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Abstract: Dense video captioning involves detecting interesting events and generating textual 

descriptions for each event in an untrimmed video. Many machine intelligent applications such as video 

summarization, search and retrieval, automatic video subtitling for supporting blind disabled people, 

benefit from automated dense captions generator. Most recent works attempted to make use of an 

encoder-decoder neural network  framework which employs a 3D-CNN as an encoder for representing 

a detected event frames, and an RNN as a decoder for caption generation. They follow an attention 

based mechanism to learn where to focus in the encoded video frames during caption generation. 

Although the attention-based approaches have achieved excellent results, they directly link visual 

features to textual captions and  ignore the rich intermediate/high-level video concepts such as people, 

objects, scenes, and actions. In this paper, we firstly propose to obtain a better event representation that 

discriminates between events nearly ending at the same time by applying an attention based fusion. 

Where hidden states from a bi-directional LSTM sequence video encoder, which encodes past and 

future surrounding context information of a detected event are fused along with its visual (R3D) 

features. Secondly, we propose to explicitly extract bi-modal semantic concepts (nouns and verbs) from 

a detected event segment and equilibrate the contributions from the proposed event representation and 

the semantic concepts dynamically using a gating mechanism while captioning. Experimental results 
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demonstrates that  our proposed attention based fusion is better in representing an event for captioning. 

Also involving semantic concepts improves captioning performance. 

 

Keywords: Video events proposal detection, Video to natural language, Attention-Based sentence 

decoder, Bidirectional LSTM, Deep Learning 

 

 

1. Introduction  

Describing what happened within a brief video using a natural language sentence is referred to video 

captioning [1]. This is an easy task for humans but for machines, the need for learning relevant 

semantics from raw pixels for generating natural words is complex. Also natural videos are long and 

may contain multiple events, such that for example, at some point in the video, a man was shooting 

bullets towards a target, later on another man hits him from his back, after that the target ran, Fig.1.  
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Fig.  1: Example of multiple events in an untrimmed video. 

For this, a single sentence can‟t capture the semantics complexity of the whole scenario within the 

video. Therefore, recently the focus has been shifted towards generating multiple sentences and relating 

them with time locations which is referred to dense captioning. The need for both localizing temporal 

event segments boundaries occupied within the video and generating a sentence per event must be 

considered. It is important to note that, the direct linking of visual features from event segments to 

textual natural language sentences may ignore the rich intermediate/high-level descriptions, such as 

objects, scenes, and actions, ex: ( a video of birthday party contains semantic static concepts (nouns) 

such as “a person”, “birthday cake”, ”candle“, “ballon“  and semantic dynamic concepts 

(verbs) such as “clapping”, “waving”,    …   etc), as illustrated in Fig. 2. For this, it is crucial to 

Fig.  2: Examples of semantic static (nouns) and dynamic (verbs) concepts. 
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identify semantic features from the input video frames for implementing an effective caption generation 

process.  

 

A broad range of applications can benefit from the localization and description of events in videos, such 

as video summarization, search and retrieval, automatic video subtitling for supporting blind disabled 

people. 

 

Recently many works [1-3] attempted to make use of an encoder-decoder neural network framework 

which employs a 3D-CNN as an encoder for representing a detected event frames, and an RNN as a 

decoder for caption generation. They formulate the dense captioning task as a sequence-to-sequence 

(video to caption) task. 

 

Some subsequent works [3-6] follow an attention based mechanism to learn where to focus in the 

encoded video frames during caption generation. Although the attention-based approaches have 

achieved excellent results, they directly link visual features to textual captions and ignore the rich 

intermediate/high-level video concepts such as people, objects, scenes, and actions. 

 

 

In this work we propose a deep neural network framework that firstly utilizes a bi-directional LSTM 

network which encodes past and future local contextual information while detecting human action event 

segments. It applies an attention based fusion of hidden states from the bi-directional LSTM sequence 

video encoder along with its visual (R3D) features, to obtain a better event representation that 

discriminates between events nearly ending at the same time. Secondly, we propose to explicitly extract 

bi-modal semantic concepts (nouns and verbs) from a detected event segment and equilibrate the 

contributions from the proposed event representation and the semantic concepts dynamically using a 

gating mechanism while captioning. 

 

In section 2 we will discuss the related works, section 3 will introduce the proposed framework in 

details. Experiments and implementation details will be provided in section 4. Finally the conclusion 

will be discussed in section 5. 

 

2. Related Works 

 

Dense video captioning requires localizing events in the input video and then produce a textual sentence 

description for each event happening in the video. The dense video captioning task branches out from 

the video captioning task which aims to caption a pre-segmented video without the need to localize the 

event. 

 

Untrimmed videos contain target events that usually occupy a small portion of the whole video stream. 

Some current methods for action temporal localization [7, 8] rely on applying action classifiers at every 

time location and at multiple temporal scales, in a temporal sliding window fashion. Major drawbacks 

regarding these methods are, the high computational complexity, scales of sliding windows is 

predetermined based on the statistics of the dataset and temporal boundaries generated are usually 

approximate and fixed during classification. 
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Recent researches in dense video captioning [9, 10] worked on avoiding the high computational 

complexity drawbacks of sliding windows. They followed an end to end event proposal generation 

model that produces confidence scores of multiple event proposals with multiple time scales at each 

time step of the video. They process each input frame only once and thereby process the full video in a 

single pass. They argued that a successful proposal generation method should be able to retrieve a small 

number of event intervals with high recall and high temporal overlap with true event segments. Their 

method mainly scans an untrimmed video stream of length L frames divided into T=L/ δ non-

overlapping time steps, where δ=16 frame. Each time step is encoded with the activations from the top 

layer of a 3D convolutional network pre-trained for action classification (C3D network [11]). A 

recurrent neural network (RNN) was used for modeling the sequential information into a discriminative 

sequence of hidden states. The hidden representation at each time step is used for producing confidence 

scores of multiple proposals with multiple time scales that all end at time t. However, these methods 

simply neglects future event context and only encode past and current event context information when 

predicting proposals. 
 

After obtaining events segments, early approaches in deep learning directly connected event frames 

with language. Translating video pixels to natural language was their aim. Inspired by the successful use 

of the encoder-decoder framework employed in machine translation, many existing works on video 

captioning [1, 2] employ a convolutional neural network (CNN) like ResNet [12], C3D [11]   or two-

stream network [13] as an encoder, obtaining a fixed-length vector representation of a given video. A 

mean pooling of features across all frames is applied for obtaining a fixed-length vector representation, 

which is considered as a simple and reasonable semantic representation for short video clips. 

Translation to natural language is done via a stacked two-layer recurrent neural network (RNN), 

typically implemented with long short-term memory (LSTM) [14, 15]. However, they considered frame 

features of the video equally, without any particular focus. Using a single temporally collapsed feature 

vector for representing such videos leads to the incoherent fusion of the dependencies and the ordering 

of activities within an event. 

 

Some subsequent methods [3-6] explored strengthening the semantic relationship between a video and 

the corresponding generated words of a sentence by including attention models in video context. They 

took inspiration from the soft attention mechanism [16] applied in image captioning. They argued that 

videos consist of spatial (frame-level) features and their temporal evolutions, an effective captioning 

model should be able to attend to these different cues selectively for selecting significant regions in the 

most relevant temporal segments for word prediction. 

 

Yao et al [3] proposed a novel spatiotemporal 3D CNN, which accepts a 3-D spatio-temporal grid of 

cuboids. These cuboids encode the histograms of oriented gradients, oriented flow and motion boundary 

(HoG, HoF, and MbH) [17]. They argued that, average pooling these local temporal motion features 

would collapse and neglect the model‟s ability to utilize the video‟s global temporal structure. For this a 

soft attention mechanism was adapted, which permits the RNN decoder weighting each temporal 

feature vector when predicting next word.  
. 
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Also the work in [5] proposes the use of a novel spatial-temporal attention mechanism (STAT) within 

an encoder-decoder neural network for video captioning. Firstly, they use 2-D/3-D Convolutional 

Neural Network (CNN) and Region-based Convolutional Neural Networks (RCNNs) to encode the 

video inputs to a set of fixed length vector representation. Secondly, they use three kinds of features via 

two-stage attention mechanism. In first stage a spatial attention mechanism makes the decoder to select 

local features with more spatial attention weights, which represent the significant regions. Then in 

second stage a temporal attention mechanism make the decoder to select global and motion features, as 

well as local features representing significant regions. Finally, three types of features are fused to 

represent the information of key frames. 
 

[18] Propose to generate event proposal first and then dynamically select (attend) neighbouring events 

as context for target event captioning. They categorize all events into two buckets (past and future) 

relative to a current event. They trained their model to apply an attention mechanism that adequately 

focuses on selecting, events that have already occurred (past), and events that take place afterwards 

(futures), which are relevant to the current event.  

 

Although the attention-based approaches have achieved excellent results, they still ignore representing 

high-level video concepts/attributes. Being aware of linguistic contexts of an event not only can provide 

holistic information to understand the event more accurately, but also tell differences between target 

event and its context to generate more diverse captions. 
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Fig.  3: The architecture of the framework for dense event captioning. 

3. Proposed Method 

In this section we will introduce our adopted method for densely describing events in videos. Mainly 

our method is based upon two stages: 1) event proposal generation for obtaining a set of potential 

candidate temporal regions that contains possible events, Fig. 3 (a). 2) Caption generation for producing 

a sentence per event segment, Fig. 3 (e).  
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Both stages are coupled together in a deep learning framework that follows the encoder-decoder model. 

Each stage will be discussed in details in the following sections. The overall framework is illustrated in 

Fig. 3. 

 

3.1. Event Proposals generation 

 

In this stage, we work on obtaining a set of candidate temporal regions that contains potential events, as 

illustrated in Fig. 3 (a). First, given a video with L frames, we discretize it by dividing into T non-

overlapping time steps, where each time step is of size δ =16-frames, Fig. 4 (a). We used a two-stream 

3D Residual Neural Network for the extraction of spatio-temporal features from each time step, Fig.4 

(b). One stream for learning to extract motion features from RGB frames using 3D ResNet-18 [12]. The 

other for learning abstract high level motion features from motion boundary frames using 3D ResNeXt-

101 [12]. Motion boundary frames carry optimized smooth optical flow inputs. 

 

We propose to adopt a bidirectional recurrent neural network model, especially LSTM (long short term 

memory) [14], which produce two hidden states representing past and future context information for 

sequentially encoding the visual features of the video time steps, Fig. 4 (c). The input video visual 

features are fed to the forward LSTM in its neutral order and to the backward LSTM in a reversed 

order. The LSTM outputs two hidden state values,   
  and   

  where   
  is generated from the forward 

pass and   
  is generated from the backward pass. They encode visual information observed from past 

and future time steps at time step (t) respectively. 

Fig.  4: The bi-directional LSTM sequence encoder that can represent a set of K temporal intervals at each 

time step using forward and backward hidden states. 
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At each time step (t), we pass the hidden state that encodes the sequence of visual features observed till 

time (t) through a fully connected layer with sigmoid nonlinear function  , as in Eq. (1) and Eq. (2), for 

producing multiple (K) proposals scores, as Fig. 4 (d). Proposals have different time scales with a fixed 

ending boundary (t) and (K) confidence scores. These scores indicate the probabilities of K proposals, 

each specified with a number of time steps denoted by    = {  
      

 .    
  , denotes a video temporal 

segment (proposal) with end time as t and start time as t−                            . Where {      
 is the 

lengths of the predefined K proposal anchors. 

This is done for each LSTM direction (forward backward) independently. Finally the passes through the 

two directions, generates N proposals collected from all time steps of both directions. Many overlapping 

proposals can be generated by a single iteration over the input video using a LSTM. For selecting highly 

confident proposals, we fuse the two sets of scores for the same proposals, yielding the final scores, 

through multiplication, as in Eq. (3). A predicted event proposal (i) is associated with a start time, an 

end time, a confidence score, and two hidden states   
  and   

  as illustrated in Eq. (4). 

 

          
     (     

 ) , i= {1… k}                                                                    (1)                                          

                                       

                                                          
     (     

 ) , i= {1… k}                                                                    (2)                                

 

                                                       
      

      
      

                                                                                    (3)                                             

 

                                                       = {(      
  ,    

  ,        ,  
    

 )}                                                          (4)                                        

 

The summarized algorithmic steps can be illustrated in Fig.  6. 

 

 

 

 

 

Fig.  1: Multiple proposals (temporal segments) with different time scales that all end at time step t. 
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Input: A video stream of L frames X= {x ,x2,…,xL  that is discretized into T non overlapping 

( T=L/ δ) time steps (clips), 𝑋  ={  , 2,…, T} each time step (clip) of resolution δ=16 frame. 

 

Step 1: For each frame i in time step t of resolution δ  

Compute a feature representation  v   that encapsulates the visual content of the frames within each 

time step  , through the two-stream 3D Residual neural network (R3D), 

v =𝑡𝑤𝑜_𝑠𝑡𝑟𝑒𝑎𝑚 𝑅3𝐷({𝑡𝑓𝑟𝑎𝑚𝑒 𝑓𝑟𝑎𝑚𝑒 𝑖𝑥δ
 𝑖𝑥 δ +δ

 

End For 

 

Step 2: Perform PCA to reduce the dimensionality of each visual feature representation v 𝑖. 

 
Step 3: Pass the corresponding visual feature representation  v  of each time step  to the bi-

directional LSTM (bi-LSTM) sequence encoder for encoding the stream of visual features and 

producing a forward hidden state value ℎ𝑓
𝑡  and a backward hidden state value ℎ𝑝

𝑡  for each  v  . 
 

Step 4: Apply K independent binary classifiers (Action-Background) representing K proposals 

(temporal segments) with K different time scales that all end at    , on top of each LSTM direction. 

The classifier is represented by a fully connected layer with sigmoid nonlinear function. At each 

time step , the classifier on top of the forward LSTM layer accepts the forward hidden state value   
  

and the classifier on top of the backward LSTM accepts the backward hidden state value   
 . This 

produces forward confidence score 𝐶𝑖
  and backward confidence score 𝐶𝑖

  of multiple proposals at 

each time step   . 
 

Step 5: Multiply the confidence score of the kth proposal produced from each direction (forward 

𝐶𝑖
 x backward 𝐶𝑖

   to get the final confidence score 𝐶𝑝
𝑡.   

 

Output: The proposals at time step     with a score larger than a threshold are selected as action 

proposals for further captioning. Each action proposal has a start time step S and an end time step E, 

confidence score and a hidden state from both forward and backward directions, 𝑝𝑖 = 

{(𝑡𝑠𝑡𝑎𝑟𝑡
𝑖  ,𝑡𝑒𝑛𝑑

𝑖  ,  𝑆𝑐𝑜𝑟𝑒𝑖,ℎ𝑓
𝑡  ℎ𝑝

𝑡 )}  

 

Fig.  2: Summarized algorithmic steps of the event proposal generation module. 

 

 

 

 

 

3.2. Caption Generation 
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Once proposals are obtained, a LSTM network decoder translates the encoded sequence of a detect 

event clips visual inputs to a sentence, Fig. 3 (e). 

 

It is important to mention that, contextual information plays an important role in the task of dense video 

captioning. Contextual reasoning is vital for providing holistic information to understand an event more 

accurately and generating more diverse captions. 

  

In this section, we investigate different contexts for encoding detected event proposals for dense 

captioning. Two types of context are utilized during captioning, including: 

 

• Local visual contextual information: Modeling the contents that are temporally neighboring 

the target event proposal which are encoded in the proposal‟s start „S‟ and end „E‟ time step 

hidden states (  
 ,  

 ) of the forward and backward LSTM, and is dynamically fused with the 

event‟s visual features via an attention based mechanism, as in Eq. (5). It is not preferred to 

discard worthy information encoded in future and past neighboring regions of the video. These 

local neighboring regions provide significant precedents and consequences for understanding an 

event. 

                                                     
 ,   

   V      ), n   {1… N}, i {S… E}                               (5)                                                                    

 

Where V= {v     
  is the two-stream visual feature maps from the start clip S and end clip E of 

the     event proposal   . (  
 ,   

 ) Are the local visual context vectors of the     event proposal. 

This process can be illustrated in details through Fig. 3 7.  

 

The unnormalized relevance score      for the     clip‟s features (    within a proposal, can be 

obtained through a weighted linear combination as Eq. (6) using a neural network layer with 

hyperbolic tangent (tanh) activation function. Where, S and E denote the start and end time steps 

of the proposal.       Is the hidden state of the sequence encoder at the t-1 time step. Vector 

concatenation is applied on (  
 ,  

 ), represented by the [,] operator. The weights     of each 

visual feature      can be obtained by softmax normalization (that converts a neural network 

layer‟s output into a probability distribution) such as Eq. (7). The final attended visual features  ̂ 

are generated by a weighted sum through Eq. (8). 

 

                                             
           

       
 ,   

  ] +          , i   {S … E}                   (6)                                                                                                                                 

            

                                                                         =exp (  ) /∑   
 
                                                                         (7)                                                                                                                                                                                                                                                                                                                                                                     

 

                                                                        ̂  ∑    
                                                                                      (8)                                                                                                                                                                                                                                                                                                                                                              

   

                                                                               = [  
 ,  

  , ̂ ]                                                                       (9)                                                                                                                                                                                                                                                                                                                                                  
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This attended visual features  ̂  can be concatenated with context vectors (  

 ,  
 ), represented by   

the [,] operator, to produce v     _     x   vector of the     event proposal, as illustrated in Eq. 

(9). This vector can be passed through the gates of the decoding LSTM.  

 

This is done to produce a robust event representation that can help discriminate between events 

that nearly end at the same time, since the detected temporal neighboring regions will be 

different.  

 

• Proposal-level semantic context: which includes an explicit bi-modal (static and dynamic) 

semantic concept features extractor networks that predict significant nouns and verbs from video 

clips of an event, Fig. 3 (c). Concepts that describe objects, backgrounds/scenes are referred to 

static semantic concepts (nouns), Fig. 2. Concepts that describe dynamic actions are referred to 

dynamic semantic concepts (verbs), Fig. 2. These concepts are important and affect the 

contribution to the sentence generation. Semantic features are obtained using a LSTM network, 

in our framework, Fig.8 and Fig. 9.  Indeed, obvious difference exists between these semantic 

features, so the extraction of these bi-modal features was done separately in the form of multi-

label classification. 

 

Fig. 3: Dynamic attention mechanism to fuse visual features and context vectors using an attention 

mechanism, at each time step while decoding. 
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Fig.  8: Semantic dynamic concepts (verbs) extraction network 

Each network outputs a probability distribution, where (  ) is the probabilities of the set of 

dynamic concepts (verbs) extracted from a clip at time step t of an input event proposal and (  ) 

is the probabilities of the set of static concepts (nouns). We consider the probabilities (of nouns 

and verbs) obtained from each time step t within the start S and End E of an input event 

proposal, as the extracted dynamic and static semantic concepts. It is important to note that the 

set of semantic static and dynamic concepts (nouns and verbs) are pre-defined from the dataset 

used while training this module. 

 

This is done for reducing the fissure between low-level video features and sentence descriptions. 

 

Both the probability distributions of the set of dynamic and static semantic concepts, that are 

extracted from the     event proposal are concatenated, resulting in     {      
  ( where x is the 

dimension of the concatenated set of concepts probabilities) and serve as input for the attention 

layer, as illustrated in Fig. 10. A weight value (               
 ) reflecting the semantic 

concept features to focus on at a time step t (of the decoding LSTM) is calculated by the 

attention layer for all the semantic features and illustrated in Fig. 10. 
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We balance the contributions from the proposed event representation and the semantic concepts 

dynamically using a gating mechanism while captioning. 

Once obtain the attended visual feature vector  ̂, and the semantic context vector   we want to combine 

them together as input for the decoding LSTM. Inspired by the gating mechanism in LSTM, we develop 

a “context gate” to balance them. We propose to explicitly model the relative contributions of the 

attentive event visual feature vector, and semantic context vector when generating a word. The network 

is expected to determine how much context might be utilized when generating the next word. 

 

In the context gating mechanism, the attended visual feature vector and the semantic context vector are 

projected into the same space, as Eq. 10 and Eq. 11. 

 

 

                                                       ̇=tanh ( ̂ ̂)                                                                                    (10)                                                                                                                                                                                                          

                                     

                            

                                                       ̇=tanh (   )                                                                                   (11)                                                                                                                                                                                                 

 

The context gate is then calculated by a nonlinear layer as Eq.12.                                                  

 

                                                                  [ ̇, ̇,  ,    ] )                                                      (12)                                                                                                       

 

Where    is word embedding vector,      is the previous LSTM state. As, the context gate uses 

Sigmoid which outputs a value between 0 and 1, it can either let no flow or complete flow of 

information.  

 

This gate models the contribution of each context information while decoding the event proposal. We 

then use the value of the context gate to fuse the attended event visual feature vector and the semantic 

context vector together, which is represented by        in Eq. 13 that is the input vector to the LSTM 

decoder units. This can be illustrated in Fig. 11. 

 

                                               = [(1-     )    ̇,         ̇ ,   
 ,  

  ]]                                                 (13)                                                                                                                    
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Fig. 9: Semantic static concepts (nouns) extraction network. 

Fig. 5: Attention mechanism is applied for weighing the concatenated semantic concepts (dynamic and static) while 

decoding. 

Fig. 4: Both the attended visual features and the weighted semantic concepts can be concatenated for balancing between 

them with the context gating mechanism. 

 

 

 

 

  

Table 1 Comparison of different variants for LSTM action proposal 

generation network. 

Method F1 Score 

Bidirectional-Temporal proposal generation. 0.807 

 

Single-direction Temporal proposal generation 

(Forward) [6]  

0.74 

 

Single-direction Temporal proposal generation 

(Backward) 

 

0.71 
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4 Performance evaluation 

4.1 Dataset 

The ActivityNet Captions dataset [18]  videos are bridged with a series of sentences that are annotated 

temporally. An event segment is described by a unique sentence.  The videos from ActivityNet Captions 

dataset is the same as ActivityNet v1.3 dataset. It consists of 20,000 untrimmed videos from YouTube 

representing real life. The average videos length is roughly 120 seconds long. Mostly over 3 annotated 

events are contained within each video associated with start end time and human-written sentences. 

Activity Net includes activities in top level categories that are: House hold activities, sports and 

exercising, Personal care, Education and Working activities. In our experiments we only used videos 

from the “sports and exercising” category for training and evaluating our framework. The number of 

videos used in our experiments was 3,485 video that contains 48 different activity classes.  

 

Each video contains 3.65 temporally localized sentences. We randomly split the data into three different 

subsets: train, validation and test, where 50% is used for training, and 25% for validation and testing. 

For ActivityNet Captions dataset, we do not use multiple strides but with only stride of 64 frames (2 

seconds). This gives a reasonable number of unfolding LSTM steps (60 on average) to learn temporal 

dependency. Where longer strides are able to capture longer events.  ActivityNet Captions focuses on 

verbs and actions. 

4.2 Experiments 

Event Proposals Generation  

 

One of the main aims of this paper is developing models that are able to locate events within a video. 

Accordingly, we investigate how well our model can predict the temporal location of events within the 

corresponding video, in isolation of the captioning module. We compare our bidirectional proposal 

module with SST (Single Stream Temporal Proposal Generation) [9], which adopts a uni-direction 



Bidirectional Temporal Context Fusion with Bi-Modal Semantic Features using a gating mechanism for 

Dense Video Captioning 

17 

(Forward) LSTM model for proposal generation, using F1-score against tIoU threshold=0.8 with ground 

truth proposals. 
 

Compared Methods 

 

 F-TPG: Forward-Temporal Proposal Generation, used in [9]. 

 B-TPG: Backward-Temporal Proposal Generation. 

 Bi-TPG: Bi-directional-Temporal Proposal Generation, which is the adopted method. We 

combine Forward and Backward LSTMs and jointly inference by fusing scores for the same 

predicted proposals. 
 

The results recorded in Table 1 confirms that detections done with bidirectional model that encodes past 

and future context indeed upgrades the quality of the proposals, compared to a single direction 

prediction model. F1 score is a metric utilized to simultaneously consider both precision and recall for 

event localization, where it can be considered as a weighted average of the precision and recall. An F1 

score reaches its best value at 1 and worst at 0. In Table 1 we can find a comparison of performance 

against the following models, where we used the testing set of the dataset for evaluating each model 

with the ground truth proposals 
 

Dense Event Captioning 

 

The main task of our model is to detect individual events and describe each with a natural language 

sentence from input videos. To evaluate the performance of our captioning module we measure the 

accuracy for each semantic concepts extraction network. We used the Mean Square Error (MSE) metric 

to evaluate the difference between the generated semantic words and the ground truth words per 

network, illustrated in Table 2. 

  

We also measure the precision of our captions using Cider metric (Vedantam et al., 2015) that reflects 

the similarity between two sentences. The average cosine similarity between the candidate sentence and 

the reference sentences is computed as the Cider score which accounts for both precision and recall.  

 

We average the scores across different tIoU (temporal- intersection-over-union) thresholds of 0.3, 0.5 

and 0.7 when captioning the first, second and third events per video in the validation set of ActivityNet 

Captions “sports and exercising” category.  

 

Although some videos have more than three sentences, we account for results of the first three because 

at least three sentences are contained in most videos of the dataset. In Table 2, we investigate the 

performance of static and dynamic semantic  networks (D-Sem-N, S-Sem-N), in extracting relevant 

verbs and nouns with the ground truth, where we used the Mean Square Error (MSE) metric to evaluate  

the difference between the generated semantic words and the ground truth words per network. Also we 

evaluated the predicted captions through using the proposals from the event localization module and 

also by separating the performance of caption generation network from the localization network, by 

using ground truth temporal locations within test videos. This can be found in Table 3.  

 

Compared Methods 
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We compare different variants of our model.  

 

 Bi-H: This variant indicates applying our bidirectional proposal method to generate 

proposals. The hidden states (representing context vectors) from both directions [     , 
 
 ] 

are concatenated and passed to the LSTM decoder of an event. 

 

 Bi-H + Mp: This variant indicates mean pooling current event features and concatenating 

them with the hidden states (representing context vectors) from both directions [     , 
 
 ], 

for passing them to the decoder of an event. This method uses mean pooling instead of 

attention to concatenate features. 

 

 Bi-H + TVA: Temporal visual attention (TVA) is used to dynamically fuse visual features 

along with the local context vectors (     , 
 
 ) and passed as visual input within all LSTM 

gates of the decoder. 

  

 Bi-H + TVA + SemC : This method indicates passing the concatenated attended semantic 

concepts (SemC) , which is composed of DSC-N and SSC-N, concatenated with the temporal 

visual attended features (TVA) to an LSTM decoder at each time step within the event 

proposal. 

 

 

 Bi-H + TVA + SemC+ CG : This method combining the attended semantic concepts (SemC) , 

which is composed of DSC-N and SSC-N, with the temporal visual attended features (TVA) 

using context gating mechanism for balancing them, and passing the result to an LSTM 

decoder at each time step within the event proposal. 

 

 

We evaluated the predicted captions through using the proposals from the event localization module and 

also by separating the performance of caption generation network from the localization network, by 

using ground truth temporal locations within test videos. This can be found in Table 3.  
 

Network Val-accuracy Test-accuracy 

S-Sem-N 80.62 80.72 
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4.3 Experimental Results and Discussion 

We experiment our adopted bi-directional LSTM temporal proposal module for detecting event 

segments that are close to the real segments within the dataset. The F1 score of such module in Table 1 

was better than single-direction LSTM which confirms that bidirectional prediction that encodes past, 

current and future context indeed improves proposal quality, compared to single direction prediction. 

 

D-Sem-N 81.44 81.85 

Table 2 Semantic concepts feature extraction performance on ActivityNet Captions “sports and 

exercising” category. 

Table 3 Comparing captioning performance of different variants on ActivityNet Captions “sports and 

exercising” category. 

Using GT Proposals Using Learnt Proposals 

Model CIDer Model CIDer 

Bi-H 62.2 Bi-H 57.4 

MP 62.8 MP 58.1 

Bi-H + Mp 64.6 Bi-H + Mp 60.2 

Bi-H + TVA 67.5 Bi-H + TDA 63.4 

Bi-H + TVA + 

SemC 

71.4 Bi-H + TDA + SemC 67.3 

Bi-H + TVA + 

SemC+ CG 

71.8 Bi-H + TVA + SemC+ 

CG 

67.7 

[19] 

 

74.2 [19] 

 

60.2 
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The results in Table 3 indicate that, utilizing semantic concepts networks during captioning (Bi-H + 

TVA + SemC) is more effective than the cases that only used the caption generation without semantics.  

Also when we used the proposal‟s hidden states (backward, forward) as “context vectors” and fused 

them with the event‟s visual features, via attention mechanism along with the semantic features 

concepts (Bi-H + TVA + SemC), we got better captioning results, better than using context vectors 

alone (Bi-H) or event clip features (MP) alone. Applying context gating mechanism for balancing 

attended visual features and sematic concepts further boosts the performance, which supports that 

explicitly modeling the relative contribution from event features and contexts in decoding time help 

better describe the event. Using proposals instead of ground truth events, Table 3 (right), produced a 

similar trend where adding more context improves captioning. 

 

Based on the results of (Bi-H + TVA), improvements in all scores is noticed when the attention 

mechanism is applied instead of mean pooling (Bi-H + Mp) for fusing event visual features with the 

local context vectors. Attending on video visual features at each decoding step allows the model to 

adequately focus on parts of the event that are relevant to the generated captions with more semantically 

relevant words. A variant of our framework which is (Bi-H + TVA + SemC) was used for testing the 

captioning performance on videos with a single event from the MSR-VTT dataset [1] (sports category) 

test set. Table 4 illustrates the results. We found that it has better caption generation performance than a 

similar work by [19] which applied temporal attention on mean pooled visual inputs.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Our variant outperforms [19, 5, and 6] because we apply attention for the fusion of visual inputs along 

with context vectors. Also our utilization of semantic features makes sense for better performance.  

 

5  Conclusion 

A successful dense video captioning system is considered a fine-grained video understanding task. It 

differs from early video description methods that produced captions for short video clips that were 

manually segmented to contain a single event of interest. A dense captioning system must accurately 

detect the temporal window of each event, and describe these events with a series of coherent sentences. 

With the recent advances of deep learning, we propose an end to end deep neural network framework 

Table 4 Performance comparison against other frameworks on MSR-VTT (sports) test set. 

Method CIDer 

[19] (2017) 91.1 

[5] (2019) 94.4 

[6] (2020) 93.7 

Ours: Bi-H + TVA + SemC 97.3 
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that identifies event segments, utilizes context information and extracts semantic concepts, in a single 

pass, for generating a set of correlated sentences.  

 

The framework is built upon the encoder-decoder structure that continuously encodes the input video 

stream with three-dimensional convolutional layers and proposes variable-length temporal events that 

are then transcribed (decoded) into English language words forming sentences. We adopt a bidirectional 

LSTM framework, for localizing events such that it encodes both past and future contexts where both 

contexts help localizing the current event better.  

 

We reused the proposal‟s context information (hidden states) from the localization module as context 

vectors and dynamically fused those with event clips visual features. Using an attention based 

mechanism, for the fusion produced superior results compared to using the context alone. Also learning 

bi-modal semantic features via attending on relevant verbs and nouns that describes the event content 

effectively, improves the captioning performance and is done while decoding each event in isolation.  
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