
IJICIS, Vol.22, No.4, 1-12

DOI: 10.21608/ijicis.2022.117905.1160

* Corresponding author: Anas Aloklah

Faculty of Computer and Information Sciences, Ain Shams University

E-mail address: anas.hameed@cis.asu.edu.eg

International Journal of Intelligent

Computing and Information Sciences

Source code generation-based on NLP and ontology

Anas Aloklah*

Faculty of Computer and

Information Sciences,

Ain Shams University

anas.hameed@cis.asu.edu.eg

Walaa Gad

Faculty of Computer and

Information Sciences,

 Ain Shams University.

walaagad@cis.asu.edu.eg

Mostafa Aref

Faculty of Computer and

Information Sciences,

Ain Shams University.

mostafa.aref@cis.asu.edu.eg

Abdel Badeeh Salem

Faculty of Computer and

Information Sciences,

Ain Shams University.

absalem@cis.asu.edu.eg

Received 2022-01-23; Revised 2022-07-29; Accepted 2022-08-01

Abstract: Generating source code is necessary especially as software evolves in complexity and

demand. Finding a mechanism to generate the source code according to the requirements will save time

for developers at the stage of development of the software. In this paper, a mechanism is proposed to

generate the source code based on the database schema and user requirements (user story). This model

contains three layers: The first layer is to analyze each of the database schema, extract the

relationships between the tables, determine the meanings of the fields and analyze the user’s story to

find the functions performed by each role of the software users. The second layer is deducing new

functions based on what was mentioned in the first layer and extracting the knowledge that contains the

solutions to the problems that are inferred. The knowledge bases used are WordNet and Backend

Ontology built from scratch. In the third Layer, the solutions are converted to source code based on

templates extracted from the knowledge and configured, that is applied to the templates. The model

showed success in generating the source code, generating PHP source code for a site that is tested and

generated seventy percent of what was required to be written by programmers.

Keywords: Automatic Programming, source code generation, Natural Language Processing,

Ontological Engineering, knowledge Engineering

https://ijicis.journals.ekb.eg/

2

Anas Aloklah et al.

1. Introduction

In the software development cycle [1], the development process is one of the most important processes,

as it writes the source code that achieves the requirements that were set in the plan and design.

Therefore, it takes a long time. Experienced developers take less time to develop because of the

recurrence of the problem. As for the less experienced developers, they resort to using old source code

that they wrote and uses it as a template to modify it according to the new requirement. Therefore, there

is a need for an automated way to generate the source code as per the requirement. Moreover, there is

no standardized approach or mechanism for generating the source code as this varies with the purpose

of the source code and the different inputs. In generating source code from pseudocode, Deep Learning

(DL) [2], Statistical Machine Translation (SMT) [3] or Neural Machine Translation (NMT) [4] are used

for this purpose [5-8]. The Neural Machine Translation (NMT) is more efficient than SMT. In addition,

the SMT consumes time in the training process [9,10]. The most popular model in the NMT uses

Recurrent Neural Network (RNN) [6,7,8] for Translation. The main problem in RNN is changing

weights to very small value in the training process which is called vanishing gradient [11] or changing

weights to have the large value which is called exploding gradient. Thus, using the Long Short-Term

Memory (LSTM) solves this problem [12]. Recently, a Machine Translation Model (MTM) based on

Deep Learning (DL) is proposed by Google [13]. The main core of the model is based on the self-

attention layers. The DL is used for generating source code from image of sketch design [14,15]. Both

models use the Convention Neural Network (CNN) as the main unite of model design, but different in

general model and method. The Knowledge Base (KB) is a good solution for source code generation

when the input is complex because the result is related to many rules with the same input. The KB can

be updated with any error in a result to correcting this error. The develop the model based on KB to

generate source code from user request [16,17]. The Natural Language Processing NLP uses for source

code generation when the input and result are subject to grammar. The uses NLP to convert user story

to prolog and ontology languages [18]. In this paper, a novel model for source code generation based on

NLP and KB is proposed. The proposed model has two inputs: user story and databased schema. The

user story is a text that describes the user requirements. The proposed model consists of three layers:

analyzer, reasoner, and convertor. The analyzer analyzes the inputs to extract the relations of databased

schema, sentence meaning and rules. Reasoner uses the output of analyzer to find solutions of problems

detected in inputs. The convertor converts the solutions from reasoner to source code. The main

achievement of the proposed model is to extract the features of inputs and taking into consideration user

inputs.

This paper is organized as follows: section 2 introduces a literature review; section 3 presents the

proposed model and section 4 shows experimental results and finally section 5 is the conclusions.

2. literature review

In the translation of a language into other languages using the Machine Translation (MT), there are

three approaches: Rule-Based Machine Translation (RBMT), SMT and NMT. In [5], authors use the

Predictor Networks Based (PNB) on DL for generating source code from pseudocode. This model

works as sentence to sentence and uses the C2W [19] model to encode the input tokens and uses the

bidirectional LSTM (BiLSTM) to build words in the text fields. This model consists of three types of

Predictor Networks (PN): firstly, character generation to predict character in the training data and uses

Source code generation-based on NLP and ontology 3

Softmax function to predict character in output layer. Secondly, copy singular field to predict singular

field; such as, a type of sentence in dataset. Thirdly, copy text field to predict the words in text field

using RNN to achieve this object. The decoding phase uses a stack-based decoder with beam search. In

[6], the NMT is used as sentence to tree by applying the Abstract Syntax Trees (ASTs) in source code.

The model uses the Abstract Syntax Description Language (ASDL) [20] framework for describing data.

The architecture of model consists of encoder and decoder. The encoder uses the BiLSTM for input

sentence. The decoder includes four classes of modules: Firstly, the composite type modules for

detecting the rule of sentence; such as, if statement, while, for, return, etc. This module used a feed

forward network and SoftMax in last layer. Secondly, the constructor module updated vertical LSTM

states of rule detect and compute the next field of rule using feed-forwards network and vertical LSTM.

Thirdly, the constructor field module processes the children of rule detected. Fourthly, primitive type

modules process the value of the role detect using vertical LSTM and SoftMax. In [7], authors update

the model in [6] that uses one grammar module in decoder, APPLYRULE[r] and GENTOKE[v]. The

APPLYRULE[r] produces the sentence rules. The GENTOKE[v] puts the value (v) in the node tree by a

token word and uses the DNN as a connection between encoder and decoder. The authors in [8], apply

the retrieval mechanism [21] in [7] work. The retrieval mechanism consists of four steps: firstly,

retrieve M sentence from training dataset is the most similar to the input. Secondly, translating the

retrieve input and extracting the n-gram action subtrees corresponding to the retrieved input. Thirdly,

change the subtrees by replacing the words of retrieve input with corresponding input. Finally, each

decoding changes the weights to increase the probability of subtrees. Furthermore, The MT is used to

convert the source code to pseudocode. In [22,23], RBMT approach is used to translate source code to

Pseudocode the RBMT and SMT are less in performance than of NMT [9,10]. Thus, the NMT is used

with different methodology to convert the source code to pseudocode [24,25]. Therefore. Transformer

[13, 26] is adapted in MT to convert the source code to pseudocode. In [14], the Computer Vision (CV)

and Region Based Convolutional Neural Networks (R-CNN) are used to generate source code from

hand draw image sketch. The CV is used to edge-merged assembling, slope filtering and noise

removing. The R-CNN is used for detecting a GUI Object. In [15], CNN and LSTM are adapted to

generate source code of android , iOS, and web UI from image UI sketch. In [18], authors extract

conception model from user story and convert to prolog or ontology language by using the NLP. The

user story is set of sentences every sentence has standard predefined format [27]. The standard format

sentence content of tree part. Firstly, the rule: who uses the function. Secondly, the meaning: what is the

function of the rule. Thirdly, the end: why do we use this function as it is optional. Each of the three

parts have indicator to know the part. Figuer.1, shows an example for sentence of user story. The "As

a" is an indicator of role "Visitor", "I am able to" is an indicator of function " use the contact form " and

"so that" is indicator of the last part " I can contact the administrator".

4

Anas Aloklah et al.

Figure. 1: An example of user story sentence

There are other indicators such as "As an", "As a", "As" for role indictor , "I 'm able to", "I'm able to",

"I am able to", "I want to", "I want to be able to", "I wish to", "I can", "I would like to" for means

indictor and "So that", "In order to", "So", "Because of" for end indictor.

In [16], authors proposed a design model for generating source code of web servers' data retrieval from

user request using semantic web defined in ontology. The model depends on three components:

specification, configuration, and template. The specification extracts the feature from the user request.

The template extracts the program code templates from prototype. The configuration detects and maps

between the specification feature extracted and template.

3. Proposed model

The proposed model generates source code form user’s story and database schema. The proposed has

three layers as shown in Figuer.2. The three layers are analyzer, find solution (reasoner) and convertor.

Figure. 2: The proposed model architecture for source code generation

Source code generation-based on NLP and ontology 5

3.1. Analyzer layer

The analyzer layer consists of

- Schema

- User requirements

- NLP

Schema component extracts the schema of database, and the relation between the tables of database.

The extraction of schema by set SQL commands, then find the relation between the table by search each

column in a table so that the column name is similar as the name of the table. Use the semantic

similarity [28] and WordNet [29] to find the similarity between column name and table name. Figure.3

presents the algorithm of relation extraction.

Figure. 3: The algorithm of relation extraction

The user requirements component extracts the roles and functions of each role from the user story by

using the modified algorithm in [18]. The algorithm uses the WordNet [29] to identify the type of

tokens: NOUN, PROPN, VERB, ..etc. The indicators are used to find the role, means, and end in the

user story sentence. there is a set for roles each new role inserts into the roles set. the means part

explanation to detect the function name and the target of the function. Then the information about the

means part (function name and the target of the function) is added to its role in the set of roles. the

functions that do not have a target after explanation the means part that means this function they belong

to the system. The end part is ignored because it is not important in generating the source code.

Moreover, the user requirements component extracts the rules when the target of a function affects the

table of the database, and this effect of the table is related to another table.

6

Anas Aloklah et al.

3.2. Find solution layer

This layer expresses the solution model as content list of solutions, list of commands and the schema.

The solutions are extracted from executes rules which are using the backend ontology [30]. The

backend ontology is ontology modeling the program languages, SQL and framework and content

solutions for backend web domain. The commands extracted with same phase extract solutions. The

commands have commend for system; such as, make file, copy file, executes function in system,…etc.

3.3. Convertor layer

The convertor layer converts the solution model to source code. The convertor layer consists of the

following components:

- Solution

- Template

- Configurator

The solution component executes commands in solution model if the commend does not affect another

solution. Moreover, move the solutions list into dictionary, then process the solution by request the

template component for the template of solution if the solution has template. Then, send the template of

solution to configurator to process the template. It also combines the results of the Configurator

component.

The template component searches for template code for solution. Figure.4 presents the template of php

class model. In line 2 the OPTIONAL means what in brackets is related with conditions, it means that if

this class model of the table has a sub table that is included in template. The * means that this optional

may be repeated between 0 to N. The #SubTable replaced with the class name of sub table. In line 3 the

#Class_name replaced with the class name. In lines 6 and 8 the @ means, this is a subproblem must get

a solution of then and replace the @problem_name by sub solution. All actions in the template are

processed in the Configuration component.

Figure. 4: The template of php class model

Source code generation-based on NLP and ontology 7

The configurator component processes the template of code and request of the sub solution from

solution component and replacing the #,@ , OPTINAL tags with what is needed. Then send the source

after ending the process of template to solution component.

4. Experimental Results

The proposed model is evaluated using different database schema, user stories and type of solution. This

section presents simple case content database that has four tables, user story and the type of solution

which is Model View Controller (MVC) architecture. The backend ontology has solution of model and

controller. The view solution does not implement yet. Figure 5 presents the simple E-commerce

database schema. The table in schema user, category, product, and order. Figure 6 shows an example of

user stories.

Figure. 5: Simple E-commerce database schema.

Figure 6: an example of user stories.

8

Anas Aloklah et al.

The product related to category by foreign key “ Id_category” which means that when deleting a row

from category, all the rows of the product have the same “id” in “Id_category” and will be deleted. This

action is shown in Table 1, which presents the source code of the class model category and product.

Table 1 the result of category and product class model

Category.php Product.php

<?php

include(Product.php)

class Category

{

 //Properties

 public $id;

 public $name;

…

⋮

function delete_Category($id)

{

$servername = "localhost";

$username = "root";

$password = "2w3e4r5t6y7";

$dbname = "eCommerce ";

// Create connection

$conn = new mysqli($servername, $username,

$password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn-

>connect_error);

}

$sql = "delete from Category WHERE

`Category`.`id` = $id";

$product = new Product;

$product->delete_Product_by_id_Category($id);

$result = $conn->query($sql);

return $result;

}

}

…

⋮

?>

<?php

include(order.php)

class Product

{

 //Properties

 public $id;

 public $id_ Category;

…

⋮

function delete_Product_by_id_Category ($id_

Category)

{

$servername = "localhost";

$username = "root";

$password = "2w3e4r5t6y7";

$dbname = " eCommerce";

// Create connection

$conn = new mysqli($servername, $username,

$password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn-

>connect_error);

}

$sql = "delete from Product WHERE ` Product

`.`id_ Category ` = $id";

$order = new Order;

$order ->delete_Order_by_id_Category($id);

$result = $conn->query($sql);

return $result;

}

}

…

⋮

?>

Category php imports the class Product and creates object, then calls delete_Product_by_id_Category

method to delete rows with same id. Product. php generates the delete_Product_by_id_Category

Source code generation-based on NLP and ontology 9

method. Table 2 shows the number of lines for the generated source code file. Table 3 describes the

generated source code requirements from the source code from system.

Table 2 number of lines code of each file generated

File code Number of lines

User.php 314

Category.php 151

Product.php 206

Order.php 214

Table 3 what are the code generated and not generated of requirements

Requirement generated

Create user class model for user table Yes

Create product class model for user product Yes

Create category class model for user category Yes

Create order class model for user order Yes

Create add user function in user class model Yes

Create update user function in user class model Yes

Create delete user function in user class model Yes

Create login and logout functions in user class model Yes

Create change password function in user class model Yes

Create add product function in product class model Yes

Create update product function in product class model Yes

Create delete product function in product class model Yes

Create add category function in category class model Yes

Create update category function in category class model Yes

Create delete category function in category class model Yes

Create add order function in order class model Yes

Create update order function in order class model Yes

Create delete order function in order class model Yes

Create state of order function No

Create Cart class No

Create function add and delete item into Cart No

Create transportation cost function No

Create tax cost function No

Create total cost function No

Create payment function No

Equation 1 calculates the precent of source code generation

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 =
∑ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡
× 100 (1)

10

Anas Aloklah et al.

the number of experiments is related by backend ontology which with any addition or updates in

backend ontology. the source code generation is tested for this update. the total of experiments more

than 150 experiments.

5. Conclusions and Future Work

In this paper, a novel source code generation model is proposed for automatic source code generation

from the database schema and user story. The proposed model consists of three layers: analyzer, find

solution (reasoner) and convertor. In the analyzer layer, database schema and user story are analyzed to

extract relation, sentence means and rules. The find solution layer finds the solution using Backend

Ontology and makes the solution model. The last layer converts the solution model to source code by

the cooperation of the three components, the solution, the configurator, and the template. The proposed

model is evaluated manually because there is not automatic method to evaluate. The result generated by

the knowledge base, not by dataset. The experimental results are promising because the model generates

about 70% of what we want of the source code.

References

1. N. Al-Saiyd, Source code comprehension analysis in software maintenance, In: The 2nd

International Conference on Computer and Communication Systems (ICCCS), 2017, p.1-5.

2. T. Iqbal, S. Qureshi, The survey: Text generation models in deep learning, Journal of King Saud

University - Computer and Information Sciences, 2020

3. A. R. Babhulgaonkar, S. V. Bharad, Statistical machine translation, In: 1st International Conference

on Intelligent Systems and Information Management (ICISIM), 2017 , p.62-67.

4. P. Koehn, Neural Machine Translation , Cambridge University Press, Online publication date:May

2020, Print publication year:2020, ISBN:9781108608480,

DOI:https://doi.org/10.1017/9781108608480.

5. W. Ling, P Blunsom, E. Grefenstette, K. Moritz Hermann, T. Kočiský, F. Wang, A Senior, Latent

Predictor Networks for Code Generation, In: 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 2016, p.599–609.

6. M. Rabinovich, M. Stern, D. Klein, Abstract syntax networks for code generation and semantic

parsing. In: 55th Annual Meeting of the Association for Computational Linguistics (ACL),2017 ,

p.1139–1149.

7. P. Yin and G. Neubig, A syntactic neural model for general-purpose code generation. In: 55th

Annual Meeting of the Association for Computational Linguistics (ACL),2017, p. 440–450.

8. S. A. Hayati, R. Olivier, P. Avvaru, P. Yin, A. Tomasic, G. Neubig, Retrieval-Based Neural Code

Generation, In: Conference on Empirical Methods in Natural Language Processing,2018, p.925–

930.

9. R. Sennrich, B. Zhang, Revisiting Low-Resource Neural Machine Translation: A Case Study, In:

the 57th Conference of the Association for Computational Linguistics, 2019 , p.211–221.

Source code generation-based on NLP and ontology 11

10. S. K. Mahata, S. Mandal, D. Das, S. Bandyopadhyay, SMT vs NMT: A Comparison over Hindi &

Bengali Simple Sentences,2018 , arXiv:1812.04898v1 [cs.CL]

11. M. Roodschild, J. Sardiñas , A. Will, A new approach for the vanishing gradient problem on

sigmoid activation, In: Artificial Intelligence, 9 (2020) 351–9.

12. S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation, 9(8) (1997)

1735–45.

13. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., “Attention is all you need,” in

Proc. NIPS, Long Beach, CA, USA, 2017.

14. B. Kim, S. Park, T. Won, J. Heo, B. Kim, Deep-Learning Based Web UI Automatic Programming,

In: Conference on Research in Adaptive and Convergent Systems,2018, p.64-65.

15. T. Beltramelli, pix2code: Generating Code from a Graphical User Interface Screenshot, In: the

ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 2018,

DOI:10.1145/3220134.3220135

16. I. Magdalenić, D. Radošević, D. Kermek, Implementation Model of Source Code Generator,

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, 7(2) (2011) 71-9.

17. I. Magdalenic, D. Radoševic and T. Orehovački, Autogenerator: Generation and execution of

programming code on demand, Expert Syst. Appl. 40(8) (2013) 2845–12.

18. M. Robeer, G. Lucassen, J. M. E. M. van Der Werf, F. Dalpiaz, S. Brinkkemper , Automated

Extraction of Conceptual Models from User Stories via NLP, In: 24th International Requirements

Engineering (RE) Conference,2016 , p. 196-205.

19. W. Ling, T. Lu´ıs, L. Marujo, R. F. Astudillo, S. Amir, C. Dyer, A. W .Black, I. Trancoso, Finding

function in form: Compositional character models for open vocabulary word representation, In:

Conference on Empirical Methods in Natural Language Processing,2015, p.1520-1530.

20. D. C. Wang, A. W. Appel, J. L. Korn, C. S. Serra, The zephyr abstract syntax description language,

In: Conference on Domain-Specific Languages on Conference on Domain-Specific Languages

(DSL), 1997, p.17–32.

21. J. Zhang, M. Utiyama, E. Sumita, G. Neubig, S. Nakamura, Guiding neural machine translation with

retrieved translation pieces. In Meeting of the North American Chapter of the Association for

Computational Linguistics (NAACL),2018 , p.1325-1335

22. S. Rai and A. Gupta, Generation of Pseudo code from the Python source code using rule-based

machine translation, arXiv e-prints, 2019.

23. Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, S. Nakamura. 2015, Learning to generate

pseudo-code from source code using statistical machine translation (t). In: 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE),2015 , p.574–584.

24. A. Alhefdhi, H. Dam, H. Hata and A. Ghose, Generating Pseudo-code from source code using deep

learning, In: 25th Australasian Software Engineering Conference (ASWEC) ,2018 , p. 21-25.

25. Y. Deng, H. Huang, X. Chen, Z. Liu, S Wu et al., From code to natural Language: type-aware

sketch-based seq2seq learning, In: 25th International Conference on Database Systems for

Advanced Applications(DASFAA),2020 , p. 352-368.

12

Anas Aloklah et al.

26. W. Gad, A. Alokla, W. Nazih, M. Aref , A. Salem, DLBT: Deep Learning-Based Transformer to

Generate Pseudo-code from Source Code, CMC Computers, Materials and Continua 70(2) (2021)

3117-26.

27. Y. Wautelet , S. Heng ,M. Kolp ,I. Mirbel , (2014), Unifying and extending user story models. In:

international conference on advanced information systems engineering (CAiSE) ,2014 ,p.211–225.

28. C. Corley , R Mihalcea, Measuring the Semantic Similarity of Texts. Proceedings of the ACL

Workshop on Empirical Modeling of Semantic Equivalence and Entailment,2005 , p.13–18.

29. Princeton University “About WordNet" Available online: https://wordnet.princeton.edu/ (accessed

on 3 March 2021).

30. https://github.com/anasAloklah/backend-web-ontology . (accessed on 23 July 2022).

https://github.com/anasAloklah/backend-web-ontology

