

IJICIS, Vol.18, No. 1

1

An Efficient Partitioning Technique in SpatialHadoop

Ahmed Elashry Abdulaziz Shehab Alaa. M. Riad Ahmed Aboul-fotouh
Information System

Department,

Faculty of Computers and

Information,

Kafr El-Sheikh University,

Egypt

Information Technology

Department, Faculty of

Computers and Information,

 Mansoura University, Egypt

Information System

Department,

 Faculty of Computers and

Information,

 Mansoura University, Egypt

Information Technology

Department, Faculty of

Computers and

Information,

 Mansoura University,

Egypt

Ahmed_Elashry@fci.kfs.edu.eg abdulaziz_shehab@mans.edu.eg amriad2000@yahoo.com elfetouh@gmail.com

Abstract: SpatialHadoop is a Hadoop framework supporting spatial information handling in light of

MapReduce programming worldview. A huge number of studies leads to that SpatialHadoop outperforms

the traditional Hadoop in both overseeing and handling spatial data operations. Indexing at

SpatialHadoop makes it better than Hadoop. However, the design of a proficient and powerful indexing

technique is stay as a major challenge. This paper presents a novel partitioning technique in

SpatialHadoop. It has a better performance compared to other partitioning techniques. The proposed

technique performance has been studied in several cases utilizing a real datasets on a spatial range and k-

Nearest-Neighbour (kNN) queries. The experimental results have demonstrated the efficiency of the

proposed technique.

Keywords: Spatial Data indexing; Spatial partitioning; Cloud computing; SpatialHadoop; PR-Tree.

1. Introduction

Geospatial big data is comprised of both information and data that generated in so many ways. This can be

done either passively or actively. Passively with little or no interaction such as utilizing different types of

apps, websites, smartphones, satellites, in-situ sensor networks, sensing devices, etc. Actively with more

interaction such as sharing GPS tracks, geo-locating social media posts, contributing to Volunteered GIS

projects, etc. Extracting knowledge from such a big geospatial data has become an extensive challenge. The

traditional geographical information systems (GISs) cannot deal with these aforementioned data [1, 2]. It

lacks the adaptability of basic incorporated frameworks (e.g., local files frameworks and spatial database

management systems (SDBMS)). Therefore, utilizing geographical information systems with cloud

computing represents a new trend toward the progression of geospatial big data storing, processing, and its

applications for GISs. Cloud computing represents the largest Information Technology (IT) transformation

mailto:Ahmed_Elashry@fci.kfs.edu.eg
mailto:abdulaziz_shehab@mans.edu.eg
mailto:amriad2000@yahoo.com
mailto:elfetouh@gmail.com

Elashry et al: An Efficient Partitioning Technique in SpatialHadoop

2

and migration to the cloud become a mandatory demand. Doubtlessly, Cloud computing is expected to be

the area of the most substantial growth and the most significant development.

Recently, Hadoop [3, 4] released in 2007 as an open source cloud-computing platform. Hadoop was written

in Java and funded by Apache. It is implemented for Google MapReduce. Hadoop utilizes MapReduce [5-

8] to build an effective large-scale data processing structure. MapReduce is a programming paradigm for

distributed data processing [9]. It provides high scalability and fault tolerance mechanisms. Hadoop

represents a solution for scalable big data processing in a variety of applications. Unlike traditional

technologies which suffer low execution and the complexity experienced when processing and analysing

big data, Hadoop can easily perform many operations in just a few seconds because it has a parallel clusters

processing and a distributed file system. Hadoop is not a schema oriented so it can retain any kind of data,

structured or not, from various sources. These heterogeneous data can be joined and processed in many

arbitrary ways and enhancing further analysis [10].

In this paper, a novel partitioning technique in SpatialHadoop is presented. The proposed technique takes

into consideration the desired number of partitions in partitioning different spatial datasets. Additionally,

the spatial proximity of these spatial data is highly preserved. An expansive set of experiments on a

different real datasets are executed to prove our contributions. The indexing time and query execution time

is documented. The results show that the proposed technique overcomes all other techniques in terms of

functionality and performance.

This paper is organized as follows: Section 2 presents related works on SpatialHadoop partitioning and

indexing techniques. Section 3 presents the proposed technique. Section 4 illustrates the experimental

configurations, the performance measures, and the results of the experimentations. Finally, Section 5

presents the conclusion and discusses future research directions.

2. Related work

Last few years, many researchers are oriented towards the usage of both Hadoop and the MapReduce

environment that works on big geospatial data. Their work can be classified into two main categories: (1)

spatial-operation oriented and (2) Full-system oriented. For the first, it is focus on a specific spatial

operation. In this category, the essence idea is to build the MapReduce functions for a specific spatial

operation. It can be viewed as an upper layer that works upon traditional Hadoop. Instances of such

researches incorporate: (1) Range query [11-13], the input dataset is investigated, and each object is

analyzed with respect to the query range. (2) k Nearest Neighbour (kNN) query [12, 14, 15], locates the k

closest objects, utilizing distance metrics, from a specific object. (3) All Nearest Neighbour (ANN) query

[9, 16], having N objects and process to know which is the closest neighbor for each one of those N objects,

objects are divided by their Z-values to find out the result. (4) Reverse Nearest Neighbour (RNN) query

[14], a reverse nearest neighbor query is to scan for all objects which a specific location is their closest

neighbor.

For the second, five systems were presented: (1) Parallel-Secondo [17] is a parallel and distributed spatial

DBMS. it utilizations Hadoop to work as a distributed task scheduler, (2) MD-HBase [18] is a Hadoop non-

IJICIS, Vol.18, No. 1

3

relational database that supports multidimensional indexes. It represents as an expansion of HBase [19], (3)

Hadoop-GIS [20] is a Hadoop information distribution center foundation that utilizes a uniform grid index

for different spatial operations. it represents an expansion of Hive [4], and (4) GeoSpark [21, 22] is an

execution of a few spatial operations on the Apache Spark. It is in-memory huge information framework. It

focuses on in-memory processing for better performance.

All aforementioned systems are built as an upper layer over Hadoop. They deal with Hadoop as a black box

[23], and subsequently, they still have the limitations of the Hadoop system [24]. Hadoop does not support

spatial data. Hadoop processes both non-spatial data and spatial data in a similar way. Hadoop has

confinements and execution bottlenecks. Moreover, As Hadoop supports uniform grid index only, these

systems are only suitable for uniform data distribution. These systems developed as a layer on top of

Hadoop, so there is no way for the MapReduce programs to access any constructed spatial index. Thus,

new spatial operations cannot be developed.

Unlike these systems, SpatialHadoop [25, 26] is developed to insert spatial data inside the essence of

Hadoop. SpatialHadoop represents a Hadoop framework suited for spatial operations. By such a way,

SpatialHadoop become more efficient to deal with spatial query processing. Moreover, SpatialHadoop

introduces standard spatial indexes and MapReduce components that allow researchers and developers to

implement new spatial operations efficiently in the framework [25, 27].

In SpatialHadoop, spatial data is splitted according to their spatial closeness into partitions. These partitions

are disseminated to the cluster nodes where they are indexed later. SpatialHadoop has the ability to support

a set of spatial index structures utilizing a set of partitioning techniques like grid [23], R-tree [28], R+-tree

[29], Z-curve [30, 31], Hilbert curve [32], Quadtree [33], and KD-tree [34, 35]. Each one of these

techniques were developed in Hadoop Distributed File System (HDFS). Thus allowing developing effective

algorithms for query processing that search a fraction of the data and still provide the valid query result.

Subsequently, this makes SpatialHadoop special unique regarding supporting data distribution in geospatial

data [25].

3. The proposed technique

Figure 1 shows the four layers of SpatialHadoop: (1) The Language layer named Pigeon [36] which enables

users to assign their spatial queries to the framework without worrying about the processing details. It

adapted to the Open Geospatial Consortium (OGC) standard. By such a way, the Pigeon language could

easily integrate with different systems through exporting/importing data in OGC standard formats. (2) The

Operations / Query Processing layer includes the spatial operations upheld by SpatialHadoop. Three main

SpatialHadoop’s operations are range query, kNN, and spatial join. In addition, The SpatialHadoop query

processing engine based on Hadoop MapReduce allows users to develop custom spatial operations that

utilizes the constructed spatial indexes. (3) The MapReduce layer responsible for enabling the access to the

spatial indexes. It contains two components, SpatialFileSplitter and SpatialRecordReader. The

SpatialFileSplitter accesses the global index to return only file partitions that are related to the required

query. On the other hand, the SpatialRecordReader works at the resultant partitions using the local index.

(4) The Storage / Spatial Indexing layer has a two-layer index structure (one global index and many local

Elashry et al: An Efficient Partitioning Technique in SpatialHadoop

4

indexes). The global index splits data on the cluster nodes. Thereafter, using local index, each node indexes

its partition separately. The separation of global and local indexes makes it easy to use MapReduce

programming model.

Building spatial index in SpatialHadoop goes into three stages: partitioning, local indexing, and global

indexing [25]. For the first, the input data is divided to a number of partitions taking into consideration

spatial proximity of different objects to be stored in the same partition. Each partition should be 64 MB to

be stored in one HDFS block. Regardless of the spatial index type, the number of partitions are calculated

based on the input files size, file block size, and the overhead of storing local indexes. Then, each partition

is defined by a rectangle, differently according to the underlying index being constructed. Meanwhile, a

MapReduce job initiated to physically splitting the input file. For the second, in local indexing stage, a

local index structure is built upon the data contents of each partition. Here, records assigned to each

partition are entered to a reduce function. The reduce function creates the local spatial index for that

partition and then stores it in the local node index. For the last, all local indexes are aggregated into one file

for all partitions. Then, the master node uses bulk loading and the rectangular boundaries of all file blocks

as the index key to build an in-memory global index.

IJICIS, Vol.18, No. 1

5

Figure 1. SpatialHadoop system architecture.

Elashry et al: An Efficient Partitioning Technique in SpatialHadoop

6

Figure 2. The history of PR-Tree [37].

In order to improve the performance of SpatialHadoop indexing and partitioning phase, a new indexing and

partitioning technique is proposed. Our proposal is mainly based on the Priority R-tree (PR-Tree) [38].

Figure 2 summarizes the history of Priority R-tree stages. The proposed technique starts, as shown in

Algorithm 1, by calculating the maximum number of shapes that can be fit in one partition (leaf). Then,

each input shape is converted to a 4D point. After that, a root node is created and the total number of shapes

is checked. If it is less than or equal to the maximum number of shapes that can be fit in one partition (leaf),

if so then the algorithm generates a scalar priority leaf 𝜈𝜌. Unless, it generates a priority leaf 𝒱𝑝
𝑥𝑚𝑖𝑛 that

stores a B shapes with minimal x-coordinates. then, the algorithm is process in the same way to produce the

other three priority On the other hand, if the root node has a number of shapes higher than 4B, then a two

sub PR-Trees and a four-priority leaves are produced. The algorithm recursively applies these calculations

until no shapes remaining to be filled.

Algorithm 1: Building 4DPR-tree index

Function 4DPRTree_Index_Building (S, PNum)

 Input: S is a spatial data file that has a set spatial objects and PNum is the number of required partitions

 Output: a 4DPR-Tree as a stack

Method:

1. Calculate B, which is the number of object, should be stored per each partition (leaf), by dividing the total

number of shapes in the file by the desired number of partitions.

2. Convert each object in the input data file to a 4D point with (𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) and store it in a new

stack.

3. Create a root node that stores the minimum boundary rectangle of all input objects with depth equal to zero

IJICIS, Vol.18, No. 1

7

and store that root node in a new stack, named tree_stack

4. Foreach node in the tree_stack do // starting from the root node

4.1. if the number of objects <= B then

4.1.1. Create a single priority leaf that stores these objects

4.2. Else If the number of objects <= 4* B then

4.2.1. Create the first priority leaf that stores a B objects with the lowest (𝑥𝑚𝑖𝑛) values.

4.2.2. If the number of remaining objects <= B then

4.2.2.1. Create a single priority leaf that stores the remaining objects.

4.2.3. Else

4.2.3.1. Create the second priority leaf that stores a B objects with the lowest (𝑦𝑚𝑖𝑛) values.

4.2.3.2. If the number of remaining objects <= B then

4.2.3.2.1. Create a single priority leaf that stores the remaining objects.

4.2.3.3. Else

4.2.3.3.1. Create the third priority leaf that stores a B objects with the highest (𝑥𝑚𝑎𝑥) values.

4.2.3.3.2. Create the fourth priority leaf that stores the remaining objects.

4.3. Else

4.3.1. Create the first priority leaf that stores a B objects with the lowest (𝑥𝑚𝑖𝑛) values.

4.3.2. Create the second priority leaf that stores a B objects with the lowest (𝑦𝑚𝑖𝑛) values.

4.3.3. Create the third priority leaf that stores a B objects with the highest (𝑥𝑚𝑎𝑥) values.

4.3.4. Create the fourth priority leaf that stores a B objects with the highest (𝑦𝑚𝑎𝑥) values.

4.3.5. Calculate the µ value equal to (⌊(⌊(𝑛 − 4 ∗ 𝐵) (4 ∗ 𝐵)⁄ ⌋ 2⁄)⌋ ∗ 4 ∗ 𝐵) that is used to splitting

the rest of the objects into two subsets.

4.3.6. If current node depth remainder by four equal to zero then split based on (𝑥𝑚𝑖𝑛) values.

4.3.7. Else If current node depth remainder by four equal to one then split based on (𝑦𝑚𝑖𝑛) values.

4.3.8. Else If current node depth remainder by four equal to two then split based on (𝑥𝑚𝑎𝑥) values.

4.3.9. Else, split based on (𝑦𝑚𝑎𝑥) values.

4.3.10. Create a new two sub tree nodes with depth greater than the current tree node depth by one.

4.3.11. Add these two sub trees nodes to the tree_stack.

Elashry et al: An Efficient Partitioning Technique in SpatialHadoop

8

4. Experimentation

4.1 Experimental setup

Amazon cluster consists of one master node and four slave nodes, all of type ‘m3.xlarge’, was used to

perform all the experiments. Each ‘m3.xlarge’ node has 4vCPU Intel Xeon processors with a high

frequency with 15 GB RAM and 2*40 GBSSD storage [39]. All cluster nodes have be configured to run

Linux operating systems with Java 8. Hadoop2.7.2 and SpatialHadoop were installed and configured on

all cluster nodes. A real datasets extracted from OpenStreetMap: Buildings (28.2 GB), Roads (25.9 GB),

Lakes (9 GB), Cities (1.4 GB), and Sports (590 MB) [25] were used to test all partitioning and indexing

techniques.

4.2 Experimental results

Table 4 shows the time in seconds that is required by the gplot function which responsible for plotting

the different real datasets files. It is noted that the proposed 4DPR-Tree has the shortest plotting time for

different datasets. This because 4DPR-Tree consider the preserved spatial proximity of the spatial

shapes.

Table 4. Plotting time of different real datasets

Sports Cities Lakes Roads Buildings

4DPTree 26.443 31.605 72.068 153.031 167.726

Kd-tree 26.453 36.710 77.395 157.994 178.338

Quadtree 41.505 47.256 122.864 254.828 319.729

Z-curve 26.463 36.809 72.339 158.086 187.859

Hilbert 31.643 33.678 72.377 148.016 168.645

STR 31.731 46.691 77.110 153.505 168.187

STR+ 26.561 46.563 77.390 148.431 168.212

Table 5 presents partitions number generated by different partitioning techniques for the different real

datasets. All partitioning techniques except STR, STR+, and Quadtree create the required partitions.

Table 5. Partitions generated by different indexing techniques.

Datasets
Partitions Num.

Sports Cities Lakes Roads Buildings

4DPR-Tree 6 14 87 232 252

KD-Tree 6 14 87 232 252

Quadtree 25 34 246 593 705

Z-curve 6 14 87 232 252

Hilbert 6 14 87 232 252

STR 6 18 91 241 252

IJICIS, Vol.18, No. 1

9

STR+ 6 18 91 241 252

Figure 3. Sports, Cities, Lakes, Roads, and Buildings index building time.

Figure 3 shows Sports, Cities, Lakes, Roads, and Buildings indexing time. 4DPR-Tree has the best index

building time especially for Roads, and Buildings. For the range query, Figure 4 (a, b, and c) shows the

performance of range query on the Sports, Cities and Roads datasets. As noticed, Quadtree performance

rapidly decreased with the changing in query window areas to 10-50% of the input dataset area. The

reason behind that is the partitions number required to be accessed to answer the query is increased as

the query window area is increased. Inversely to Quadtree, the proposed 4DPR-Tree technique

outperforms other methods for 10-50% for the queries with query window 10-50% of the input dataset

area. As it generates the required number of partitions and simultaneously it preserve the spatial

proximity of the input objects.

(a) Sports

Elashry et al: An Efficient Partitioning Technique in SpatialHadoop

10

 (b) Cities

(c) Roads

Figure 4. Sports, Cities, and Roads execution time for Range query.

 (a) Lakes

(b) Buildings

Figure 5. Lakes and Buildings execution time for kNN query.

Figure 5 (a and b) presents the performance of kNN for the Lakes and Buildings with different k values

that has been changed from 1 to 10,000. It is obvious that Quadtree outperforms the other methods.

However, Quadtree does not committed with the required partitions that should be generated. As shown

in table 5, although the required partitions for Lakes and Buildings datasets are 87 and 252, Quadtree has

partitioned the Lakes and Buildings datasets into 246 and 705 partition. Furthermore, the proposed

technique outperforms all other techniques that obligated to the required partitions especially for high k

values (1000, and 10000).

IJICIS, Vol.18, No. 1

11

5. Conclusions and Future Work

In this paper, 4DPR-Tree is proposed as a novel partitioning technique in SpatialHadoop. Various

SpatialHadoop partitioning techniques have been experimentally evaluated. The experiments show that

spatial query processing is very reliant on the size and nature of the dataset. Indexing and partitioning

techniques demonstrate diverging performance with the alternative datasets types. The experimental results

show that Quadtree, STR, STR+ generate a number of partitions higher than the desired and take the

maximum indexing time. In addition, for Range query, all other techniques performance is highly

decreased as the input dataset size and the query window area become larger. On the other hand, 4DPR-

Tree has a better indexing time and a better Range query execution time for all datasets sizes as it generates

the desired number of partitions and highly preserves the spatial proximity of the input objects. Moreover,

for kNN query, the performance of 4DPR-tree becomes better than all other techniques as the k values and

the dataset size become higher. As part of our future work, we will develop new multi-dimensional spatial

data types on SpatialHadoop and a new indexing technique for these data types will be developed with the

goal of further enhancing query response time.

References

1. Li, Z., et al., A spatiotemporal indexing approach for efficient processing of big array-based climate

data with MapReduce. International Journal of Geographical Information Science, 2017. 31(1): p. 17-

35.

2. Cary, A., et al. Leveraging Cloud Computing in Geodatabase Management. in 2010 IEEE International

Conference on Granular Computing. 2010.

3. White, T., Hadoop: The Definitive Guide, O’reilly. 2012.

4. Thusoo, A., et al., Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow.,

2009. 2(2): p. 1626-1629.

5. F.Li, et al., Distributed data management using MapReduce. ACM Comput, 2014(46(3)): p. 31:1-31:42.

6. Doulkeridis, C. and K. Nrvag, A survey of large-scale analytical query processing in MapReduce.

VLDB J, 2014.

7. Eldawy, A., et al., CG_Hadoop: computational geometry in MapReduce, in Proceedings of the 21st

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2013,

ACM: Orlando, Florida. p. 294-303.

8. Dean, J. and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters.

Communications of ACM, 2008. 51.

9. Wang, K. and e. al, Accelerating Spatial Data Processing with MapReduce. ICPADS, 2010.

10. Oussous, A., et al., Big Data technologies: A survey. Journal of King Saud University - Computer and

Information Sciences, 2017.

11. Aly, A.M., et al., Kangaroo: Workload-Aware Processing of Range Data and Range Queries in Hadoop,

in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining. 2016,

ACM: San Francisco, California, USA. p. 397-406.

12. Zhang, S., et al. Spatial Queries Evaluation with MapReduce. in 2009 Eighth International Conference

on Grid and Cooperative Computing. 2009.

Elashry et al: An Efficient Partitioning Technique in SpatialHadoop

12

13. Ma, Q., et al., Query processing of massive trajectory data based on mapreduce, in Proceedings of the

first international workshop on Cloud data management. 2009, ACM: Hong Kong, China. p. 9-16.

14. Akdogan, A., et al. Voronoi-Based Geospatial Query Processing with MapReduce. in 2010 IEEE

Second International Conference on Cloud Computing Technology and Science. 2010.

15. Nodarakis, N., et al., (A)kNN Query Processing on the Cloud: A Survey, in Algorithmic Aspects of

Cloud Computing: Second International Workshop, ALGOCLOUD 2016, Aarhus, Denmark, August

22, 2016, Revised Selected Papers, T. Sellis and K. Oikonomou, Editors. 2017, Springer International

Publishing: Cham. p. 26-40.

16. Sankaranarayanan, J., H. Samet, and A. Varshney, A fast all nearest neighbor algorithm for applications

involving large point-clouds. Comput. Graph., 2007. 31(2): p. 157-174.

17. Lu, J. and R.H. Guting. Parallel Secondo: Boosting database engines with Hadoop. in ICPADS 2012.

18. Nishimura, S., et al., MD-HBase: Design and Implementation of an Elastic Data Infrastructure for

Cloud scale Location Services. DAPD, 2013. 31(2): p. 289–319.

19. HBase. Apache HBase. 2008 [cited 2017 10 JUN]; Apache HBase™ is the Hadoop database. Use it

when you need random, realtime read/write access to your Big Data. This project's goal is the hosting of

very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware.].

Available from: http://hbase.apache.org/.

20. Aji, A., et al., Hadoop GIS: a high performance spatial data warehousing system over mapreduce. Proc.

VLDB Endow., 2013. 6(11): p. 1009-1020.

21. You, S., J. Zhang, and L. Gruenwald, Large-scale spatial join query processing in cloud. ICDE

Workshops, 2015: p. 34-41.

22. Yu, J., J. Wu, and M. Sarwat, GeoSpark: a cluster computing framework for processing large-scale

spatial data, in Proceedings of the 23rd SIGSPATIAL International Conference on Advances in

Geographic Information Systems. 2015, ACM: Seattle, Washington. p. 1-4.

23. Eldawy, A., L. Alarabi, and M.F. Mokbel, Spatial Partitioning Techniques in SpatialHadoop, in

International Conference on Very Large Databases. 2015: Kohala Coast, HI.

24. Siddiqa, A., A. Karim, and V. Chang, Modeling SmallClient indexing framework for big data analytics.

The Journal of Supercomputing, 2017: p. 1-22.

25. Eldawy, A. and M.F. Mokbel, SpatialHadoop: A MapReduce framework for spatial data, in ICDE

Conference. 2015. p. 1352-1363.

26. Maleki, E.F., M.N. Azadani, and N. Ghadiri. Performance evaluation of SpatialHadoop for big web

mapping data. in 2016 Second International Conference on Web Research (ICWR). 2016.

27. Eldawy, A., SpatialHadoop: towards flexible and scalable spatial processing using mapreduce, in

Proceedings of the 2014 SIGMOD PhD symposium. 2014, ACM: Snowbird, Utah, USA. p. 46-50.

28. Guttman, A., R-trees: a dynamic index structure for spatial searching. SIGMOD Rec., 1984. 14(2): p.

47-57.

29. Beckmann, N., et al., The R*-tree: an efficient and robust access method for points and rectangles.

SIGMOD Rec., 1990. 19(2): p. 322-331.

30. Zhang, R. and C.-T. Zhang, A Brief Review: The Z-curve Theory and its Application in Genome

Analysis. Current Genomics, 2014. 15(2): p. 78-94.

31. Zhang, R. and C.-T. Zhang, Z Curves, An Intutive Tool for Visualizing and Analyzing the DNA

Sequences. Journal of Biomolecular Structure and Dynamics, 1994. 11(4): p. 767-782.

http://hbase.apache.org/

IJICIS, Vol.18, No. 1

13

32. Meng, L., et al., An improved Hilbert curve for parallel spatial data partitioning. Geo-spatial

Information Science, 2007. 10(4): p. 282-286.

33. Zhang, J. and S. You, High-performance quadtree constructions on large-scale geospatial rasters using

GPGPU parallel primitives. International Journal of Geographical Information Science, 2013. 27(11): p.

2207-2226.

34. Wei, H., et al., A k-d tree-based algorithm to parallelize Kriging interpolation of big spatial data.

GIScience & Remote Sensing, 2015. 52(1): p. 40-57.

35. Nandy, S.K., et al., K-d Tree based Gridless Maze Routing on Message Passing Multiprocessor

Systems. IETE Journal of Research, 1990. 36(3-4): p. 287-293.

36. Eldawy, A. and M. F. Mokbel, Pigeon: A spatial MapReduce language. 2014. 1242-1245.

37. Davies, J. Implementing the Pseudo Priority R-Tree (PR-Tree), A Toy Implementation for Calculating

Nearest Neighbour on Points in the X-Y Plane. 2011 April 18th, 2011 [cited 2017 18 Aug]; Available

from: http://juliusdavies.ca/uvic/report.html.

38. Arge, L., et al., The priority r-tree: A practically efficient and worst-case optimal r-tree. ACM

Transactions on Algorithms, 2008. 4(1).

39. Amazon. Amazon EC2. 2017 [cited 2017 10 JUN]; Available from: http://aws.amazon.com/ec2/.

http://juliusdavies.ca/uvic/report.html
http://aws.amazon.com/ec2/

	4.1 Experimental setup
	4.2 Experimental results

