
IJICIS, VoI.16 No. 3 July 2016

International Journal of Intelligent Computing and
Information Sciences

MULTITHREAD IN NAMED ENTITY RECOGNITION
Z. M. Rabea 	 M. A. Abu Elsoud 	 M. Z. Rashed

Faculty of Computer and Information Sciences, Mansoura University, - Egypt
carwan22@yahoo.com 	 mohamed_hossieny@yahoo.com 	magdi_z2011@yahoo.com

Abstract: According to Gordon Earle Moore, Every two years, the number of core on a CPU chip is
doubling. So we change our program to use threads for different reasons, program will run faster and
make better use of the multiple CPU/core architecture that you are running on. This paper introduces a
multithreading named entity recognition (NER) approach in Open American National Corpus. Named
entity can be name of person, location, organization, number, date, e-mail, and so on . Using the pooling
technique and get benefits of its computation time in the NER.

Keywords: Named entity recognition; multithreading; pooling; Gate.

1. Introduction

The information extraction (IE) is a subfield that lies under the natural language processing (NLP)
umbrella. The ultimate goal of IE is to deal with natural text in order to produce readable output through
extracting useful information from such text [1]. Various application domains were benefited of IE. For
example, biomedical domain uses IE to extract the names of diseases, genes, proteins, cell type, etc. [2]
Another example is opinion mining where IE is used to extract product review opinions as well as
comparisons from reviews. Also search engines applies IE to extract meta-data to retrieve the required
quires [3].

The task of IE is divided to [I]: Named entity recognition (NER), co-reference resolution, relation
detection and identification of roles. NER is a first step of IE that responsible for identifying and
classifying the entity in the text, entity include proper noun, number, dates, e-mail address, etc. Co-
reference resolution used to collect all expression that refer to the same entity. Relation detection task of
finding relation between pairs of entity such as organization and location. Identification of entity roles
usually deals with filling in a pre-defined event frame slots. Machine translation, information retrieval
and question answering used named entity as pre-processing task. Also NER can used to improve
Search engines by using it to rewrite quires into more formed quires. Its better searching for more
information. To say that NER is good required to extract knowledge. Not only required determine the
type of named entity(NE) which can be noun, adverb, prepositions, adjective, and so on but also
classified each phrase e.g. noun phrase can classified to people, organization, product, companies and so
on . The earlier approaches to recognize NER is handcrafted rule which use in system that involve the
Message Understanding Conference (MUC) shared task. Requiring human intuition and large number
of rule to write simple approach for recognize named entity. System that involve the Conference on
Natural Language Learning (CoNLL) use machine learning approach. There are many different
techniques in machine learning approach. They are supervised learning (SL) techniques, unsupervised

95

Rabea: Et Al: Multithread In Named Entity Recognition

learning techniques, Semi-supervised learning techniques. SL is a very popular approach for NER but
unsupervised learning isn't. Some systems use Semi-supervised learning [2].

SL include Hidden Markov Models (HMM) that is not success in NER but success in other NLP
problems such as speech recognition and part-of-speech tagging, Maximum Entropy Models is a good
choice for NER. It can handle a large number of features and Very successful in general for integrating
information, Support Vector Machines (SVM) applying to NLP task such as chunking and text
classification and performing a non-linear classification, Decision Trees is adequately but the
transformation-based learner is better on NER task (CoNLL 2002) ..., and other.

The data need first to transfer into format fit for previous approaches another words extract necessary
feature from data. Feature selection is the process of determining which subset of features use. Feature
selection useful for redundant variables. Reducing number of features reduce execution time and the
cost of recognition. There are many type of feature. Some feature depend on the word itself such as
morphology features (prefix - suffix), statistical feature (word length), orthographic features (all
uppercase letter-only digit-contain digit-is punctuation-...). Other feature depends on the position of
word such as part of speech tag, and chunking tag. Some system use gazetteer list that containing a list
of location. organizations, days, car, etc. [4, 5].

Many Workshops and conference about NER and IE were held such as MUC, CoNLL, and the Japanese
Multilingual Entity Tasks (MET). Seven MUC conference have been organized by the Defense
Advanced Research Projects Agency (DARPA) since1987 to 1997. A lot of developments in the field of
(English) NER discussed in MUC-6 and MUC-7 conference. Temporal expressions and numerical
expressions and named entity had to be recognize in MUC-6 and MUC-7 conference. The MET
conference look alike the MUC conference but MET for Japanese NER [4]. The first event of CoNLL
organized in July 1997 by SIGNLL (ACL's Special Interest Group on Natural Language Learning).
Since that time until now, every year held a conference to discuss the evolution of the NER. CoNLL
Shared Task on NP chunking in 1999 to Shared Task on Shallow Discourse Parsing in 2015[6].

2. NER existing systems

Three are many existing systems for NER [7] such as BANNER, Stanford NER, Illinois Named Entity
Tagger and GATE and other. BANNER [8] is intended for biomedical text, it is based on conditional
random fields. Stanford NER or CRFClassifier [9] is used particularly for person, location, organization
classes. It is based on conditional random fields. Illinois Named Entity Tagger [10] has two style. The
first tags plain text with named entities such as people, locations, organizations and Misc. The second
uses 18-label type based on the OntoNotes corpus. Illinois Named Entity Tagger uses seed list extracted
from Wikipedia [11].

General Architecture for Text Engineering (GATE) [12] used for all types of computational task
enclose human language. It is used to solve text processing problem. It use machine learning approaches
to recognize NER. It use Maximum Entropy Models and Support Vector Machines. It also use Weka.
Weka is open source software, it consider a collection of machine learning algorithms such as Naive
Bayes, k-Nearest Neighbors and decision tree algorithm. GATE also used JAPE (Java Annotation
Patterns Engine) that is based on regular expressions. GATE contain too set of plugins include, POS
Tagger, Noun Phrase Chunker, parser, Gazetteer list, Ontology Editor, Tokenizer, Sentence Splitter, etc..
GATE support also plugins for several languages: Arabic, French, German, Italian, Chinese, Romanian,
Hindi, Russian, and Cebuano. GATE read data from the following type of document, Plain Text, HTML,
SGML, XML, RTF, Email, CoNLL/IOB, UIMA, and other. The output can save as XML file. It is

96

IJICIS, Vo1.16 No. 3 Juty 2016

important to mention here that GATE system include a complete information extraction system known
as A Nearly-New Information Extraction System (ANNIE) that uses some features such as orthography
features, part of speech tagging, gazetteer list, and others.

3. Multithreading

Before going through the description of the proposed framework, it is important to introduce some
background related to the multithreading due to its effective role in our proposed work. Multithreading
(MT) is a way to allow one program to do multiple task at same time in other mean introduce
parallelism in the program to maximum the utilization of the CPU time [13]. Using multithread can
result in significant performance gains especially when working with multiple core machines. MT aims
to divide works to more thread that execute concurrently. On single processor, thread in java provide
concurrent operation. There are two ways in java to create thread. Thread may be in another class or
subclass of java.long.thread [14].

It is hard to write multithread application because of it is difficult to make parallel algorithm. Other
difficult are deadlock, race condition, and tearing and cache coherency [15]. When the number of task is
more than the number of thread, use the thread pool. Thread pool give every thread one task, other tasks
wait until any thread finish its job. Thread pool service tasks in efficient way by using the
java.util.concurrent package [16]. Thread pool provide the time of creating and destroying thread and its
associated resource for each task, the performance and system stability is better. Thread pool provide
memory, instead of make number of thread equal the task, make little number of thread equal the
potential of machine. Number of threads you can use at the same time is limited.

4. Proposed framework

The aim of this section is to present the proposed framework that relied on the usage of pooling
technique and get benefits of its computation time in the context the NER. Mainly, the proposed
framework is divided into two systems. In the first system, the gate was embedded in the java program
on the other hand, the second system applied pooling which helps in enhancing computation time as
shown in the experimental results. Figure. 1 illustrates the steps of the proposed works while the
following subsections describe these systems in much more details.

After open Gate program installing Gate plugins shown in figure. 1 and all requested files, creating a
new corpus and then adding MASC files to corpus, loading the processing resources that is need
"ANNIE". Running this application, Cl take a lot of time. C2 cannot perform this task as show in
figure.2, the size of Corpus is too big, and the computer is idle. So Using java to embedded gate library
in the program that show in algorithm. 1 but it also take a lot of time so used multithreaded that show in
algorithm. 2.

4.1 Sequence System Steps

1. Adding all gate library and gate.jar to the library of Java, so we can added it to our project. Gate
home, gate plugins and user configuration file should be determined so we can initialized gate.

2. Using PersistenceManager.loadObjectFromFile() to load ANNIE and other plugging need to use
by using .gapp file which making it by developing our GATE processing pipeline in GATE
Developer.

3. Defined the path (p1) for data base on computer for each folder in pl add all text files in this folder
to corpus (array of files).

97

[Gate plugins [masc database 1 rApply.pripougs,ns to!

L

	
word with
annotation

r Gate library

add gate.jar Tokenizer

— Sentence splitter

— Gazetteer lists

Part of Speech
Tl 	Tagger

create corpus

add
GATE_HOME/I

ibP.Jar

Rabea: Et Al: Multithread In Named Entity Recognition

4. Using class ConditionalSerialAnalyserController which apply processing resource methods to each
documents in the corpus.

5. Create an instance of a resource to implementation corpus and document and save original content
and the analysis information about document.

Orthography I
Matcher

Figure 1. The steps of the proposed work

4.2 Sequence System Steps

6. Adding all gate library and gate.jar to the library of Java, so we can added it to our project. Gate
home, gate plugins and user configuration file should be determined so we can initialized gate.

7. Using PersistenceManager.loadObjectFromFile() to load ANNIE and other plugging need to use
by using .gapp file which making it by developing our GATE processing pipeline in GATE
Developer.

8. Defined the path (p1) for data base on computer for each folder in pl add all text files in this folder
to corpus (array of files).

9. Using class ConditionalSerialAnalyserController which apply processing resource methods to each
documents in the corpus.

10. Create an instance of a resource to implementation corpus and document and save original content
and the analysis information about document.

4.3 Multithread System Steps

In order to create a multithreaded code must follow the following steps

1. Use synchronized way for methods, that shared by thread to avoid a race condition error.
2. Transfer static variable to a thread-safe way.
3. Load n copies of processing resource store them in a pooling.
4. Divide corpus to thread by give every thread one file, when any -thread finish its job it take

another file. Processing text require get a copy of processing resource from the pool, when
processing is finished return it to the pool.

98

Algorithm 1: Sequence system

Steps:

•Add the library of gate to the jave program
•Initialize gate
•Initialize all plugin.
•Create documents corpus
•Load processing resource that we use in our
application (.gapp file)
•Apply processing resource to corpus

Input: path of database on computer, gate library

Ouput: corpus of words with annotation

Algorithm. 1: Sequence system steps

Steps:

•Add the library of gate to the jave program
•Initialize gate
•Initialize all plugin.
•Create documents corpus
•Create pooling of n thread
•Load n copies of processing resource
•Divide corpus to n2 file
•for i=1 to n2
•pooling give not used thread file(i)
•Apply processing resource to file(i)

Algorithm 2: Multithreading system

[
Input: path of database on computer, gate library

Ouput: corpus of words with annotation

Algorithm. 2: Multithreading system steps 	I

IJICIS. Vol. 16 No. 3 July 2016

•

5.. Experimental results and discussion

5.1 Applied database

The proposed paper was applied MASC database that contains 506768 words from the Open American
National Corpus (OANC) [17]. It is contain 376 different files from newspaper, journal, email, twitter,
jokes, movie-script, technical, etc.

5.2 Experiments

Experiments were performed on two computer. Computer 1 (C1), Computer 2 (C2). Cl was worked
with-Genuine Intel(R) CPU 000@ 2.40 GI-lz 2.40 GHz and installed memory (RAM) of 4.00 GB. C2
was worked with AMD A6-5200 APU with Radeon(TM), 2.00 GHz and installed memory (RAM) of
4.00 GB (3.47GB usable).

5.3 Evaluation metrics

Using Stopwatch or calculate the difference between system current time in begin and end of code are
not a good way for measuring performance of our system. Because it measures Total time in seconds
from the beginning of running the program until the appearance of the results on the screen. The time
affected with any user working on the computer or anything run in the background at this time. This
caused a significant difference in the outcome in case we have a lot of programs that operate on the
device at this time.

99

Rabea: Et Al: Multithread In Named Entity Recognition

5.3. 1 Evaluation Metrics In Multithreading System

For each thread we use methods that return the total CPU time for this thread in nanoseconds (cputime)
and returns the time that this thread has executed in user mode in nanoseconds (user time).
Calculate cputime and user time for the main method (c_m_time, u_rn_time).
Then compare between the time of thread and then select the maximum time (max_cpu,max_user).
The CPU time of the multithreading system (C M_S) = max_cpu+ c_m_time.
The time that the multithreading system has executed in user mode (U_M_S) = max user +u_m_time.
The difference between C_M_S and U_M_S determine the time spent running on OS code.
In sequence system
Calculate cpu time and usertime for the main method (c_m_t, u_m_t).
Smt= cmt - umt.

5.4 Experiment Result

In the figure below we compare gate program, sequence system and multithread system in both
computer Cl and C2.

Table 1 show the total time in second as a user watching the computer screen until the program finishes
through gate program and sequence system and multithread system using 2, 4, 6, 8, 10 and 12 thread.
We made the experiment more time and take the average result.
Figure 2 show the total time in second in CPU mode through gate program and sequence system and
multithread system using 2, 4, 6, 8, 10 and 12 thread.

In the Figure 3 we compare sequence system in Cl and C2, compare the time each computer take in
CPU mode, user mode and system mode. We made the experiment five time and take the average. Cl
take approximately 87.2 second to display the result in CPU mode and take approximately 79.6 second
in user mode, the different between the average time of CPU mode and user made is 7.6 second. C2 take
approximately 313.6 second to display the result in CPU mode and take approximately 289.1 second in
user mode, the different between the average time of CPU mode and user made is 24.5 second. It is the
time in system mode in all experiments. In system mode, the time is approximately fixed in all
experiments. Cl give the best result three and half time from the C2.

Figure 4 show the time each thread take in CPU mode when using 4 thread in Cl and C2. The main
thread takes the same time in each experiment, but the time each thread take difference the distribution
of work to thread different each time because of using pool technique.

Figure 5 show the speed for each system when using 2, 4, 6, 8, 10 and 12 threads in system mode
between Cl and C2. We made the experiment four time. There is a slight difference between the times
each experiment take. In Cl, the maximum time when using two thread is 5.7 second and the minimum
time is 4.5 second. The maximum and minimum time when using four thread is 3.1 second, 2.8 second,
it is better than two thread. The maximum and minimum time when using six thread is 3 second, 2.7
second, it is better than four thread. The maximum and minimum time when using eight thread is 2.1
second, 1.8 second, it is better than six thread. The maximum and minimum time when using ten thread
is 2.3 second, 2.1 second, the minimum time when using ten thread approximately equal the maximum
time in eight thread, so it is better to use 8 thread in Cl to provide memory. In C2, we also determine
the maximum and minimum time for each thread, when using two thread the time is 23.3 second and
19.1 second, when using four thread the time is 14.6 second and 11.3 second, when using six thread the
time is 12.1 second and 10.9 second. The minimum time when using 4 thread is better than maximum

100

350
3(X)
250
200
150
100

50
0

cpu
■III•Exp1 309.817986
••■••-Exp2 300.8167283

.11..-Exp3 315.1376201
-11)-Exp4 327.1496971
■••■••Exp5 315.3248213

100
90
80
70
60
50
40
30
20
10
0

user system cpu user system

285.9342329 23.8837531 .411■Exp1 90.6875 82.625 8.0625

275.9189687 24.8977596 87.3125 80.09375 7.21875 ■411■Exp2

290.6610632 24.4765569 88.96875 80.765625 8.203125 -110...Exp3

301.7683344 25.3813627 82.515625 74.859375 7.65625 -0- Exp4

291.2382669 24.0865544 ■III■Exp5 87 79.765625 7.234375

ti
m

e
in

 s
ec

on
d

ti
m

e
in

 s
ec

on
d

IJICIS, Vo116 No. 3 July 2016

time when using six thread. It is better to use 4 thread in C2. The other thread gives convergent result
time. It can be seen that the multithreaded system, sequence system and GATE produce similar result.
Efficiency of each of them is equal. Using multithread is better than using sequence system. Execution
time decreases with increase the number of threads. The speed of the program does not increase linearly.

Table I: the time gate program, sequence system and multithread system take in second in Cl and C2

gate sequence 2 thread 4 thread 6 thread 8 thread 10 thread 12 thread

Cl 114.514 87.29688 53.24921 31.72917 26.15379 19.95313 18.34917 15.57292

C2 ideal 313.6494 187.8644 113.6404 96.00872 87.16447 72.98025 65.02902

350

300
agate

250
-o Osequence

200 /112 thread
.c 134 thread
w 150

OS thread
100 •

• B8 thread

50 1E1 010 thread
!MI 111112 thread

0
Cl 	 C2

CPU mode

Figure 2: the different between gate program, sequence system and multithread system in Cl and C2

Sequence system C2
	 Sequence system Cl

Figure 3: compare the difference of time between CI and C2 in sequence system

101

11
z 	114/, t n

2 	4 	6 	8 	10 	12

number of thread

lid lig fig in
2 	4 	6 	8 	10 	12

number of thread

25
20

7, 15
0J fl- 10

5
0

6
5
4

T., 3
2
1
0

Rabea: Et Al: Multithread In Named Entity Recognition

Multithreading system C2 using 4 	 Multithreading system Cl using 4
thread 	 thread

150

100

50

0

"Asabi4ity""'
40

-a 30
8 20

10
0

Main 	1 	2 	. 3 	4 	max total 	 Main 	1 	2 	3 	4 	max total
time for each thread in cpu mode 	 time for each thread in cpu mode

-e- Expl 	Exp2 -e-Exp3 	Exp4 	Exp5 	Expl tExp2 —tE--Exp3 	Exp4

Figure 4: the time each thread use when using 4 thread in Cl and C2

C2 System time 	 Cl System time

Expl I7 Exp2 fe,Exp3 	Exp4 	 A Expl 2 Exp2 Y2Exp3 C Exp4

Figure 5: compare the difference of time between CI and C2 when using 2, 4, 6, 8, 10 and 12 thread

6. Conclusions

We have use multiple threads to present a system for running GATE. Our model requires to Use
synchronized way methods to transform GATE into thread-safe way before it can be multithreaded.
Using pooling give better performance, it saves time because there is no need to create new thread,
saving the cost of creating new threads. The implementation of the system show that the speed increases
with increasing number of threads as shown in figure 2, The speed of system when using 2 thread
increase 40% about using sequence system, increased 40% when using 4 thread about using 2thread,
increase 16% when using 6 thread about using 4thread, increase 16% when using 8 thread about using 6
thread, increase 12% when using 10 thread about using 8 thread, increase 12% when using 12 thread
about using 10 thread. The increases not linear as expected. In pooling, the difference in time that main
methods take to divide the tasks to system that use (2, 4, 6, etc.) thread, almost not mentioned with the
time used in the total process as shown in figure 4.

On a single-core CPU, threading can actually slow you down, the CPU spend time to switch between
threads. When using two computer, Cl faster than C2 by 3.5% when using sequence system as shown
in figure 3, this percentage increase with increase the number of thread, Cl faster than C2 by 4.1%
when using 12 thread as shown in figure 5. Better multi-core CPU, better result.

102

IJICIS, Vol 16 No. 3 July 2016

References

1. R. Farkas, "Machine Learning techniques for applied Information Extraction", Ph.D, University
of Szeged, 2009.

2. N. Suakkaphong, Z. Zhang and H. Chen, "Disease named entity recognition using
semisupervised learning and conditional random fields", J. Am. Soc. Inf. Sci., vol. 62, no. 4, pp.
727-737, 2011.

3. Y. Zhang, Automatic extraction of outbreak information from news. 2008.
4. T. Bogers, "DutchNamedEntityRecognition: OptimizingFeatures,Algorithms,and Output", 2004.
5. S. AbdelRahman, M. Elamaoty, M. Magdy and A. Fahmy, "Integrated Machine Learning

Techniques for Arabic Named Entity Recognition", International Journal of Computer Science
Issues, vol. 7, no. 4, pp. 27:36, 2010.

6. "Proceedings of the 52nd Annual Meeting of the Association for Computational", 2016.
7. B. Sun, "Named entity recognition Evaluation of Existing Systems", Master in Information

Systems, Norwegian University of Science and Technology, 2010.
8. http://sourceforge.net/projects/banner/, viewed on 2/1/2016.
9. http://nlp.stanford.edu/software/CRF-NER.shtml, viewed on 15/1/2016.
10. https://cogcomp.cs.illinois.edu/page/download_view/NETagger, viewed on 6/2/2016.
11. M. Ciglan and M. Laclavik, "Evaluation of named entity recognition tools on microposts",

IEEE 17th International Conference on Intelligent Engineering Systems (INES), 2013.
12. Developing Language Processing Components with GATE Version 8 (a User Guide), available

at https://gate.ac.uld , 2016.
13. X. Dong, G. Cooperman and J. Apostolakis, "Multithreaded Geant4: Semi- automatic

Transformation into Scalable Thread-Parallel Software", College of Computer Science,
Northeastern University, Boston, MA 02115, USA, 2010.

14. J. Cowell, Essential Java Fast. London: Springer London, 1997.
15. M. Gregoire, Professional C++. .
16. B. Kurniawan, Java 7. [S.1.]: Brainy Software, 2014.
17. http://www.anc.org/data/masc/downloads/data-download/ viewed on 16/9/2015.

103

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

