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Abstract: The effect of thermal and velocity boundary conditions on electrothermal convection in a dielectric fluid-

saturated layer of Brinkman porous medium with temperature dependent viscosity (TDV) has been studied. The lower 

rigid/free boundary is either fixed temperature or fixed heat flux with respect to temperature perturbations, while at 

the upper rigid/free boundary the Robin type of thermal boundary condition is invoked. The eigenvalue problem is 

solved numerically using the Galerkin-type of weighted residual method. The instability threshold depends 

significantly on boundary conditions and dimensionless physical parameters namely, the Biot number, temperature 

dependent viscosity and permeability parameters. The critical gravity thermal or electric thermal Rayleigh number 

making the onset of electrothermal convection is found to be higher for fixed temperature conditions and also for both 

boundaries rigid while it is lower for fixed heat flux conditions and also for both boundaries free.  Some known results 

are recovered as special cases from the present study. 

Keywords: Electrohydrodynamic; Dielectric fluid; Electrothermal convection; porous medium; Galerkin technique 

Math Subject Classification: 76E06 (convection); 80A20 (Heat and mass Transfer, heat flow); 85A30 

(hydrodynamics and hydromagnetics problems) 

 

1. Introduction  

Electrohydrodynamics (EHD) is the branch 

of fluid mechanics which deals with more complex 

interactions among fluid, heat and electric fields [1]. 

Electrohydrodynamics has wide applications in flow 

and heat transfer control, enhancement of heat and 

mass transfer, micro-electromechanical systems 

(MEMS) and some other industrial processes [2]. 

Recently, two conceptual designs were established 

with applications in the cooling system of laptops and 

devices on a flight in space [3,4]. The relative 

backwardness of such applications with the EHD 
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technique is attributed to the lack of complete 

mastering of the characteristics of flow motion. 

The study of convective instability in the 

presence of electric field and buoyancy effects is 

called the Rayleigh-Bénard-electroconvection or 

electrothermal convection (see Taylor [5]). Turnbull 

and Melcher [6] studied the natural convective 

instability problem of electroconvection under an 

applied AC or DC electric field and also successfully 

carried an experiment to verify the theoretical 

prediction. Roberts [7] studied theoretically the onset 

of electroconvection in an insulating fluid layer 

subject to temperature gradients and electrical 

potential differences across the fluid layer. Turnbull 

[8] analyzed the effect of dielectrophoretic force on the 

onset of natural convection by considering electrical 

conductivity is temperature dependent. Many 

researchers investigated Rayleigh–Bénard 

electroconvection considering various effects [9-17]. 

Shivakumara et al. [18] investigated the problem of 

electrothermal convection in a rotating dielectric fluid 

layer by taking different boundary conditions while 

the effect of couple stresses on the aforementioned 

problem has been presented by Shivakumara et al. 

[19]. 

Thermal convection in a layer of dielectric 

fluid-saturated porous medium under a uniform 

vertical AC electric field has also attracted significant 

attention in the literature due to its importance in 

geophysics and porous materials modeling. Moreno et 

al. [20] studied on fluid flow in a porous medium 

subjected to an external electric field, particular 

importance in view of its possibility of reduction of 

fluid viscosity in enhancing petroleum production. Rio 

and Whitaker [21] developed the frequency-dependent 

governing equations for EHD in saturated porous 

medium. Rudraiah and Gayathri [22] investigated the 

temperature modulation effect on electroconvection in 

a dielectric fluid-saturated porous medium in the 

presence of a uniform vertical AC electric field. 

Shivakumara et al. [23] analyzed the onset of 

electrothermal convection in a dielectric fluid-

saturated Brinkman porous layer for different velocity 

boundary conditions while the additional effect of 

rotation on the above study is considered by 

Shivakumara et al. [24]. In all of these investigations, 

the fluid viscosity is considered to be a constant. In 

reality, the viscosity is a strong function of 

temperature and it affects the stability of the system 

significantly. 

The aim of the present paper is to determine 

analytically the effect of temperature dependent 

viscosity (TDV) on thermal convection in a dielectric 

fluid-saturated porous medium in the presence of a 

uniform vertical AC electric field for different 

temperature and velocity boundary conditions. The 

lower rigid/free surface is considered to be either 

conducting (constant temperature) or insulating with 

respect to temperature perturbations (constant heat 

flux) while at the upper rigid/free surface the Robin 

type of thermal boundary condition is utilized. The 

outline of the present paper is as follows. The 

mathematical formulation of the problem is described 

in section 2. The basic state equations are derived in 

section 3. The linear instability analysis using normal 

mode expansion procedure is also handled in this 

section. In the same section the eigenvalue problem 

involving the system of differential equations and the 

boundary conditions are also specified in this section. 

The numerical results obtained using the ninth-order 

Galerkin weighted residual method are discussed and 

explained in detail in section 4. Finally, some 

conclusions are documented in section 5. 

2. Mathematical Formulation 

The schematic geometry of the problem 

considered is presented in Fig. 1.  We consider an 

incompressible dielectric fluid-saturated Brinkman 

porous medium under a uniform AC electric field  

acting perpendicular to the horizontal porous layer 

bounded by the surfaces 0z =  and .z d=  The lower 

and upper surfaces are maintained at temperatures 

0T T=  and 1 0T T T T= = − ( 0T  ), respectively. 

A Cartesian coordinate system (x, y, z) is chosen such 

that the origin is at the bottom of the porous layer. 

Gravity is acting in the negative vertical z-direction.  

The viscosity   is considered to be varying linearly 

with temperature: 0 0[1 ( )]T T = − −  

where 0  and   are positive constants.  

The governing equations in the relevant context are: 

Mass conservation: 0q = ,                               (1) 
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Momentum conservation:  

( )0 0 0

1
1 2 [ ] e

dq
p T T g D q f

dt k


   


 = − + − − +  − + 

 (2)  

Energy conservation:  2( )
T

q T T
t




+   = 


      (3) 

Electrical equation: ( )0 01 0T T E    − − = 
        (4) 

Maxwell equation: 0E =  or .E V= −        (5) 

The last term in Eq. (2) is the electric force induced by 

the electrical field which is of the form: 

2 2

2 2
e e

T

f E E E
  




   
= − +    

   

.           (6) 

 In Eq. (6), the first term stands for Coulomb force 

exerted by an electric field upon the free charge within 

the bulk liquid. The second term is dielectrophoretic 

(or dielectric) force and the third term is 

electrostrictive force which is a conservative vector 

and can be conveniently combined with static 

pressure. The additional quantities appeared in the 

above set of governing equations are defined in the 

nomenclature. The standard linear stability analysis 

procedure leads to (for details see [8] and [17])   

( )2 4 2

0

2 2
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( )
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     (7)   

2 T
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,                                         (8) 

2
0

T
V E

z



 = −


,                                           (9) 

where ( )0( ) 1z z  = +   is the temperature 

dependent viscosity function and 

2 2 2 2 2/ /h x y =   +    is the horizontal Laplacian 

operator. We employ the normal mode expansion in 

the form

 ( )  ( )
( )

, , , , , , ,
i a x a y tx yw T V x y z t W z e

+ +
=    (10) 

where xa  and ya  are wave numbers in x and y 

directions, respectively,   is the growth factor which 

is complex, in general, while W ,   and   are the 

amplitudes of perturbed velocity, temperature and 

electric potential, respectively. 

Using Eq. (10) in Eqs. (7)-(9) and non-

dimensionalizing the resulting equations by applying 

the definitions: 

( ) ( ) 2, , *, *, * ( / ),  W=( / ) *,  t=  t*x y z x y z d W dd =
   

(11a) 

( )2
0, ,* * *, *T E T d d d     =   =   =  =

  
(11b) 

we obtain the stability equations (after ignoring the 

asterisks) in the form  

( ) ( )( )

( ) ( )

2
2 2 2 2 2 2

3 2 22 0t e

f D a D a W Df DW

Df D a D W a R R D

  
 

− − + − −  

 + − −  +  +  = 
   

(12a)         

( )2 2 Pr 0D a W− −  + =                            (12b) 

( )2 2 0D a D−  +  =                   (12c)  

where 1f z= +  . By performing qualitative analysis 

on the oscillatory instability, Shivakumara et al. [23] 

have shown that the principle of exchange of stability 

is valid for the onset of Darcy-Brinkman 

electrothermal convection irrespective of the nature of 

velocity boundary conditions. This is expected as there 

are no physical mechanisms to set up oscillatory 

motions when a dielectric fluid-saturated porous 

medium under a uniform vertical AC electric field is 

heated from below. Here, the motion, temperature and 

electric fields are all in phase and no restoring force 

exists and hence oscillatory convection is not possible. 

Similar is the situation in the present paper and of 

course the variation in viscosity with respect to 

temperature does not introduce oscillatory motions. 

Therefore, the principle of exchange of stability is 

considered to be valid in the present case as well and 

take 0 = in Eqs. (12a-c) to get  

 
( ) ( )

( ) ( )

2
2 2 2 2 2 2

3 2 22 0t e

f D a D a W Df DW

Df D a D W a R R D

 
 

− − − −  

 + − −  +  +  = 

 (13a) 

( )2 2 0D a W−  + =                         (13b) 

( )2 2 0D a D−  +  = .                       (13c)  

The above equations are solved by imposing the 

following types of boundary conditions: 
 

(i) Both boundaries rigid (R-R boundaries):    

0W DW= =  =         at  0, 1z =    

0 =  or 0D =        at   0z = ;   
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0D Bi +  =            at   1z = ;                             

(14)  

(ii) Lower rigid and upper free boundaries (R-F 

boundaries):  

0,W DW= =  = 0 =  or 0D = at 0z =
 
   (15a) 

2 0W D W D= =  = , 0D Bi +  =  at 1z = . (15b) 

 (iii) Both boundaries free (F-F boundaries):    
2 0W D W D= =  =       at  0, 1z =

 
0 =  or 0D =         at 0z = ;   

0D Bi +  =
               

at 1z = .            (16) 

Here, the Biot number kdhBi t /=
 
is the ratio of 

rate of heat from the interface to the environment to 

the rate of heat supply to the interface from the bulk of 

a fluid due to the thermal conduction at the upper 

boundary. Increase in Bi from 0  to   means change 

in the thermal condition at the upper boundary from 

“fixed heat flux condition” or “insulating case"  (i.e., 

0D = ) to the "constant temperature” or “conducting 

case" (i.e., 0 = ). 

 

3. Method of solution  

Equations (13a-c) together with the chosen boundary 

conditions constitute an eigenvalue problem which has 

been solved numerically using the Galerkin technique. 

Accordingly, the unknown variables are written in 

series of trial (basis) functions as  
9

1

( ) ( )m m

m

W z A W z

=

=  ,    

 

9

1

( ) ( )m m

m

z B z

=

 =  ,     

  
9

1

( ) ( )m m

m

z C z

=

 =  ,                                          (17) 

where ,m mA B and mC  are constants and mW , m  

and m  represent the basis functions. On substituting 

Eq.(17) into Eqs. (13a-c), multiplying both sides of 

resulting Eq.(13a) by ( )nW z ,  Eq.(13b) by ( )n z  

and Eq.(13c) by ( )n z ; and integrating the resulting 

relations over the region {0 1}V z=    and using 

the boundary conditions, we obtain a system of 

algebraic equations which can be written in the form 

 

0

0 0

00

nm nm nm n

nm nm n

nm nm n

E F G A

I J B

K L C

     
     

=     
         

               (18) 

where,  

2 2 2 2

2 2 2

[ (2 )

( ) ] ,

nm n m n m

n m

E f D W D W a DW DW

a a W W





= + +

+ + 

2 ( ) ,nm t e n mF a R R W= − +        

2 ,nm e n mG a R DW=−         

nm n mI W= −    , 

2 (1) (1),nm n m n m n mJ D D a Bi=   +    −  

nm n mK D=    ,   

2 .nm n m n mL D D a=   +     

and 

1

0

( ) dz =  . The system of equations given by 

Eq. (18) has a non-trivial solution if and only if the 

determinant of the coefficient matrix is zero. That is,  

0 0

0

nm nm nm

nm nm

nm nm

E F G

I J

K L

= .                        (19) 

The eigenvalue has to be extracted from Eq. (19). For 

this, we select the following trial functions satisfying 

the boundary conditions: 

(i) R-R boundaries: 

3 2 1 *( 2 ) ,m m m
m mW z z z T+ + += − +

1 *( / 2) ,m m
m mz z T+ = −

 
1 *( )m m

m mz z T+ = −                            (20) 

(ii) R-F boundaries: 
3 2 1 *(2 5 3 ) ,m m m

m mW z z z T+ + += − + 1 *( / 2) ,m m
m mz z T+ = −

1 *( / 2)m m
m mz z T+ = −                (21) 

(iii)  F-F boundaries: 
3 2 *( 2 ) ,m m m

m mW z z z T+ += − +  1 *( / 2) ,m m
m mz z T+ = −    

2 1 *( 3 / 2)m m
m mz z T+ + = −                           (22) 

where * 'mT s  are Chebyshev polynomials                        (

0, 1, 2,......m = ) of the second kind. It is seen that the 

trial functions chosen satisfy the respective boundary 

conditions except the thermal boundary condition 

0D Bi +  =  at 1z =  but the residue is included 

from the differential Eqs.(13a-c). On substituting Eqs. 

(20- 22) into Eq. (19) leads to an equation of the form: 

( )2, , , , , 0t ef R R Bi a  = .                       (23) 
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Equation (23) allows to determine the critical values 

of tcR or ecR  and eca  with respect to other physical 

parameters 2, andBi  . 

 

4. Results and Discussion 

The Galerkin-type of weighted residual 

method is used to obtain the critical values of tcR
 
or 

ecR  and eca for various values of physical parameters 

2, andBi   using Eq. (23). The overall trend of ecR  

and tcR  for various boundary conditions (R-R, R-F 

and F-F), temperature dependent viscosity (TDV) and 

porous parameter are presented in Tables 1-3 and also 

shown graphically in Figs. 2-8.   

To validate the results obtained by applying 

the numerical procedure,  a comparison with some 

existing results is made (see Tables 1 and 2). The 

results obtained for several values of Bi  with 0,eR =
 

2 0 =  and 0= compare very well with those of 

Sparrow et al. [25]. Besides, the critical stability 

parameters ( , )ec cR a  are compared with those of 

Roberts [7] in Table 3 for selected values of tR  with 

0= , 
2 0 =   and 0=Bi  . The results are found to 

be in good agreement. 

The variation of tcR  as a function of Bi  is 

shown in Fig. 2 for fixed values eR  = 0, 10, 50, 100, 

200, 
2 0 =  and 0=  for R-F boundaries with 

(0) 0 (1)D = =  . In Fig. 2, the results of Char and 

Chiang [26] are also presented and note that there is an 

excellent agreement between the present results and 

those of [26]. Here, we find that tcR  decreases with  

increasing AC electric field strength.  

In Figs.3-9, the plots of ecR  and eca against 

Bi  are illustrated. In these figures, the solid curves 

correspond to temperature boundary condition of the 

type (0) 0 =  while the dotted curves correspond to the 

condition of the type (0) 0D = .  Figure 3 shows the 

results for 2σ 10= , Γ 0.2=  and 50tR = .  It shows that 

the results are bridging the space between the fixed 

heat flux and constant temperature at the upper surface 

with increasing Bi. Clearly, imposing fixed heat flux 

condition at the lower surface advances the 

electrothermal convection compared to constant 

temperature condition. Figure 3 also reveals that the 

system with R-R surfaces is stable compared to F-F 

surfaces. The values of ecR  initially increases slowly  

with Bi and then increases quickly and approaches an 

asymptotic value 2872.38, 2656.78ecR = and 

2450.40  with further increasing Bi for R-R, R-F and 

F-F boundaries, respectively when the lower surface is 

held at constant temperature while the asymptotic 

values for the said boundaries are found to be 

1271.99ecR = , 928.858  and 814.86  when the lower 

surface is held at fixed heat flux condition. It is also 

evident that the dielectric fluid layer under an AC 

electric field becomes more stable with increasing Bi

. Besides, increase in the value of heat transfer 

coefficient Bi  is to increase the critical electrical 

thermal Rayleigh number and thus its effect is to delay 

the onset of electrothermal convection. This may be 

attributed to the fact that with increasing Bi , the 

thermal disturbances can easily dissipate into the 

ambient surrounding due to a better convective heat 

transfer coefficient at the top surface and hence higher 

heating is required to make the system unstable. On 

the upper free surface, for small values of Bi , these 

perturbations are very prone to heat transfer 

coefficient and for large values of Bi , these can be 

regarded as an imposed constant temperature that 

causes ecR  to approach this asymptotic value. The 

critical wave number reported in Fig.4 for various 

values of Bi  reveals that 

( ) ( ) ( )0 finiteec ec ecBi Bi Bia a a= = →  .   

In Fig.5, we have depicted the variation of 

ecR
 
verses 

2σ  for three types of boundaries when

2Bi = , Γ 0.2=  and 50tR = . It is seen that increase 

in the value of permeability parameter 
2σ  is to delay 

the onset of electrothermal convection. Here, we note 

that the results for two types of temperature boundary 

conditions differ only quantitatively and the system is 

found to be more stable when the lower surface is fixed 

at constant temperature as expected. From Fig.6, it is 

seen that the critical electric wave number eca  

increases as 
2σ  increases. Therefore, increase in the 



32 

 

porous parameter is to reduce the size of convection 

cells. 

 

 The effect of temperature dependent 

viscosity parameter Γ on the onset of electrothermal 

convection in a dielectric fluid saturated porous 

medium is presented in Fig.7 for fixed values 2Bi = ,

2σ 10=  and 50tR = . It is observed that ecR  

increases with increasing Γ  indicating its effect is 

stabilizing on the system. That is, the effect of 

increasing Γ  is to delay electrothermal convection in 

the presence of AC electric field. Whereas Fig.8 

reveals that the variation in eca  with Γ  is 

insignificant. In Fig.9, the variation of  ecR
 
and tcR  

is plotted for fixed values of 2Bi = , 2σ 10=   and 

Γ 0.2= . Here, we focus on the strengths between 

buoyancy and electric forces on the stability of the 

system. If there is an increase in the strength of one, 

then there is a decrease in the other. Thus the strength 

of AC electric field leads to destabilizing effect on the 

system. This result is true for all the boundary 

conditions considered. A closer inspection of the 

figures further reveals that 

R-R R-F F-F( ) ( ) ( )ec ec eca a a  and 

lower surface at =0 lower surface at 0
( ) ( )ec ec D
a a

 =


 

5. Conclusion 

The effect of variable viscosity on the onset of 

electrothermal convection in a porous medium under a 

uniform vertical AC electric field has been studied for 

different types of velocity and temperature boundary 

conditions. It is observed that: 

 1. The onset of electrothermal convection is to be   

delayed with increasing Bi    

2. The effect of increasing AC electric field is to hasten 

the onset of convection.  

3. The system is more stable for R-R surfaces while 

for F-F surfaces it is least stable. Also, 

=0 =0
( and ) ( and )ec ectc tc D
R R R R

 
  

4. The critical electric wave number eca  increases 

with increasing Bi  and 
2σ  Thus their effect is to 

contract the size of convection cells. Also, 

constant temperature fixed heat flux( ) ( ) .ec eca a  

Nomenclature 

( )
1/ 2

x ya a a= + , over all dimensionless wave number 

/tBi h d k= ,  Biot number 

d =  horizontal fluid layer of thickness  

/D d dz , ordinary differential operator  

(0, 0, )zE E= , applied AC electric field 

( )0, 0,g g= − , gravitational acceleration 

th = heat transfer co-efficient  

k = permeability of the porous medium 

 p = pressure  

( ), ,q u v w= , velocity vector of the fluid  

Pr / = , Prandtl number 

2 2 2 2
0 0 ( ) /eR E T d  =  , electric thermal 

Rayleigh number        
3 /tR g Td =  ,  gravity thermal Rayleigh 

number 

 T   =  temperature 

oT =  temperature at lower surface 

1T =  temperature at upper surface 

  V = root mean square velocity of the electric  potential  

W = amplitude of perturbed vertical velocity 

component  

x, y, z = Cartesian co-ordinates 

 

Greek symbols 

( 0)  = thermal expansion coefficient 

/T d =   , temperature gradient 

2 2 2 2 2 2 2/ / /x y z =   +   +   , Laplacian operator 

2 2 2 2 2/ /h x y =   +   , horizontal Laplacian 

operator 

   = dielectric constant 

0  = reference temperature for dielectric constant 

 (>0)= analog for dielectric constant of thermal 

expansion coefficient 

   = porosity 

  = amplitude of perturbed electric potential   

  = temperature dependent viscosity  
  = effective thermal diffusivity 

0. = constant viscosity  

0/  = , kinematic viscosity  

  = density of the fluid 
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e  = free charge density 

0 ( )oT = , density at reference  temperature  

/d k = , porous parameter 

  = amplitude of perturbed temperature 
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Table 1   Comparison of Rtc and ac for lower boundary rigid at fixed temperature with different 

values of Bi  in the absence of AC electric field strength with 
2σ 0 Γ= =  

 

 

Bi 

Upper boundary free Upper boundary rigid  

Sparrow et al. [25] Present study Sparrow et al. [25] Present study 

Rtc ac Rtc ac Rtc ac Rtc ac 

0 669.001 2.09 668.98 2.086 1295.781 2.55 1295.78 2.552 

0.1 682.361 2.115 682.36 2.116 1309.545 2.58 1309.54 2.582 

0.3 706.365 2.17 706.39 2.169 1334.149 2.64 1334.08 2.632 

1 770.569 2.3 770.57 2.293 1398.508 2.75 1398.51 2.751 

3 872.506 2.46 872.53 2.452 1497.594 2.90 1497.57 2.901 

30 1055.345 2.65 1055.5 2.648 1667.102 3.08 16671 3.084 

100 1085.893 2.67 1085.9 2.672 1694.573 3.11 1694.57 3.106 

∞ 1100.657 2.68 1100.5 2.682 1707.765 3.12 1707.76 3.116 

 

 

Table 2   Comparison of Rtc and ac for lower boundary rigid at fixed heat flux with different 

values of Bi  in the absence of AC electric field strength with 
2σ 0 Γ= =  

 

 

Bi 

Upper boundary free Upper boundary rigid 

Sparrow et al. [25] Present study Sparrow et al. [25] Present study 

Rtc ac Rtc ac Rtc ac Rtc ac 

0 320.00 0 320 0.648 720.000 0.71 720 0.679 

0.1 381.665 1.015 381.665 1.015 807.676 1.23 807.676 1.228 

0.3 428.29 1.3 428.29 1.299 869.231 1.57 869.208 1.557 

1 513.792 1.64 513.79 1.644 974.173 1.94 974.172 1.943 

3 619.666 1.92 619.666 1.921 1093.744 2.24 1093.74 2.242 

30 780.240 2.18 780.237 2.176 1259.884 2.51 1259.91 2.511 

100 804.973 2.2 804.972 2.203 1284.263 2.53 1284.28 2.539 

∞ 816.748 2.21 816.744 2.215 1295.781 2.55 1295.781 2.552 

 

 

Table 3   Comparison of ecR and eca for different values of tR  for 
2σ 0 Γ Bi= = =  

 

Roberts [7] Present study 

tR  ecR  eca  ecR  eca  

-1000 3370.077 3.2945 3370.077 3.29446 

-500 2749.868 3.2598 2749.868 3.25983 

0 2128.696 3.2260 2128.696 3.22596 

500 1506.573 3.1929 1506.573 3.19287 

1000 883.517 3.1606 883.517 3.16059 

1707.762 0 3.1162 0 3.11621 
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Figure 1 Physical Configuration 
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Figure 4   Variation of eca

 
as a function of Bi  when 

50,tR =  Γ 0.2=  and 2σ 10=   
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Figure 2   Variation of tcR  as a function of Bi  when 

2σ 0 Γ= =  

0 20 40 60 80 100
0

1300

2600

3900

5200

6500

 

 

 lower boundary at constant temperature

   lower boundary at fixed heat flux

R
ec




F-F

R-F

R-R

Rt = 50; Eta=0.2; Bi = 2

F-F

R-F

R-R

 

 

 

Figure 5    Variation of ecR
 
as a function of 
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Figure 3   Variation of ecR

 
as a function of Bi  when  

50,tR =  
2σ 10=  and Γ 0.2=   
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Figure 6    Variation of eca
 
as a function of 
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Figure 7    Variation of ecR
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Figure 9   Locus of ecR

 
as a function of tcR when  

Γ 0.2,= 2Bi =  and 2σ 10=  
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Figure 8   Variation of eca  as a function of Γ  when  

50,tR = 2Bi =  and 2σ 10=  

 




