental analysis, IR, UV-Vis, 1HNMR, MS and ESR spectroscopy as well as (TGA). Octahedral structure proposed for geometry of the chelates based on their electronic spectra and magnetic susceptibility. The metal complexes show no bleeding and tinting strength properties for ink synthesis.

# 1. Introduction

Azo-compounds play an important role in analytical chemistry as metal chromogenic agents [1-4], in industrial dyes [5-6], acid–base indicators and histological stains [7]. Also some azo-compounds possess excellent optical memory and photoelectric properties [8-9]. Various studies have been done on the arylazoheterocycles and their metal complexes [10-20]. The pyrimidine compounds are one of the important classes, so several studies were reported on the structural chemistry of the pyrimidine compounds and their metal complexes [21-25]. In view of these finding and in continuation to our work on the spectral behavior of azodyes and their metal complexes [26-29], this article represents an investigation of the spectral behaviors of amino azodye (L) containing the pyrimidine moiety.

#### 2. Experimental

# 2.1. Materials:

All the materials were of commercial reagent grade. The 2- acetylthiophene and other compounds for prepared  $L_1$  and  $L_2$  were purified by standard procedures .The purity of them was determined by thin layer chromatography (TLC) and gas chromatography.

# 2.2. Synthesis of Ligands:

**2.2.1Synthesis of**( $L_1$ ): (2-Amino-3- (4-chloro phenylazo )-7-(4-fluorophenyl)-5- (thiophen-2-yl)-6,7-dihydropyrazolo (1,5-a)pyrimidine).

2-Acetylthiophene (20 mmol) added to 4-fluorobenzaldehyde (20 mmol) in a porcelain mortar, 200 mg of NaOH was added and the mixture grounded by a pestle for 5 – 20 minutes. the mixture turned to pink color then we add distilled water and filter the suspension then the product was crystallized from 95 % ethanol to produce (E)-3-(4-fluorophenyl )-1-(thiophen-2-yl)prop-2-en-1-one. Into a 10 ml microwave vial was added ( 20 mmol ) (E)-3-(4-fluorophenyl )-1-(thiophen-2-yl)prop-2-en-1-one to ( 20 mmol ) 4-(4-chlorophenylazo)-3,5-diaminopyrazole and a few drops of catalytic amount of pyridine, the mixture was then subjected to microwave irradiation for 3.5 minutes.After cooling at room temperature,the product was crystallized from ethanol/DMF ( 1 : 1 ) to give 2-Amino-3- (4-chloro phenylazo )-7- (4-fluorophenyl)-5-(thiophen-2-yl)-6,7-dihydropyrazolo (1,5-a)pyrimidine orange color m.p (236 °C) , %C (found = 60.18 , calc. = 58.60 ) , %H ( found = 3.64 , calc. = 3.58) , %N ( found =17.95 , calc.= 18.64 ), %S ( found = 6.9 , calc.= 7.11 ) (C<sub>22</sub>H<sub>16</sub>CIFN<sub>6</sub>S, MWt = 450.92).

**2.2.2Synthesis of (L<sub>2</sub>): (**2-Amino-3- (4-chlorophenylazo )-5,7-Di(thiophen-2-yl)-6,7-dihydropyrazolo(1,5-a)pyrimidine):

2-Acetylthiophene (20 mmol) added to thiophene-2-carboxaldehyde (20 mmol) in a porcelain mortar, 200 mg of NaOH was added and the mixture grounded by a pestle for 5 – 20 minutes. the mixture turned to pink color then we add distilled water and filter the suspension then the product was crystallized from 95 % ethanol to produce (E)-1,3-Di(thiophene-2-yl)prop-2-en-1-one. Into a 10 ml microwave vial was added ( 20 mmol ) (E)-1,3-Di(thiophene-2-yl)prop-2-en-1-one to ( 20 mmol ) 4-(4-chlorophenylazo)-3,5-diaminopyrazole and a few drops of catalytic amount of pyridine the mixture was then subjected to microwave irradiation for 8 minutes after cooling at room temperature, the product was crystallized from ethanol/DMF (1 : 1) to give 2-Amino-3-(4-chlorophenylazo)-5,7-Di(thiophen-2-yl)-6,7-dihydropyrazolo(1,5-a)pyrimidine brown color m.p ( 208  $^{0}$ C ), %C ( found= 54.80 , calc. = 54.72 ) , %H ( found = 3.51 , calc. = 3.44 ) , %N ( found =19.09 , calc.= 19.15 ), %S ( found = 14.49 , calc.= 14.61 ) (C<sub>20</sub>H<sub>15</sub>ClN<sub>6</sub>S<sub>2</sub> , MWt = 438.96).

# 2.3 Synthesis of solid metal complexes:

A warm solution of Nickel acetate .4H<sub>2</sub>O (49 mg, 0.2 mmol) in 20 ml ethanol dissolved after heating and added drop wise to warm solution of L<sub>1</sub>(90 mg, 0.2 mmol) in 20 ml ethanol with contineous stirring and reflux for 2 hours observed change in color from orange to black. The black solid formed filtrated at room temperature m.p( over 300  $^{0}$ C), %C ( calc.= 52.52 , found= 50.18), %H ( calc. = 3.64 , found = 3.6 ) , %N ( calc. = 15.31 , found =15.9 ) ,%S ( calc. = 5.83 , found 6.9 ) , %M ( calc.=5.35 , found = 4.7 ). (C<sub>48</sub>H<sub>40</sub>Cl<sub>2</sub>O<sub>5</sub>F<sub>2</sub>N<sub>12</sub>S<sub>2</sub> Ni , MWt = 1096.63)

#### 2.3.2 Synthesis of Cu (II) complex of L<sub>1</sub>:

A warm solution of Cupric acetate  $.H_2O$  (39 mg, 0.2 mmol) in 20 ml ethanol dissolved after heating and added drop wise to warm solution of  $L_1(90 \text{ mg}, 0.2 \text{ mmol})$  in 20 ml ethanol with continues stirring and reflux for 2 hours observed change in color from brown to dark brown . The dark brown solid formed filtrated at room temperature m.p( over 300  $^{0}C$  ), %C ( calc.= 52.34 , found= 49.25), %H ( calc. = 3.66 , found = 2.96 ) , %N ( calc. = 15.26 , found = 14.71 ) ,%S ( calc. = 5.82, found = 6.44 ) , %M ( calc.=5.77,found = 6.2 ) (C<sub>48</sub>H<sub>40</sub>Cl<sub>2</sub>O<sub>5</sub>F<sub>2</sub>N<sub>12</sub>S<sub>2</sub> Cu, MWt = 1101.49).

# 2.3.3 Synthesis of Co (II) complex of L<sub>1</sub>:

A warm solution of cobalt acetate .4H<sub>2</sub>O (49 mg, 0.2 mmol) in 20 ml ethanol dissolved after heating and added drop wise to warm solution of  $L_1(90 \text{ mg}, 0.2 \text{ mmol})$  in 20 ml ethanol with continues stirring and reflux for 2 hours observed change in color from brown to dark brown .

The dark brown solid formed filtrated at room temperature m.p( over 300  $^{0}$ C ), %C ( calc.= 52.51 , found= 51.63), %H ( calc. = 3.64 , found = 4.39 ) , %N ( calc. = 15.31, found =17.64 ) ,%S ( calc. = 5.83, found = 6.75 ) , %M ( calc.=5.37, found = 5.0 ) (C<sub>48</sub>H<sub>40</sub>Cl<sub>2</sub>O<sub>5</sub>F<sub>2</sub>N<sub>12</sub>S<sub>2</sub> Co, MWt = 1096.87) .

# 2.3.4 Synthesis of Ni (II) complex of L<sub>2</sub>:

A warm solution of Nickel acetate  $.4H_2O$  (62 mg, 0.25 mmol) in 20 ml ethanol dissolved after heating and added drop wise to warm solution of L<sub>2</sub> (109 mg, 0.25 mmol) in 20 ml ethanol with continoues stirring and reflux for 2 hours observed change in color from brown to dark brown .

The dark brown solid formed filtrated at room temperature m.p( over 300  $^{0}$ C ), %C ( calc.= 49.27 , found= 49.86 ), %H ( calc. = 3.57 , found = 4.47 ) , %N ( calc. = 15.67, found =15.8 ) ,%S ( calc. = 11.96 , found = 14.5 ) , %M ( calc.=5.47 , found = 6.4 ) (C<sub>44</sub>H<sub>38</sub>Cl<sub>2</sub>N<sub>12</sub>S<sub>4</sub>O<sub>5</sub>Ni , MWt = 1072.71)

# 2.3.5 Synthesis of Co (II) complex of L<sub>2</sub>:

A warm solution of cobalt acetate  $.4H_2O$  (62 mg, 0.25 mmol) in 20 ml ethanol dissolved after heating and added drop wise to warm solution of L<sub>2</sub> (109 mg, 0.25 mmol) in 20 ml ethanol with continues stirring and reflux for 2 hours observed change in color from brown to dark brown .

The dark brown solid formed filtrated at room temperature m.p( over 300  $^{0}$ C ), %C ( calc.= 49.25 , found= 47.06), %H ( calc. = 3.57 , found = 3.09 ) , %N ( calc. = 15.67 , found =15.37 ) ,%S ( calc. = 11.95, found = 10.95 ) , %M ( calc.=5.49, found = 6.75) (C<sub>44</sub>H<sub>38</sub>O<sub>5</sub>Cl<sub>2</sub>N<sub>12</sub>S<sub>4</sub>Co, MWt = 1072.95)

# 2.3.6 Synthesis of Fe (III) complex of L<sub>2</sub>:

A warm solution of Ferrous Nitrate  $.9H_2O$  (101 mg, 0.25 mmol) in 20 ml ethanol dissolved after heating and added drop wise to warm solution of  $L_2$  (109 mg, 0.25 mmol) in 20 ml ethanol with continues stirring and reflux for 2 hours observed change in color from brown to dark brown. The dark brown solid formed filtrated at room temperature m.p( over 300  $^{0}C$  ), %C ( calc.= 42.19 , found= 43.7 ), %H ( calc. = 2.81 , found = 3.4 ) , %N ( calc. = 18.45 , found = 17.37 ) ,%S ( calc. = 11.25 , found = 12.39 ) , %M ( calc.=4.90 , found = 5.4 )(C<sub>40</sub>H<sub>32</sub>O<sub>10</sub>Cl<sub>2</sub>N<sub>15</sub>S<sub>4</sub>Fe, MWt = 1137.7).



 $L_1$ C<sub>22</sub>H<sub>16</sub>ClFN<sub>6</sub>S, MWt = 450.92

 $L_2$ C<sub>20</sub>H<sub>15</sub>ClN<sub>6</sub>S<sub>2</sub> MWt = 438.96

## 2.4 Instruments

# 2.4.1 Electronic Spectra:

The absorbance of solutions were measured by UV/Visible in range (190 - 900) nm using Shimadzu 1600 series spectrophotometer at the Faculty of Science Cairo university in Giza, Egypt.

# 2.4.2 IR spectra:

IR spectra of ligands and metal complexes were recorded in the solid state by Perkin Elmer 3600 and 1650 ratio recording infrared spectrophotometer. IR spectrometer using potassium bromide disc technique at micro analytical center of Faculty of Science, Cairo University, Giza, Egypt.

## 2.4.3Thermal Analysis:

Thermal analysis measurements were carried out on Shimadzu TGA in Micro analytical center, Faculty of Science, Cairo University, Giza, Egypt.

# 2.4.4 <sup>1</sup>H NMR Spectra:

The proton NMR spectra recorded in DMSO.d<sub>6</sub> on varian F.T-300 MHz spectrometer using TMS as internal standard at Cairo University, Giza, Egypt.

#### 2.4.5 Mass Spectra

Mass spectra were recorded at Mass spectroscopy using direct inlet unit (DI-50) of SHIMADZU GC/MS – QP5050A at the Regional center for Mycology &

Biotechnology; Al-Azhar University.

# 2.4.6 Quantitative Analysis of Metal Cations :

All metal cations were determined volumetrically using standard EDTA [30].

## 2.4.7 Micro analytical analysis:

Carbon, hydrogen, nitrogen and sulpher analysis have been carried out in the Micro analytical center of Faculty of Science, Cairo University, Giza, Egypt.

# 2.4.8 Electron paramagnetic resonance (ESR) :

The ESR recorded on EMX (x-band), Burker, Germany at the national center for research and radiation technology in Atomic Energy Authority, Egypt .

# 2.4.9 X-ray diffraction:

The samples were examined using a Philips analytical x-ray diffraction system, type PW 3710 with Cu tube anode in physics department at the Faculty of Science at Al- Azhar University.

# 2.4.10 Magnetic Susceptibility:

The magnetic susceptibility of prepared complexes was measured in physics department, Faculty of Science Cairo University, Giza, Egypt.

# 2.5 Materials of bleeding and tinting strength tests:

Polyamide resin, petroleum ether, glass plate and ink knives.

# 3.Results and discussion:

#### 3.1 Spectral characterization :

#### 3.1.1 IR spectra:

The infrared spectra of the two azodye ligands and their metal complexes obtained as KBr discs in the region of 4000 - 400 cm<sup>-1</sup> and given in the table (1).

The v(N=N) of frequency of the ligand appears at  $1471(L_1) \& 1465(L_2) \text{ cm}^{-1}$ , negative shift of the spectra of the complexes take place suggests coordination of one nitrogen of azo group in complexation with metal ions[31]. The v(C=N) observed at 1610 cm<sup>-1</sup> for  $(L_1)$  & $(L_2)$  shift to a lower value occurred in the complexes of L<sub>1</sub> due to the participation of N atom of azo mithine in chelation [31], while the spectra of the complexes of  $L_2$  show the same position of C=N ~1610 cm<sup>-1</sup> indicate that the azomethine nitrogen did not take part in complexation with metal ions. A broad bands in the 3400 - 3550 cm<sup>-1</sup> appeared in the spectra of the complexes attributed to v(oH) of crystalline water molecules. The v(C-S) at (858& 829) cm<sup>-1</sup> for  $L_1 \& L_2$  respectively this band shift to a lower values in complexes indicating ( S) sharing in complex formation [32-34]. The  $v_{ass.}$  band of NH<sub>2</sub> group appears in the spectra of the complexes as broad due to coupling with vOH of crystalline water molecules which absorbed in the same position on the spectra, confirming this the appearance of new bands in the region 1472 - 1499 cm<sup>-1</sup> in the complexes which not found in the free ligands which due to  $\delta H_2O$ . The far infrared region shows bands in the range (501 - 552) cm<sup>-1</sup> assigned to v(M-N) [35] and the bands in (409 -471) cm<sup>-1</sup> region assignable to v(M-S) [36].

| Comp<br>No.       | vOH  | v C-H<br>Ar | v C-H<br>Al. | v C=N | v N=N | δH2O | v C-S | vM-N | vM-S |
|-------------------|------|-------------|--------------|-------|-------|------|-------|------|------|
| T                 |      | 3165        | 3101         | 1610  | 1471  |      | 858   |      |      |
| $\mathbf{L}_1$    |      | W           | v.w          | v.s   | S     |      | m     |      |      |
| <b>a r</b>        | 3431 | 2923        | 2852         | 1605  | 1468  | 1478 | 833   | 552  | 413  |
| C0-L1             | Br   | М           | m            | s     | W     | w    | m     | v.w  | v.w  |
| NET               | 3446 | 2923        | 2851         | 1606  | 1458  | 1472 | 830   | 521  | 409  |
| NIL <sub>1</sub>  | Br   | v.w         | v.w          | v.s   | m     | w    | m     | W    | v.w  |
| с I               | 3566 | 2975        | 2924         | 1603  | 1458  | 1499 | 827   | 501  | 431  |
| Cu-L <sub>1</sub> | Br   | W           | w            | v.s   | S     | s    | S     | М    | W    |
| ×                 |      | 3156        | 3089         | 1610  | 1465  |      | 829   |      |      |
| $L_2$             |      | W           | w            | v.s   | М     |      | m     |      |      |
| E-I 2             | 3443 | 3077        | 2921         | 1611  | 1461  | 1480 | 807   | 526  | 418  |
| reL2              | Br   | W           | m            | v.s   | S     | w    | М     | М    | W    |
| CoL <sub>2</sub>  | 3452 | 2934        | 2861         | 1610  | 1455  | 1489 | 807   | 527  | 418  |
|                   | Br   | W           | w            | s     | m     | S    | m     | М    | W    |
| N: T              | 3419 | 2952        | 2843         | 1612  | 1460  | 1495 | 806   | 520  | 419  |
| 1 <b>NI-L</b> 2   | Br   | W           | w            | v.s   | s     | w    | m     | М    | S    |

Table (1): IR spectral data of ligands and metal complexes of  $L_1$  and  $L_2$ :

## 3.1.2 UV-VIS spectra:

The uv-vis spectral behaviors of azo-metal chelates were investigated in DMF given in table (2). The spectra show a strong absorption maximum at range 200-320 nm and 350 -400 nm due to  $\pi - \pi^*$  and n-  $\pi^*$  respectively.

The azo metal chelates of CuL<sub>1</sub> reveals one broad asymmetric ligand field band at 741and 381 nm assignable to  ${}^{2}E_{g} \rightarrow {}^{2}T_{2g}$  transition and charge transfer respectively indicated that distorted octahedral geometry [37] the observed magnetic moment 2.01  $\mu_{B}$  [38].

The azo nickel chelates reveals three bands at 739, 555,391 nm for NiL<sub>1</sub>,730, 458, 389 nm for Ni L<sub>2</sub> assignable to  ${}^{3}A_{2g}(F) \rightarrow {}^{3}T_{2g}(F) \rightarrow {}^{3}T_{1g}(F)$  and  ${}^{3}T_{1g}(P)$  transitions respectively. This is in accordance with the earlier reported values for the octahedral Ni<sup>+2</sup> complexes [35] the magnetic moment  $3.14 - 3.16\mu_B$  confirms its proposed geometry [39]. The azo cobalt chelates shows three d-d transitions at 725, 455, 375 nm for CoL<sub>1</sub>, 730, 460, 383m nm for Co L<sub>2</sub> attributed to  ${}^{4}T_{1g}(F) \rightarrow {}^{4}T_{2g}(F) \rightarrow {}^{4}A_{2g}(F)$  and  ${}^{4}T_{1g}(P)$ , respectively these transitions suggest an octahedral symmetry around the metal ion [35].The magnetic moment 4.68 – 4.70  $\mu_B$  [39] The azo iron chelates shows three d-d transition at 735, 450,396 nm for Fe(III) complex of L<sub>2</sub> attributed to  ${}^{6}A_{1} \rightarrow {}^{4}T_{1}(G)$ ,  ${}^{6}A_{1} \rightarrow {}^{4}T_{2}(G)$ ,  ${}^{6}A_{1} \rightarrow {}^{4}E(G)$  transitions respectively . The spectra suggest distorted octahedral geometry [40, 41, 42] the magnetic moment 5.84  $\mu_B$  [39].

| Comp.                              | $n \rightarrow \pi^*$ | $\pi \rightarrow \pi^*$ | d - d           | $\mu_{eff.}$ |
|------------------------------------|-----------------------|-------------------------|-----------------|--------------|
| Cu ( L <sub>1</sub> ) <sub>2</sub> | 445                   | 275                     | 741 , 520, 381  | 2.01         |
| Ni( L <sub>1</sub> ) <sub>2</sub>  | 383                   | 280                     | 739 , 555 , 391 | 3.14         |
| Co ( L <sub>1</sub> ) <sub>2</sub> | 362                   | 250                     | 725 , 455, 375  | 4.68         |
| Ni ( L <sub>2</sub> ) <sub>2</sub> | 357                   | 277                     | 730 , 458 , 389 | 3.16         |
| Fe ( L <sub>2</sub> ) <sub>2</sub> | 378                   | 273                     | 735 , 450, 396  | 5.84         |
| Co( L <sub>2</sub> ) <sub>2</sub>  | 369                   | 278                     | 730,460,383     | 4.70         |

Table (2) UV-Vis data for azo metal chelates in DMF:

# 3.1.3 Mass spectra of solid metal complexes:

The formation of binuclear Co(II) and Cu(II) complexes further evidenced by mass spectral data. The proposed molecular formula of these complexes was confirmed by the mass spectral analysis by comparing its molecular formula weight with m/e values .The molecular ion peaks of ligands and its binuclear Co (II) and Cu (II) complexes shows different m/e values with different intensities. The mass spectra contain molecular ion peaks at m/e ( $M^+$ ) 450 ( $L_1$ ) but the molecular ion peak of its copper complex did not observed due to its high molecular weight than the scale of the mass device and it gives base peak at m/e =149 for C<sub>6</sub>H<sub>7</sub>N<sub>5</sub> and metal peak at m/e = 63.8 with different peaks m/e :

396,322, 353,322,243,225,161,149,136,121,112,96,84,78,66.....

The mass spectra of  $CoL_2$  complex also gives base peak at m/e=161 for  $C_6H_5N_6$ and metal peak at m/e= 61 with different peaks

m/e: 438,355,321,245,231,222,161,163,148,121,112,110,96,98,84,78,70,67,66,..... without observing its molecular ion peak due to its high molecular weight than the scale of the mass device. These data is in good agreement with the respective molecular formula.

#### 3.1.4. ESR Spectra :

The ESR (EPR) spectra of Cu (II) of L<sub>1</sub> complex were recorded on X-Band at frequency (9.7) GHz under the magnetic field strength (3480) G, recorded at room temperature. The spectra of the complex exhibit a single anisotropic broad signal. From fig (1). This anisotropic spectrum of ESR Cu (II) shows a  $g_{\perp} > g_{11}$  with the following values  $g_{11} = 2.06866$  and  $g_{\perp} = 2.10975$  in which  $g_{\perp} > g_{11} > 2.0023$  calculated for Cu (II) complex, suggest that the unpaired electron is localized in  $d_x^2$ .  $y^2$  orbital  $g_{\perp} > g_{11}$ . These values indicate that the ground state of Cu (II) is predominately  $d_x^2$ .  $y^2$ , which suppose a distorted octahedral. The observed  $g_{11}$ 

value for Cu (II) complex is less than 2.3, thus, indicating the bonds between the organic ligand and copper ion have a covalent character more than the ionic character [43].

## EPR intensity



Magnetic field (G)

Fig (1) ESR spectra of CuL<sub>1</sub>

# 3.1.5.1 <sup>1</sup>HNMR (Dmso-d<sub>6</sub>) of L<sub>1:</sub>

The <sup>1</sup>HNMR signals of the azodye ligand  $L_1$  are  $\delta 3.99$  (dd, 1H,J=4.7,9.8 HZ), 4.18 (dd, 1H,J=4.8, 11.8 HZ), 5.58 (dd, 1H, J=9.8, 11.8 HZ), 6.36 (br's, 2H, NH<sub>2</sub>-exchangable),7.15-7.92(m, 11H, ArH's and thiophene protons).

# 3.1.5.2 <sup>1</sup>HNMR (Dmso-d<sub>6</sub>) of L<sub>2</sub>:

The <sup>1</sup> HNMR signals of the azodye ligand  $L_2$  are  $\delta 3.8$  (dd, 1H,J=4.7,9.8 HZ), 4.30 (dd, 1H,J=4.8, 11.8 HZ), 5.60 (dd, 1H, J=9.8, 11.8 HZ), 5.9 (br's, 2H, NH<sub>2</sub>-exchangable), 7.0 -7.8 (m, 11H, ArH's and thiophene protons).

# 3.2 Thermal analysis of metal complexes:

#### 3.2.1 TGA of CU-L<sub>1</sub>:

TGA curve of Cu-L<sub>1</sub>, table (3) refers to four steps of mass losses at temperature range 25 – 800 °C. These stages involved mass loss of 55.154 % (calculated 54.8 %) for first, second, third and four steps of decomposition respectively. These due to successive loss of  $C_{26}H_{22}N_6O_5SF$  molecules as gases at given temperature range

# 3.2.2 TGA of Ni-L<sub>2:</sub>

The thermogram of Ni (II) chelats of ligand  $L_2$ , table (3) Show four decomposition steps within temperature range 25 - 800 <sup>o</sup>C.

The temperature range 25- 270  $^{0}$ C for first and second steps corresponding to losses of one water molecule and one acetate group with mass loss 8.586 % (calcd 7.1 %) For temperature range 270 - 800  $^{0}$ C the third and fourth steps of decomposition corresponding to loss of C<sub>28</sub>H<sub>24</sub>N<sub>6</sub>S<sub>2</sub>Cl<sub>2</sub>O<sub>2</sub> with mass loss 56.087 % (calcd 55.83%) overall weight loss 64.673% (calcd 62.93 %).

#### 3.2.3 TGA of Fe-L<sub>2:</sub>

The thermo gram of Fe (III) chelate of ligand  $L_2$ , table (3) Show three decomposition steps with temperature range 25 - 800 <sup>o</sup>C.

The temperature range 25 - 280 <sup>o</sup>C for the first step corresponding to loss of one molecule of HNO<sub>3</sub> and one H<sub>2</sub>O molecule with mass loss 4.921 % (calcd 6.9 %).

The temperature range 280 - 800 <sup>0</sup>C corresponding to loss of organic molecule of  $C_{40}H_{29}N_{14}S_2Cl_2O_8$  with mass loss 89.564 % (calcd 85.077 %) leaving Fe<sub>2</sub>O<sub>3</sub> as residue overall weight loss 94.485 % (calcd 91.977%).

| Com No.           | TG Range | Mass loss<br>Found/calcd % | Assignment of loss                                                                                  | Residue                        |
|-------------------|----------|----------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|
| Cu-L <sub>1</sub> | 25→180   | 1.7/ 1.7                   | Loss of H <sub>2</sub> O                                                                            |                                |
|                   | 180→410  | 14.245/ 13.76              | Loss of C <sub>4</sub> H <sub>8</sub> O <sub>4</sub>                                                |                                |
|                   | 410→580  | 17.209/ 17.2               | Loss of C <sub>12</sub> H <sub>4</sub> F                                                            |                                |
|                   | 580→800  | 22/ 22.15                  | Loss of C10H8N6S                                                                                    | C22H18N6SFCl2Cu                |
| Ni-L <sub>2</sub> | 25→160   | 1.241/ 1.6                 | Loss of H <sub>2</sub> O                                                                            |                                |
|                   | 160→270  | 7.345/ 5.5                 | Loss of C <sub>2</sub> H <sub>4</sub> O <sub>2</sub>                                                |                                |
|                   | 270→480  | 22.164/21.16               | Loss of $C_{10}H_{11}S_2O_2$                                                                        |                                |
|                   | 480→790  | 33.923/ 34.67              | Loss of C18H13N6Cl2                                                                                 | $C_{14}H_8N_6S_2Ni$            |
| Fe-L <sub>2</sub> | 25→280   | 4.921/ 6.9                 | Loss of HNO <sub>3</sub>                                                                            |                                |
|                   |          |                            | And H <sub>2</sub> O                                                                                |                                |
|                   | 280→415  | 24.586/22.677              | Loss of                                                                                             |                                |
|                   |          |                            | $H_9S_2N_4O_8$                                                                                      |                                |
|                   | 415→800  | 64.978/ 62.4               | $\begin{array}{c} \text{Loss of} \\ \text{C}_{40}\text{H}_{20}\text{N}_{10}\text{Cl}_2 \end{array}$ | Fe <sub>2</sub> O <sub>3</sub> |

Table (3) : thermal analysis of L<sub>1</sub> and L<sub>2</sub> complexes:



Complex (1)M= Co, X= acetate group, Y=0Complex (2)M = Ni, X= acetate group, Y=0Complex (3)M = Fe, X=Y= NO3

# 3.3 Bowder X-ray diffraction (XRD) analysis:

It was carried out to identify the phase of samples  $L_2$  reveals the crystalline state containing several different peaks. Fe (III),Co (II) and Ni (II) complexes of  $L_2$  reveals amorphous state .

# 4.0 Effect of synthesized complexes in ink synthesis :

Most azo-metal complex pigments, have only recently stimulated interest [44, 45] for their commercially interesting properties. It has for a long time maintained an important position as colorants for ink, textiles and paint synthesis there are a number of advantages to complexation. It imparts better weather fastness and light

fastness, bleeding and tinting strength properties which can be used in printing ink by using in printers as well as other areas of applications such as ink synthesis, metallic finishing in industries such as automotives finishing and can be used also in paints.

#### 4.1 Standard test methods for bleeding of pigment [46]:

These test methods cover procedures for determining the bleeding characteristics of dry complexes of  $L_1$  and  $L_2$  ( pigments ) by direct solvent extraction of the pigment and by over striping a film with a white coating and observing for the color migration from the base coat containing the pigment.

### Standard test method for bleeding of pigments :

1- Place 0.50 g of pigment in a 25-mL test tube and add 20-mL of reagent grade petroleum ether 60-80. Close with a stopper, shake well for 10 s, and let stand 15 min. Repeat the 10-s shake and let stand 45 min.

2- Filter through a glass funnel using double filter paper that has first been wet with petroleum ether and collect approximately 10 mL of filtrate. If the filtrate is cloudy, refilter to get a clear filtrate.

3- Hold the test tube containing the filtrate above a white background and look down through the filtrate for coloration caused by pigment bleed. Describe the degree or severity of bleed according to the following terminology:

None - No perceptible color (that no bleed).

Slight – A faint but distinct coloration.

Moderate - A pronounced but not severe coloration.

Severe – an intense coloration.

We found all complexes give no perceptible color (no bleeding) or slight bleeding as shown in table (4).

| Solvent               | Complexes                          | Bleeding |
|-----------------------|------------------------------------|----------|
| Petroleum ether 60-80 | Cu ( L <sub>1</sub> ) <sub>2</sub> | No       |
| Petroleum ether 60-80 | Ni( L <sub>1</sub> ) <sub>2</sub>  | Slight   |
| Petroleum ether 60-80 | Co ( L <sub>1</sub> ) <sub>2</sub> | Slight   |
| Petroleum ether 60-80 | Ni ( L <sub>2</sub> ) <sub>2</sub> | Slight   |
| Petroleum ether 60-80 | Fe ( L <sub>2</sub> ) <sub>2</sub> | No       |
| Petroleum ether 60-80 | Co( L <sub>2</sub> ) <sub>2</sub>  | Slight   |

Table (4) : The bleeding properties of L<sub>1</sub> and L<sub>2</sub> complexes:

# 4.2 Standard test method for relative tinting strength of paste-type ink dispersion [47]:

#### Tinting strength method by visual evaluation:

Using separate ink knives, gently stir Mix 0.1 gm of complexes of  $L_1$  and  $L_2$  with 0.5 gm of polyamide resin (the test tints).Place a small quantity of each tint, at one end of a small glass plate. Hold the drawdown knife at a low angle ( $5^0$  to  $15^0$  from horizontal) and using light pressure, draw down the tints in juxtaposition.

Immediately examine the masking degree of the background (from experience) of the drawdown under the standard light as shown in table (5).

| Complexes                          | Tinting strength |
|------------------------------------|------------------|
| Cu ( L <sub>1</sub> ) <sub>2</sub> | Moderate         |
| Ni( L <sub>1</sub> ) <sub>2</sub>  | Moderate         |
| Co ( L <sub>1</sub> ) <sub>2</sub> | High             |
| Ni ( L <sub>2</sub> ) <sub>2</sub> | Moderate         |
| Fe ( L <sub>2</sub> ) <sub>2</sub> | High             |
| $\operatorname{Co}(L_2)_2$         | High             |

Table (5): Tinting strength of L<sub>1</sub> and L<sub>2</sub> complexes:

# 4.3 Applications:

All  $L_1$  and  $L_2$  complexes can be used in the ink and paint manufactures.

## 5.0 Conclusions

The design of the complexes of the two new azodye ligands  $L_1$  and  $L_2$  have been demonstrated. The IR spectra of the complexes indicate that the azo-compounds coordinate to the divalent metal ions Co(II), Ni(II) and Cu(II) and trivalent Fe (III) through the NNS as tridentate ligand with octahedral geometry in  $L_1$  complexes and through the NS as bidentate ligand in  $L_2$  complexes with octahedral geometry also.All of the complexes of  $L_1$  contains one H<sub>2</sub>O crystalline water and two non coordinate acetate groups in the outer sphere. Complexes of  $L_2$  have one crystalline water molecule and two coordinated acetate groups in inner sphere while FeL<sub>2</sub> contains one crystalline water molecule and one non coordinated NO<sub>3</sub> molecule in outer sphere while two coordinated NO<sub>3</sub> in inner sphere.

The azodye complexes can be used in the ink and paint synthesis.

## References

- 1. A. Amin, Anal. Lett. 32 (1999) 1575.
- 2. S. Vicente, N. Maniasso, Z.F. Queiroz, E.A.G. Zagatto, Talanta 57 (2002), 475.
- 3. A.S. Amin, T.Y. Mohammed, A.A. Mousa, Spectrochim. Acta Part A 59, (2003) 2577.
- 4. A. Afkhami, M. Bahram, Spectrochim. Acta Part A 60 (2004) 181.
- 5. H. Bock, K.Wittle, M. Veit, N.Wiberg, J. Am. Chem. Soc. 98 (1976) 109.
- 6. K.M. Patel, V.H. Patel, M.P. Patel, R.G. Patel, Dyes Pigments 55 (2002) 53.
- S.A. Ibrahim, A.M. Hammam, A.M. Kamal El-Dean, A.A. Mohamed, N.N. Rageh, Can. J. Appl. Spectrosc. 38 (1993) 1.
- 8. M. Sefkow, H. Kaatz, Tetrahedron Lett. 40 (1999) 6561.
- 9. Z.F. Liu, O.K. Hashimoto, A. Fujishima, Nature 347 (1990) 658.
- 10. S.S. Kandil, F.I. Abdel-Hay, R.M. Issa, J. Therm. Anal. Calorim. 63 (2001), 173.
- G.G. Mohmamed, F.A. Nour El-Dien, N.E.A. El-Gamel, J. Therm. Anal. Calorim. 67 (2002) 135.
- G.G. Mohamed, M.A. Zayed, N.E.A. El-Gamel, Spectrochim. Acta Part A 58 (2002) 3167.
- 13. O.E. Sherif, H.M. Abdel-Fattah, M. Mel-Ajily, J. Therm. Anal. Calorim.74 (2003) 181.
- M. Badea, A. Emandi, D. Marinescu, E. Cristurean, R. Olar, A. Braileanu, P. Budrugeac, E. Segal, J. Therm. Anal. Calorim. 72 (2003) 525.
- 15. S.S. Kandil, G.B. El-Hefnawy, E.A. Bakr, Thermochim. Acta 414 (2004), 105.
- 16. M. Shien Yen, J. Jing Wang, Dyes Pigments 61 (2004) 243.
- 17. M. Shien Yen, J. Jing Wang, Dyes Pigments 62 (2004) 173.
- 18. M. Shien Yen, J. Jing Wang, Dyes Pigments 63 (2004) 1.
- 19. F. Karci, N. Ertan, Dyes Pigments 55 (2002) 99.
- 20. F. Karci, N. Ertan, Dyes Pigments 64 (2005) 243.
- 21. Z. Zaki, Spectrochim. Acta Part A 56 (2000) 1917.
- S. Senapoti, U.S. Ray, P.K. Santra, C. Sinha, A.M.Z. Slawin, J.D.Woollins, Polyhedron 21 (2002) 753.
- M.S. Masoud, E.A. Khalil, A.M. Hindawy, A.E. Ali, E.F.Mohamed, Spectrochim.Acta 60 (2004) 2807.
- 24. Y. WenHo, Dyes Pigments 64 (2005) 223.
- 25. P. Chen Tsai, L. Jing Wang, Dyes Pigments 64 (2005) 259.
- 26. K.Y. El-Baradie, R.M. Issa, M. Gaber, Indian J. Chem. 43 (2004) 1126.
- 27. A.M. Khedr, M. Gaber, R.M. Issa, H. Erten, Dyes Pigments 67 (2005) 117.

14

- 28. A.M. Khedr, M. Gaber, Spectrosc. Lett. 38 (2005) 431.
- 29. M. Gaber, M.M. Ayad, Y.S. Elsayed, Spectrochim. Acta 62 (2005) 694.
- (A.I.Vogel" Textbook of practical Inorganic Chemistry" 3<sup>rd</sup> end, Longman, London, (1978).
- 31. B.S.Garg, R.K.Sharma and E.Kundra, Transition Met.Chem., 30 (2005)552.
- 32. Lions F and Martin K V,J.Am. Chem. Soc., 75(1953) 3834.
- 33. Verma R S and Garg P K,J.Ind Chem.Soc., 58 (1981)980.
- Sen A K, Singh G, Singh K, Handa R N, Dubey and Squattrito, Proc. Indian Acad. Sci. (Chem Sci).
- N. Kabay, E. Erdem, R. Kilincarslan and E.Yilidirim, Transition Met.Chem., 32 (2007), 1068.
- 36. G. G. Mohamed, Spectrochimica Acta, Part A 57 (2001) 411.
- 37. R. Kilincarslan and E.Erem, Transition Met. Chem., 32 (2007)102.
- 38. G. L. Eichhorn, J. C.Bailar, J. Am.Chem. Soc. 75(1953)2905.
- V. N. Patange, R. K. Pardeshi and B. R. Arbad , J.Serb. Chem. Soc. 73, (2008), 1073-1082.
- 40. B.N.Figgis, Introduction to ligand fields, Interscience, London, 1966.
- 41. A.B.P.Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1968.
- 42. R.N.Prasad, M.Mathur, J.Serb.Chem.Soc.67(2002)825.
- 43. D.Kivelson, R.Neiman, J. Chem. Phys. 35 (1961) 149.
- 44. H. Baumann and R. Hensel, Fortschr. Chem. Forsch. 7 (1967) 4.
- 45. O. Stallmann, J. Chem. Educ. 37 (1960) 220-230.
- 46. ASTM Designation: D 279 87 (Reapproved 1997).
- 47. ASTM Designation: D 2066 -97.