
IJICIS, Vol.18 No.1

27

International Journal of Intelligent Computing and
Information Science

DETECTING AND RESOLVING AMBIGUITY APPROACH IN REQUIREMENT

SPECIFICATION: IMPLEMENTATION, RESULTS AND EVALUATION

Mostafa Aref Somaia Osama

Computer Science Department, Faculty of Computer and Information Science, Ain Shams University

Cairo, Egypt
 aref_99@yahoo.com

 somaia.osama.r@gmail.com

Abstract: Requirements documentsare always written in natural language. At the point when a sentence

can be understood diversely among various readersambiguity is happened [1]. In this paper, we illustrate

an automated tool for detectingand resolvingambiguities thatcause a high risk of misunderstanding

byseveralreaders and lead to confusion, waste of both effort and time and rework. Sentences in a natural

language requirements specification document thathaveambiguity are initialdetected automatically from

the text andambiguity type is determined. Sentences thatincludeambiguity are thenresolved automatically

also by resolving algorithm based on a set of rules that we collected from training data. We implemented a

tool for Detecting and Resolving Ambiguity (DARA), in order to clarifyand estimate our approach. The tool

focuses on Lexical, Referential, Coordination, Scope and Vague ambiguity.We determine on the results of a

collection of requirement specification documents to evaluatethe performance and utility of the approach.

Keywords: Ambiguity, ambiguity detection, ambiguity resolving, disambiguation, natural language

processing (NLP), requirement engineering, software requirement specification,

1. Introduction

The Software Requirements Specification (SRS) is a part of the contract and it must define the user and the

system requirements clearly, precisely and unambiguously [2]. The SRS that has inconspicuous, incomplete,

unmanaged, unspecified, inaccurate or ambiguous requirement definition may eventually lead to cost and

time overruns [3, 4, and 5]. Ambiguity is the possibility to understand a phrase or word in different ways. It

is one of the issues that happen in natural language documents. An ambiguity has two sources:

communication faultsand inadequate information. Some errors can be resolved without domain knowledge

like grammatical error, though some errors need domain knowledge like the lack of details that the user

needs. The Ambiguity Handbook [6] presents different types of ambiguities, categorized as Lexical,

Syntactic, Semantic, Pragmatic, Vagueness, Generality and Language Error. Although the fact that the

Osama et al: DETECTING AND RESOLVING AMBIGUITY APPROACH IN REQUIREMENT SPECIFICATION:
 IMPLEMENTATION, RESULTS AND EVALUATION

28

requirements specified in natural language tend to inappropriate interpretations, the requirements are most

often specified in natural language[7, 8]. So, it is necessary to develop the approaches whichhandle the

ambiguities in user requirement specifications. Manually detecting and resolving ambiguity from software

requirements is a boring, time consuming, cause errors, and therefore expensive process. So, an approach to

detect and resolve ambiguities automaticallyfrom the requirements statement is needed.

2. DARA Architecture

This section provides an architectural description of the DARA system. It was developed to be modular,

extensible, and simple to utilize. We develop an automated system to detect and resolve ambiguities from

full text documents. The DARA architecture is shown in Figure 1. The initial input is a complete

requirement text. The output is unambiguous requirement texts.

Figure 1DARAArchitecture

The system consists of three major functional process modules

2.1 The Text Preprocessing Module

The Text preprocessing module consists of four stages as shown in Figure 2.

 Sentence splitter: Each sentence is isolatedfrom the input text and is returnedasset of strings.

 Tokenizer: Each sentence is capturedas an input and is separatedinto tokens for examplewords,

numbers and punctuation.

 Parts of speech (POS tagger):The words in a documentare determined to a specific part of speech.

 Syntactic parser: sequences of words are changed into structures that show how the sentence’s

partsconnect to each other. This phaseassists us in recognizing the fundamental parts in each

sentence such as subject, object, verb…etc[9].

Figure 2 The Text Preprocessing Module

2.2 The Ambiguity Detection Module

This module could apply a several ambiguity measures to a requirement specification to recognize possibly

ambiguous sentences. The core goals for this tool are: to detect which sentences in a natural language

requirement specification are ambiguous and, for each ambiguous sentence, identify the ambiguity word

IJICIS, Vol.18 No.1

29

and ambiguity type. And calculate the percentage of each ambiguity typein the document. Figure 3 shows

The Ambiguity Detection Module architecture.

Figure 3The Ambiguity Detection Module

Dictionary is the fundamental element of ambiguity detection whichcontains the ambiguity indicators[10]in

the documents. Ambiguous words that outcome from misinterpreted requirements are analyzed and saved

into the dictionary. The major goal of this phase is to check and seeif the wordsin software requirements

specification document are ambiguous or unambiguous. There are five types of ambiguity Lexical

Ambiguity, Referential Ambiguity, Coordination Ambiguity, Scope Ambiguity, Vague. So we identify

indicators of each type.

i. Identify Lexical Ambiguity

The Lexical dictionary contains the possible ambiguity indicators such as: bound, break, call, content,

continue, contract, count, direct, even, express, form, forward, function, get, job, level, name, notice,

number, out, part, position, record, reference, return, set, source, special, standard, string, subject, switch,

tail, throw, throw, throw, translate, try, under, value ,and way.

ii. Identify Referential Ambiguity

The Referential dictionarycontains the possible ambiguity indicators such as: I, he, she,it, me, her,

him,them,hers, his, its, your, their, our,herself, himself, itself, ours, ourselves,

yourself,themselves,yourselves, that, theirs, these, they, this, which, who, you, yours,

someone,anyone,everyone,somebody, anybody,everybody,something, anything,and everything.

iii. Identify Coordination Ambiguity

The Coordination dictionarycontains the possible ambiguity indicators such as: and also, and, and/or, but, if

and only if, if then, or, and unless.

iv. Identify Scope Ambiguity

The Scope dictionarycontains the possible ambiguity indicators such as: a, all, any, each, few, little, many,

much, not, several, and some.

Osama et al: DETECTING AND RESOLVING AMBIGUITY APPROACH IN REQUIREMENT SPECIFICATION:
 IMPLEMENTATION, RESULTS AND EVALUATION

30

v. Identify Vague

The Vague dictionary contains the possible ambiguity indicators such as: available, common, capability,

consistent, easily, easy, effective, efficient, full, general, maximum, minimum, powerful, particular, quickly,

random, recent, sufficient, sufficiently, sequential, significant, simple, useful, and various.

2.3 The Ambiguity Resolving Module

Finally, this module focuses in removing and resolving the ambiguity. For each ambiguous sentence,

resolve the ambiguity in the sentence automatically as the final step using resolving rules, and therefore

improve the natural language requirement specificationdocument. Figure 4 shows The Ambiguity

Resolving Module architecture.

Figure 4The Ambiguity Resolving Module

The resolving ambiguity approach uses the following common rules to check if a sentence contains an

ambiguity:

Rule 1: when sentence containing not only, but also, as well as, both, but, and, and also, or, and/or,X /Y,

either, whether, otherwise, meanwhile, whereas, on the other hand split it to two sentences.
Rule 2: when sentence containing unless, replace with if not.
Rule 3: when sentence containing a, an, all, any, some, every, several replace with each.
Rule 4: when sentence containing should, will, would, may, might, ought to replace with shall.
Rule 5: when sentence containing There is X in Y, X exists inY replace with Y has X.
Rule 6: when sentence containing anaphora or pronoun such as they or them replaces with the farthest

noun.
Rule 7: when sentence containing that replace with each of which.

Rule 8: when sentence containing only, also, almost, even, hardly, just, merely, nearly, and really put

itafterthe first verb.

Rule 9: when sentence containing until, up to, at, during, duration and including, through, by, or after

add only before it.
Rule 10: when sentence containing and, or in same sentence addparentheses.

IJICIS, Vol.18 No.1

31

Rule 11:when sentence containing many replace with each of many.

Rule 12:when sentence containing few replace with each of few.
Rule 13:when sentence containing for up to replace with for up to and including.
Rule 14: when sentence containing plural nouns add each before it.

3. DARA implementation, results and analysis

DARA was developed using the openNLP and Java language. The Apache OpenNLP library is aJava

libraryopen source and machine learning depend on toolkit for the handling of natural language

document.OpenNLPsupportsNLP services like sentence segmentation,tokenization, part of speech tagging,

parsing, chunking, named entity extraction, and coreference resolution. These services are required to

implement more advanced text processing tasks. The OpenNLP library was used to build an effective text

processing service. In this section the screenshot of DARA is provided. The graphical user interface is

shown to facilitate in the description. Figure 5 show the GUI when the tool is in the run state. The DARA

GUI is composed of four principal windows:

 Input Window—shows the content of the document file containing the requirements to be detected

ambiguity and resolved and analyzed.

 Output Window—showsthe detected and resolved software requirement specification.

 Dictionary Window—shows the content of the dictionaries and contains function buttons for

dictionary handling.

 Analysis Window—shows total ambiguities present in the software requirement specification

document and percentage ofall ambiguity types and graphical representation.

Figure 5 DARA User Interface

3.1 Inputs Data

Osama et al: DETECTING AND RESOLVING AMBIGUITY APPROACH IN REQUIREMENT SPECIFICATION:
 IMPLEMENTATION, RESULTS AND EVALUATION

32

An analysis of real requirement documents taken from industrial software projects was performed by

DARA, in order to test the tool and understand if it may provide a real support to the improvement of the

quality of natural language requirements in an industrial environment. The requirement specification

documents that were analyzed come from different application domains. The total set of software

requirement specification documents is composed of 36 items. The requirements documents were collected

from different websites. Number of lines and source of sample software requirement specification

documents are presented in Table1.

Table 1Requirements Specification Documents Details

ID Title #Sentences Link

D1 ECMA Standard ECMA-262 34961 http://www.ecma-international.org

D2 ™FlexRay 17133 https://svn.ipd.kit.edu

D3 Landsat Processing System 14726 http://research.it.uts.edu.au

D4 The investigation and control of outbreaks 9440 http://goo.gl/Sv4Ebu

D5 German Health Professional Card 9086 http://www.dkgev.de

D6 Joint Mapping Toolkit 7341 http://research.it.uts.edu.au

D7 VoteCal 3070 http://elections.cdn.sos.ca.gov

D8 Communication Services for DII 2749 http://research.it.uts.edu.au

D9 Foodborn outbreak management 2355 http://goo.gl/pTlgp9

D10 Outbreak management guidelines for healthcare 2099 http://goo.gl/EcYVEi

D11 WHO guidelines for epidemic preparedness 2094 http://goo.gl/PK9yn7

D12 Application to clinical and Public Health 1885 http://goo.gl/hVVy1Y

D13 Document for the Labor Market Information 1856 http://research.it.uts.edu.au

D14 SplitPay 1573 https://www.cise.ufl.edu

D15 Pacemaker 1378 https://svn.ipd.kit.edu

D16 A-7E Avionics System 1339 https://svn.ipd.kit.edu

D17 MODIS Science Data Processing Software 1117 http://research.it.uts.edu.au

D18 PHEMCE strategy 1064 http://goo.gl/hYaipm

D19 Civil Protection Service Resource System 1014 https://svn.ipd.kit.edu

D20 Defense Information Infrastructure 769 http://research.it.uts.edu.au

D21 Coincidence Matrix in the ATLAS Muon 596 http://research.it.uts.edu.au

D22 Post Grass System 516 http://research.it.uts.edu.au

D23 Light Control System 427 http://research.it.uts.edu.au

D24 E-Store Project 419 https://www.utdallas.edu

D25 University Library Information System 408 https://svn.ipd.kit.edu

D26 Developing a management system 401 http://goo.gl/0l5sth

D27 Ludo 398 https://svn.ipd.kit.edu

D28 Whois Protocol 187 http://www.ietf.org

D29 Display Management System 91 https://svn.ipd.kit.edu

D30 Cable TV Package Purchase 79 https://svn.ipd.kit.edu

D31 ATM Simulation 33 http://nlrp.ipd.kit.edu

D32 Sogno Hotel Reservation Service 24 https://svn.ipd.kit.edu

D33 Library 18 http://nlrp.ipd.kit.edu

D34 Ambulance Despatching System 17 https://svn.ipd.kit.edu

D35 Address Book 14 http://nlrp.ipd.kit.edu

D36 Mellor's Steam Boiler 7 http://nlrp.ipd.kit.edu

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://svn.ipd.kit.edu/nlrp/public/FlexRay/FlexRay%E2%84%A2%20Protocol%20Specification%20Version%203.0.1.pdf
http://research.it.uts.edu.au/re/LPS7-SRS.pdf
http://goo.gl/Sv4Ebu
http://goo.gl/Sv4Ebu
http://www.dkgev.de/pdf/940.pdf
http://research.it.uts.edu.au/re/JMTK-DII.pdf
http://elections.cdn.sos.ca.gov/votecal/bidders-library/pdf/use-cases/requirements-specification-v2.pdf
http://research.it.uts.edu.au/re/Comms-Services-DII.pdf
http://goo.gl/pTlgp9
http://goo.gl/pTlgp9
http://goo.gl/EcYVEi
http://goo.gl/EcYVEi
http://goo.gl/PK9yn7
http://goo.gl/PK9yn7
http://goo.gl/hVVy1Y
http://goo.gl/hVVy1Y
http://research.it.uts.edu.au/re/CONOPS.doc
https://www.cise.ufl.edu/class/cen3031sp13/SRS_Example_1_2011.pdf
https://svn.ipd.kit.edu/nlrp/public/Pacemaker/PACEMAKER.pdf
https://svn.ipd.kit.edu/nlrp/public/A-7E/Bass_2E_ch03_CaseStudy.pdf
http://research.it.uts.edu.au/re/MODIS.pdf
http://goo.gl/hYaipm
http://goo.gl/hYaipm
https://svn.ipd.kit.edu/nlrp/public/CPS%20-%20Civil%20Protection%20Service/SRS%20CPS%20-%20Civil%20Protection%20Service%20Resource%20Management%20System%20.pdf
http://research.it.uts.edu.au/re/XMLSRSv02.pdf
http://research.it.uts.edu.au/re/Coincidence-Matrix.pdf
http://research.it.uts.edu.au/re/PostGrass_SRS.pdf
http://research.it.uts.edu.au/re/light-control-system-pd.pdf
https://www.utdallas.edu/~chung/RE/Presentations07S/Team_1_Doc/Documents/SRS4.0.doc
https://svn.ipd.kit.edu/nlrp/public/ACME%20University%20Library%20Information%20System/ERS%20ACME%20-%20University%20Library%20Information%20System%20.pdf
http://goo.gl/0l5sth
http://goo.gl/0l5sth
https://svn.ipd.kit.edu/nlrp/public/Ludo/Ludo-Karlsruhe.pdf
http://www.ietf.org/rfc/rfc3912.txt
http://www.ietf.org/rfc/rfc3912.txt
https://svn.ipd.kit.edu/nlrp/public/Display%20Management%20Exam/SRS%20Display%20Management%20.pdf
https://svn.ipd.kit.edu/nlrp/public/Cable%20TV%20package%20contract%20system%20(TV2P)%20Exam/SRS-TV_for_exam.pdf
http://nlrp.ipd.kit.edu/index.php/ATM_Simulation
http://nlrp.ipd.kit.edu/index.php/ATM_Simulation
https://svn.ipd.kit.edu/nlrp/public/SognoHotelReservationService/SognoHotelReservationService.txt
http://nlrp.ipd.kit.edu/index.php/Library
https://svn.ipd.kit.edu/nlrp/public/Ambulance%20Despatching%20System/LAS%20original.txt
http://nlrp.ipd.kit.edu/index.php/Address_Book
http://nlrp.ipd.kit.edu/index.php/Address_Book
http://nlrp.ipd.kit.edu/index.php/Mellor%27s_Steam_Boiler_Example

IJICIS, Vol.18 No.1

33

3.2 Outputs Data

The results of this type of validation have been very interesting.They are presented in the Table 2that shows,

for each evaluated document, the number of indicators’ occurrencesof all the datasets. It displays the total

numbers of ambiguities occur in software requirement specification documents and percentages of

lexical,referential, coordination,scope and vague ambiguity for each document of software requirement

specification. All experiments were executed on a 2.3 GHz Intel Core i5 with 4 GB of memory.

Table 2The Occurrences of The Possible Ambiguities for each Indicator

ID

Number

of Lexical

Ambiguity

Number of

Referential

Ambiguity

Number of

Coordination

Ambiguity

Number

of Scope

Ambiguity

Number

of Vague

Ambiguity

Number of

Detected

Sentences

Number of

Resolved

Sentences

Time

D1 38.8% 12.7% 8.8% 20.6% 19.1% 56.4% 44.6% 24min

D2 37.6% 11.8% 10.8% 19.6% 20.3% 58.4% 55.6 % 8 min

D3 47.8% 10.9% 14.9% 13.4% 13.1% 35.8% 46.2% 4 min

D4 22.8% 14.2% 19.5% 16.9% 26.5% 65.2% 62.3% 4 min

D5 44.0% 8.1% 13.8% 13.1% 21.0% 36.5% 42.7% 4 min

D6 33.7% 7.5% 19.6% 20.2% 19.0% 32.8% 65.0 % 2 min

D7 36.0% 13.0% 12.2% 11.7% 27.1% 38.3% 50.3 % 1min

D8 43.2% 7.5% 18.6% 14.2% 16.4% 49.2% 49.9% 1 min

D9 20.7% 13.0% 22.3% 14.3% 29.7% 68.2% 73.4 % 1 min

D10 24.3% 12.3% 22.4% 16.8% 24.2% 72.3% 73.4 % 1 min

D11 22.4% 13.0% 21.6% 17.8% 25.2% 59.2% 69.9% 1 min

D12 25.1% 14.2% 22.5% 14.8% 23.4% 57.2% 57.8% 53 sec

D13 28.1% 9.4% 20.8% 13.7% 28.0% 76.8% 83.6 % 55 sec

D14 28.2% 16.0% 13.4% 21.7% 20.8% 52.3% 67.4 % 32 sec

D15 36.4% 7.9% 18.3% 16.8% 20.6% 43.0% 58.8% 36 sec

D16 28.9% 23.2% 12.4% 18.1% 17.4% 65.0% 61.4% 34 sec

D17 40.7% 4.3% 19.7% 8.7% 26.7% 47.9% 38.9% 48 sec

D18 21.4% 14.4% 29.7% 9.0% 25.6% 63.9% 75.0 % 50 sec

D19 23.8% 17.3% 15.2% 19.8% 24.0% 73.1% 62.6% 46 sec

D20 26.8% 14.4% 22.2% 18.7% 17.9% 51.4% 67.6% 52 sec

D21 38.3% 10.6% 11.7% 12.0% 27.5% 55.4% 50.3% 30 sec

D22 30.2% 12.2% 15.0% 18.2% 24.4% 57.0% 54.4% 19 sec

D23 47.1% 9.3% 9.7% 21.1% 12.8% 65.6% 62.9% 23 sec

D24 31.9% 16.8% 18.0% 15.1% 18.3% 39.1% 58.5% 18 sec

D25 29.7% 16.8% 13.3% 18.7% 21.4% 61.0% 55.8% 19 sec

D26 20.5% 31.0% 18.0% 11.6% 18.9% 80.5% 73.1% 30sec

D27 43.7% 13.2% 6.8% 21.6% 14.7% 18.3% 53.4% 17sec

D28 18.9% 21.4% 19.9% 20.9% 18.9% 51.3% 66.7% 40 sec

D29 26.7% 16.3% 23.0% 12.6% 21.5% 54.9% 72.0% 17sec

D30 24.2% 17.5% 11.7% 17.5% 29.2% 51.9% 82.9% 22sec

D31 23.5% 8.2% 12.4% 30.0% 25.9% 84.8% 96.4% 32sec

D32 27.9% 17.6% 11.8% 26.5% 16.2% 100.0% 79.2% 28sec

D33 28.8% 1.7% 20.3% 39.0% 10.2% 88.9% 100.0% 12sec

D34 13.7% 9.8% 5.9% 47.1% 23.5% 76.5% 84.6% 18sec

Osama et al: DETECTING AND RESOLVING AMBIGUITY APPROACH IN REQUIREMENT SPECIFICATION:
 IMPLEMENTATION, RESULTS AND EVALUATION

34

D35 40.8% 9.9% 12.0% 21.8% 15.5% 85.7% 100.0% 22sec

D36 45.0% 2.5% 12.5% 27.5% 12.5% 100.0% 100.0% 25sec

Figure 6 shows that some particular ambiguities are more frequently detected than others by DARA.

Especially lexical, scope and vague ambiguity seems to be the types of ambiguityimpacting in a large part

of the requirement sentences of documents. Figure 6 shows that document 3 demonstrate a decrease in

percentage distribution of all ambiguity types detected because of the document domain(Document 3 about

satellite) and it shows that document 26 demonstrate an increase in percentage distribution of all ambiguity

types detected because of the document domain covered in dictionaries.

IJICIS, Vol.18 No.1

35

Figure 6 Percentage distribution of all ambiguity types detected

Figure 7 shows the percentage of each type of ambiguities is detected by DARA.The outcomes of the use

of DARA on these 36 case studies show that the occurrences of the possible ambiguities are significantly

high around 60% of the total number of requirements sentences (lexical ambiguity 37%, referential

ambiguity 9%, coordination ambiguity 13%, scope ambiguity 25% and vague 16%).Figure 8 shows the

numbers of detected and resolved sentences by DARA. The outcomes of the use of DARA on these 36 case

studies show that the number of detected sentences that have possible ambiguities and the number of solved

sentences are increased when the number of sentences increased. DARA solve 67% of ambiguities in the

total number of requirements sentences.

Figure 7 Percentage distribution of ambiguity types detected Figure 8 Percentage distributions of detected and resolved sentences

4. Conclusion

We have discussed that ambiguity is common in natural language requirements. When different

stakeholders understand the same text differently, system incorrectly implementedriskbeing high [11]. So

we implement DARA to detect and resolve ambiguities.According to the defined approach, DARA doesn’t

force the requirement engineers to follow a particular standard or style in writing [12].We execute our

approach on 36 case studies. DARA can detect lexical ambiguity, referential ambiguity, coordination

ambiguity, scope ambiguity, vague. It can measure the percentage of each ambiguity type. It can solve 67%

of ambiguities in NL requirements specification documents. In this paper,by using a rule based approach

Osama et al: DETECTING AND RESOLVING AMBIGUITY APPROACH IN REQUIREMENT SPECIFICATION:
 IMPLEMENTATION, RESULTS AND EVALUATION

36

we proved that it is possible to identify and resolve ambiguity automatically in natural language

requirements. We employed algorithm to recognize ambiguities from sentences using dictionaries. Our aim

is to enhance the requirements quality by assist requirements analysts to detect and resolvepossible

ambiguity requirements. In future work, we will try to extend our work to convert requirements

specification documents to UML diagrams.

References

[1] Basili, Victor R., Scott Green, Oliver Laitenberger, FilippoLanubile, Forrest Shull, SivertSorumgard.

1995. The Empirical Investigation of Perspective-Based Reading. Technical report the empirical

investigation of perspective based reading(pp. 133-164).

[2] Nuseibeh, B., & Easterbrook, S. 2000, May. Requirements engineering: a roadmap. In Proceedings of

the Conference on the Future of Software Engineering (pp. 35-46).

[3] Belev, G. C. 1989, January. Guidelines for specification development.InReliability and Maintainability

Symposium, ProceedingsIEEE, Annual (pp. 15-21).

[4] Christel, M. G., & Kang, K. C. 1992. Issues in requirements elicitation (No.CMU/SEI-92-TR-12).

CARNEGIE-MELLONUNIV PITTSBURGH PA SOFTWARE ENGINEERING INST.

[5] Donald G. Firesmith. 2007. Common Requirements Problems, Their Negative Consequences, and

Industry Best Practices to Help Solve Them. In Journal of Object Technology, vol. 6, no. 1, January-

February 2007, (pp. 17-33)

[6] Berry, D.M., Kamsties, E., Krieger, M.M.2003: From contract drafting to software specification:

Linguistic sources of ambiguity, http://se.uwaterloo.ca/˜dberry/handbook/ambiguityHandbook.pdf.

[7] Fabbrini, F., M. Fusani, S. Gnesi, and G. Lami. 2001. The Linguistic Approach to the Natural Language

Requirements Quality: Benefit of the use of an Automatic Tool. SEW’01 proceeding of the 26th annual

NASA Goddard Software En gineering Workshop, IEEE Computer Society Washington, DC, USA, 97.

[8] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari,2003.Applications of Linguistic Techniques for Use

CaseAnalysis," Requirements Engineering, vol. 8, (pp. 161-170).

[9] Nancy Ide and Jean Véronis, 1998, Introduction to the special issue on word sense disambiguation: The

state of the art. Computational Linguistics - Special issue on word sense disambiguation, Volume 24 Issue

1, (pp. 2-40).

[10] Sri Fatimah Tjong, 2008, Avoiding ambiguity in requirements specifications.Thesis submitted to the

University of Nottingham for the degree of Doctor of Philosophy.

[11] Sven Körner and TorbenBrumm, 2009, RESI-A natural language specification improver. IEEE

International Conference on Semantic Computing (ICSC),(pp. 1-8).

[12] Sommerville, I. and Sawyer, P, 1997,Requirements engineeringA good practice guide. Chichester:

John Wiley & Sons Ltd.

