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Abstract 

 The unsteady magnetohydrodynamic (MHD) thermosolutal Marangoni 

convection flow with heat and mass transfer over an unsteady stretching sheet is 

examined. The surface tension is assumed a linear function of the temperature and 

concentration. The quasilinearization method (QLM) is applied with employing the 

method of complementary function and the fourth order Runge-Kutta method to the 

yielding ordinary nonlinear equations. The analytical solution for the steady flow, with 

some special values of the problem parameters, is compared with the present numerical 

results. The results show that the decreasing of the surface tension enhances the flow 

movement due to decreasing the free surface rigidity. Also, the enhancement of the 

temperature provokes the free surface and reduces the surface tension. This result is in 

agreement with the previous experimental published results. Also, the flow velocity 

increases with reducing the surface tension. Meanwhile, the concentration surface tension 

coefficient reduces the concentration profiles. Finally, the numerical solution is compared 

with the previous published results for a special choice of the parameters. The graphical 

and tabulated results reveals on the high fidelity of the numerical method.  

 

Keywords:  Marangoni effect; Magnetohydrodynamic; Heat transfer; mass transfer; 

Unsteady flow; Stretching Sheet; Numerical quasilinearization method. 

 

Classification No.: 76. 

 
Nomenclature 

mT  mean fluid temperature  K  

b  positive constant in Eq. (7).  sec1  u          x -axis velocity component.  secm  

0B     strength of the magnetic field.  2mWb  v         y -axis velocity component.  secm  

C      concentration.  −  x    horizontal axis along the plate.  m  

c         positive constant.  sec1  y  vertical axis normal to the plate.  m  

xCf     local skin friction.  −  Greek symbols 

pc       specific heat capacity. ( ) KkgJ .      variable surface tension.  2secm  

mc      concentration susceptibility.  kgJ .1−
 0    constant value of the surface tension.  2secm  

mD      mass diffusivity.  sec2m  T     temperature coefficient of the surface tension.  1−K  

f      non-dimensional stream function .  −  C     concentration coefficient of the surface tension.  −  

                                                 

E-mail address: mohamed_gaber@edu.asu.edu.eg   
 



58 

 

h         liquid film thickness.  m         viscosity.  sec.mkg  

k        thermal conductivity.  KmW .         density.  3mkg  

Tk       thermal diffusion ratio.  −    Kinematic viscosity = .  sec2m  

M       magnetic parameter.  −               electric conductivity.  mOhm.1 or  m1−  

m  constant power in Eq.(7).  −    dimensionless normal coordinate.  −  

xNu    local Nusselt number.  −                temperature in dimensionless form.  −  

xNm   local Sherwood number.  −    concentration in dimensionless form.  −  

Pr       Prandtl number.  −  Subscripts 

r  constant power in Eq.(7).  −    value at infinity (at the free surface). 

xRe     local Reynolds number.  −  0  value at the slot (origin). 

S        Parameter of unsteadiness.  −  s  value at the sheet. 

t         time.    sec  ref  reference value. 

T        temperature.  K  x  local value. 

 

1.  Introduction 

The Marangoni effect represents the surface tension variation due to the 

temperature gradient along the surface. The Marangoni boundary layer occurs along 

liquid/liquid or liquid/gas interface. The thermo-capillary flow produces a motion within 

the fluid according to the thermal Marangoni convection currents. The surface tension 

gradients depend on both temperature and/or concentration gradients. Napolitano [1,2] 

who is firstly studied this phenomenon. Christopher and Wang [3] analyzed the 

Marangoni effect for the boundary layer flow over a flat surface with temperature 

gradient. Meanwhile, the Marangoni convection on the power-law thin liquid film over 

an unsteady stretching surface with heat transfer has been explored by Chien-Hsin Chen 

[4]. Pop et. al. [5] studied the Marangoni boundary layer for larger values of Reynolds 

number. The authors assumed the temperature and the solutal concentration, at the 

interface, as power functions of the longitudinal coordinate.  

Studying the influence of both the Marangoni convection currents and the 

Magnetohydrodynamic (MHD) on the flow behavior is important in many engineering 

applications. MHD is considered as a branch of fluid mechanics that studies the magnetic 

force effects. Also, MHD involves the influence of moving media (fluid flow) through a 

magnetic field. The study of the flow of an electrically conducting fluid has many 

applications in engineering problems such MHD generators, plasma physics, geothermal 

energy, nuclear reactors and aerodynamics. Jiao et. al. [6] studied the MHD thermosolutal 

Marangoni convection currents on the non-Newtonian power law fluid. Also, the authors 

considered the power law form for the temperature and the concentration and the linearly 

varying of the surface tension on both the temperature and concentration.  Magyari and 

Chamkha [7] determined the exact analytical solutions for the velocity, temperature and 

concentration fields of steady thermosolutal MHD Marangoni convection. The (MHD) 

thermocapillary Marangoni convection non-Newtonian power-law fluid was studied by 

Lin et. al. [8]. The results showed that the magnetic field reduces the velocity. Also, the 

Marangoni number reduces the temperature. 

The heat and mass transfer for the flow of a thin liquid film have many 

applications. For example, the heat exchangers, coating of wire and fiber, chemical 

processing equipment, food stuff processing and polymer processing. The difference in 

concentration induces the driving force of the mass transfer. This phenomenon involves 

molecular and convective transport of atoms and molecules. The flow of two types of 

viscoelastic electrically conducting fluids over a stretching sheet was studied by Cortell 

[9]. The results showed that the magnetic field retards velocity and enhances the 
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concentration. Elgazery and Hassan [10] studied the effects of variable viscosity and 

thermal diffusivity on the magnetohydrodynamic flow over a horizontal stretching sheet 

through a porous medium. The authors showed that the film thickness approaches zero as 

the unsteadiness parameter approaches to its critical value. Mahmoud [11] studied the 

influence of thermal radiation for Newtonian liquid film with and without 

thermocapillary over a stretching sheet. He deduced that the film thickness increases as 

the thermocapillarity parameter increases. The problem of unsteady stretching surface 

with different physical parameters under numerous conditions was studied by many 

authors. Andersson et. al. [12] studied the flow of a liquid film over a stretching sheet. 

Also, Andersson et. al. [13] studied the influence of thermocapillarity flow and heat 

transfer over a horizontal stretching sheet. Magyari and Ali [14] studied the unsteady 

flow with heat transfer induced by a submerged stretching surface. The motion is 

assumed to be slowed down and the surface temperature approaches the ambient 

temperature continuously. Dandapat et. al. [15] analyzed the effects of variable viscosity, 

variable thermal conductivity and thermocapillarity on the flow and heat transfer for a 

laminar liquid film over a horizontal stretching sheet. A similar study was investigated to 

examine the effect of the internal heat generation by Elbashbeshy and Bazid [16]. The 

unsteady boundary layer over a stretching sheet for special distribution of the stretching 

velocity and the surface heat flux was investigated by Pop et. al.[17]. While, the effect of 

the non-uniform heat source/sink on the flow over an unsteady stretching sheet through a 

quiescent fluid medium was studied by Huang et. al [18]. Hayat et. al [19] considered the 

same problem but for the electrically conducting second grade fluid film over an 

unsteady stretching sheet. Mukhopadhyay [20-22] studied the problem of the unsteady 

flow over a porous stretching sheet with the effects of the thermal radiation and with 

considering the effects of slip velocity at the boundary. The same problem was presented 

to study the effects of chemical reaction on unsteady free convective heat and mass 

transfer on a stretching surface and through a porous medium by Chamkha et. al. [23].  

Also, the non-conventional partial slip conditions at the stretching sheet were presented 

for the unsteady boundary layer stagnation-point flow with considering the heat transfer 

towards the stretching sheet by Layek et al. [24]. The flow and heat transfer of magnetic-

nanofluids over a stretching surface with the aligned magnetic field was considered by 

Sandeep [25]. Two types on ananofluids were considered, the graphene (GP) 

nanoparticles embedded in water and water-ethylene glycol (EG) mixtures. Also, 

Sandeep et al. [26] studied the magnetohydrodynamic chemically reacting Casson and 

Maxwell fluids past a stretching sheet. The authors discussed the effects of the cross 

diffusion, non-uniform heat source/sink, thermophoresis and Brownian motion. The 

Cattaneo-Christov heat equation model for MHD Casson-ferrofluid with radiative heat 

transfer was investigated by Ali and Sandeep [27]. Jayachandra and Sandeep [28] studied 

the upper convected Maxwell fluid (UCM) flow across a horizontal melting surface in the 

presence of thermal and solutal cross-diffusion and double stratification. 

This paper is devoted to study the thermosolutal Marangoni convection effect on 

the MHD flow over an unsteady stretching sheet. The surface tension depends linearly on 

both the temperature and concentration. So, the combined effects of the 

temperature/concentration surface tension parameters are obtained on the velocity, 

temperature and concentration profiles. The quasilinearization method (QLM) is used to 

obtain the numerical solution of the coupled nonlinear ordinary differential equations. 

Also, the analytical solution for the steady flow is obtained. The organization of the paper 

as follows: In Section 2, the problem is formulated with the appropriate similarity 

transformation. In Section 3 the analytical solution of the steady flow for a limiting case of 

the problem parameters is presented. Section 4 describes the steps of the numerical solution 

by using QLM. The results are discussed in Section 5 and are supported with verifications by 
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tabulated comparisons with the previous publishing results and with the exact solution. In 

Section 6 a brief conclusion is presented. 

 

2. Formulation of the Problem 

The unsteady laminar thermosolutal Marangoni boundary layer flow of an 

electrically conducting incompressible Newtonian fluid is considered. The electric 

conductivity    of the fluid is considered to be constant. The stretching of the elastic 

sheet induces the flow and the pressure gradient is neglected. The flow film is imposed 

by a uniform transverse magnetic field with constant strength 0B . For small magnetic 

Reynolds number, the induced magnetic field can be neglected. Also, the external electric 

field is neglected. The physical model and the coordinate system are depicted in Fig.1. 

The stretching sheet is considered to be in the positive direction of −x  axis with the slot 

at the origin and the positive −y  axis is taken normal to the sheet in the vertical 

direction.  

 

 
Fig.1 Schematic of the Physical model. 

 

All physical properties of the fluid are considered constants except the surface tension . 

The surface tension is assumed a linear function of the temperature and the solute 

concentration. So, the surface tension depends on the temperature and concentration 

linearly [7], as follows: 

 

( ) ( ) ( ) 000 1,, CCTTtyx CT −−−−=  ,                       (1) 
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Under these assumptions, the basic equations, that govern the resulting boundary-

layer flow, can be written as follows 
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All previous symbols are defined in the Nomenclature. The associated boundary 

conditions are defined as follows [11,12]: 
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 where, the constants b  and c  have the dimensions of 1−time . The constant reference 

temperature and concentration are refT  and refC , respectively, which can be taken as a 

constant difference such that 00 TTref   and 00 CCref  . The constant 1b is a positive 

constant with dimensions (
12 −− timeLength r
) and for the special case of the power 2=r , 

the constants b and 1b  are identical [29]. The powers r  and m  represent the increasing 

or decreasing of the temperature and the concentration with the distance from the slot.  

Proceeding with the analysis, the appropriate similarity dimensionless variables 

,f ,  and   may be written as follows [12]: 
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with the help of Eq. (9), Eqs.(4-6) are transformed into a system of ordinary non-linear 

coupled equations in the following form: 
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where, the dashes denote to the partial derivatives with respect to the dimensionless 

variable  . Also, the transformed boundary conditions in Eqs. (7) and (8) can be written  

in the following form: 
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The dimensionless parameters are defined as follows:  

bcS = the unsteadiness parameter, ( ) btcBM  −= 12

0
 the Magnetic parameter, 

refpmrefTm TccCkDDf = the Dufour number, 
refmrefTm CTTkDSr = the Soret 

number, mDSc = the Schmidt number, kcp=Pr the Prandtl number, 
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−− −=  the temperature surface tension 

parameter, ( )  3232
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−− −= the concentration surface 

tension parameter. 

The similarity distance at the free surface is  . This can be expressed as a function of 

the film thickness ( )th  in the following form 
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The evaluation of   is considered as an integral part of the present boundary value 

problem. The local skin friction xCf , the local Nusselt number xNu   and the local 

Sherwood number xNm  are the major physical quantities of the present problem. These 

quantities can be expressed by the functions ,f and   as follows:  
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where, the dimensionless quantity 


xU s

x =Re  is the local Reynolds number. 

3. Analytical Solution for the Steady Flow: 

 In this section, the analytical solution for the case of the steady flow at some 

special values of the parameters is studied. The system of Eqs.(10-12) can be reduced to a 

simple form by taking  0=S  with  021 ==== DfSr   as follows: 

02 =−−+ fMffff ,                           (18) 
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with the boundary conditions 

( ) ( ) ( ) ( )

( ) ( ) ( )
( )21,

.0,0,0

,10,10,10,00





===

====

 



f

ff
 



63 

 

The system of Eqs. (18-20), according to the boundary conditions (21), has an exact 

solution which is presented by Magyari and Chamkha [7] in the following form 
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This solution is available only at 1=r . Where, the constant a  is defined as Ma += 1 . 

The previous analytical solution is employed to assess the accuracy of the numerical 

solution of this study. This comparison will be illustrated in the next section.  

 

 4. Numerical Solution: Quasilinearization method (QLM) 

The set of Eqs. (10-12) are non-linear coupled ordinary differential equations. 

The QLM method is used to transform these equations into a system of linear 

differential equations, and then the method of complementary function is applied to 

solve the resulting equations. The yielding equations are solved with the fourth order 

Runge-Kutta method. The QLM was presented in details in Ref. [30]. To benefit the 

reader, the major algorithm of this method can be presented in the following 

sequence.  

Defining the new variables 71 xx −  as follows  
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By using the above new variables, the system of higher order differential Eqs. (10-12) 

and the boundary conditions (13) can be transformed into another system of first order 

differential equations by performing Taylor’s series expansion and the final resulting 

equations can be written in the matrix form as follows: 

BAXX += ,                         (26) 

 The elements of the ( )77 - matrices A and ( )17 B are defined as follows  
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The values of the elements jia , and ib  are defined in the Appendix. The system in Eq. 

(26) is linear and its general solution is obtained by using the method of complementary 

function, which determines the general solution as a particular and homogeneous 

solution. The boundary conditions for the particular solution and the homogeneous 

solutions are given as follows 

(i) For the particular solution  
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Then, the general solution of Eq. (26) is given by  
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where, 21,dd and 3d are the missing initial conditions and are determined with the help of 

the boundary conditions at  . The values of these constants are defined in the 

Appendix. The particular and the homogeneous part of the equations are solved by 

employing the fourth order Runge-Kutta method. The coefficients 
ija and ib in Eq.(26) 

depend on the nominal trajectories )()0( ix . Hence, depending on the initial guess of 

nominal trajectories )()0( ix , the solution of Eq.(26) yields the neighboring trajectories 

)()1( ix . These neighboring trajectories are treated as nominal trajectories and the next 

neighboring trajectories are obtained. This process is continued until the convergence is 

obtained. The whole range is divided initially into sub-interval of width 01.0= .  It is 

important to mention here that, the initial guess of the nominal values are based on a 

guessed function which must be satisfy all the boundary conditions of the problem. The 

value of   is improved during the calculations. 

The analytical solution, which illustrated in the previous section, is compared graphically 

with the numerical solution of the general case (that was obtained by the QLM) in Fig.2 

and in Table 2. These tabulated results show a higher accuracy for the method depending 

on the choice of  . Also, Fig.2 shows an excellent agreement between the curves for 

the velocity, temperature and concentration.  

 

5. Results and Discussion 

The system of Eqs.(10-12), with the boundary conditions (13), is solved 

numerically by using QLM. The numerical values of the velocity, temperature, 

concentration, wall shear stress and the rate of heat and mass transfer are computed for 

different effective parameters. In order to verify the accuracy of the present results, the 

QL solution of the film thickness   and the wall shear stress ( )0f   are compared with 

the previous results of Refs. [11] and [12] in Table 1. A good agreement is found in the 

comparisons. Also, the analytical solution, that obtained in Eqs. (22-24), is compared 

with the QL solution in Table 2 and in Fig.2. It is observed that the error is very small for 

different values of  , and the two solutions are compatible.   

  

Table 1. Comparison for values of   and ( )0f   at  ,32,2,1Pr,0 ==== mrM   and 

021 ===== ScSrDf . 

  

S  Andersson et al. [12] Mahmoud [11] Present results 

0.8 2.15199 2.1519950 2.15310189 

1.2 1.12778 1.1277815 1.12778232 

( )0f   

0.8 -1.24581 -1.245810 -1.24547975 

1.2 -1.27917 -1.279170 -1.27481814 
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Table 2. Comparison for values of ( )0f   for the exact and numerical solutions at  

,32,1 == mr   and 021 ===== SrDfS . 

( )0f   

  Pr  M  Sc  
Exact Solution 

Eqs.(22-24) 

Numerical Solution 

QLM 
Error 

0.03 0.5 5 0.5 -2.44948974278 -2.44948974278 121030314.8 −  

 0.8 10 0.1 -3.31662479036 -3.31662479036 151022045.2 −  

0.02 0.5 20 0.5 -4.58257569496 -4.58257569496 151044089.4 −  

 0.8 10 0.1 -3.31662479036 -3.31662479030 111007834.6 −  

0.01 0.6 6 0.3 -2.64575131107 -2.64550242449 41048887.2 −  

 0.5 20 0.5 -4.58257569496 -4.58257554688 41048887.2 −  

Fig.3 illustrates that the unsteadiness parameter S  reduces the dimensionless film 

thickness  . Also, for critical value of the unsteadiness parameter ( )2=S  the film 

thickness tends to zero. This implies that the film thickness vanishes at this critical value 

and then the motion becomes impossible. This physical result can be explained by the 

value of the film thickness, as given in Eq. (14). Increasing the value of  S  corresponds 

to an increases of the parameter c , which gives an imaginary value for the root ( ) 21
1 tc− . 

So, the motion becomes impossible at certain critical value. The same physical situation 

was obtained for the non-Newtonian power law fluid by Chien [4] and for second grade 

fluid by Hayat et al. [19]. 

One of the main objectives of this study is to discuss the surface tension effect, 

according to thermosolutal Marangoni convection effect, on the motion. The physical 

values of  T  and C  denote to the gradient of the surface tension with both the heat and 

mass transfer. So, the increase of the temperature surface tension parameter 1  and the 

concentration surface tension parameter 2  means a decrease in the surface tension 

(according to the negative values of  the coefficients T  and C ). Consequently, the 

reduction of the surface tension, at the free surface, reduces the free surface rigidity and 

consequently increases its ability to movement. Therefore, the velocity increases as well 

as the momentum film thickness increases as shown in Figs.3 and 4. Also, a similar  

theoretical result was obtained by Chien [4]. The author deduced that the thermo capillary 

parameter increases the film thickness.  Also, the effect of the unsteadiness parameter on 

the fluid velocity is shown in Fig. 4. As illustrated before, the fluid film thickness 

vanishes at the critical value of the unsteadiness parameter  ( )2→S . 

Also, the effect of the surface tension coefficients on the heat and mass transfer is 

illustrated in Figs.8 and 11, respectively.  It is assumed that 0TT   and 0CC   

throughout the boundary layer.  Physically, increasing of both the temperature and the 

concentration gradients provokes a higher instability at the interface according to 

reducing the surface tension. This means that increasing both the temperature and the 

concentration surface tension coefficients 1  and 2  reduces the temperature and the 

concentration profiles, as shown in Figs.8 and 11. Similar result was obtained 

experimentally by Aubeterre et al.[31]. This experimental study deduced that the 

temperature gradient destabilizes the free surface. Higher temperature gradients 

destabilize the free surface and the movement becomes continuous. For the alcohol study, 

a sinuous wave was observed when temperature gradients are c1715 −  [26]. This means 

that the surface tension decreases and the substance evaporate easily when the 

temperature gradient occurs. This result was obtained previously by Chien [4] and Lin et. 

al. [8]. It was observed that the Marangoni convection reduced the free-surface 
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temperature. Also, when the concentration at the interface is less than the concentration at 

the slot ( )0CC   the surface tension at the free surface accordingly reduces. This implies 

that the surface tension is inversely proportional with the concentration.  

Lorentz’s force arises when a magnetic field is applied on an electrically 

conducting fluid. This resistive force retards the motion of the fluid and enhances its 

temperature. This effect is clear for the velocity in Fig.5 and for the temperature as well 

as the concentration in Figs. 8 and 10, respectively. Also, these figures illustrate that the 

magnetic field decreases the film thickness. This physical situation was found previously 

by  Hayat et al. [19] for both the velocity and temperature profiles.  

The effect of the Schmidt number Sc  is highlighted in Figs.7 and 12 for the 

temperature and concentration distributions, respectively. The relative effect of 

momentum diffusion to particles diffusion is presented by Schmidt number. For 1Sc , 

the particles diffusivity dominates. Decreasing the particles diffusivity produces an 

increase in the temperature gradients and means an increase in Schmidt number.  So, it is 

observed that Schmidt number Sc  enhances the temperature. Meanwhile, the higher 

values of Schmidt number correspond to a reduction in the particles diffusion. So, the 

concentration decreases with increasing Sc .  

Fig.6 illustrates that, the Prandtl number Pr  reduces the temperature. An increase 

of Prandtl number means a slow rate of thermal-diffusion. This physically implies a 

decrease in the thermal boundary layer thickness. The same physical situation was 

previously cited in the literatures.  Chien [4] observed that the free-surface temperature 

approaches unity in the high thermal diffusivity limit (Pr→0), whereas it diminishes in 

the high Pr (low thermal diffusivity) regime. Meanwhile, Prandtl number enhances the 

concentration profiles as shown in Fig.12. 

Figs. 6,7,10 and 12 show the temperature and concentration distributions with 

collective variation in Soret Sr  and Dufour Df  numbers. In all figures, the temperature 

and concentration profiles descend smoothly from a maximum value at the plate surface 

to the free stream. Soret number Sr  represents the effect of temperature gradients on 

mass diffusion. Meanwhile, the effect of concentration gradients on thermal energy flux 

is described by Dufour number Df . It is observed from Fig. 6 that an increase in Df  

from 0.1 to 0.9 (and Sr  simultaneously decreases from 0.5 to 0.1 in Fig.7) enhances the 

temperature strongly. In Fig. 10, the concentration function   increases as Df  decreases 

from 10 to 0.2 (and Sr  simultaneously increases from 0.1 to 0.5 in Fig.12). So, we can 

conclude that the mass diffusion is enhanced evidently as a result of the temperature 

gradients. This physical result indicates that the diffusion is faster in both hotter and more 

rarefied gases, which well known in physics as Stokes-Einstein equation [32].  

The unsteadiness parameter S reduces both of the temperature and the 

concentration boundary layer thickness. Similar result was obtained by Mukhopadhyay 

[20]. This implies that the heat and mass transfer gradients decrease with increasing of 

the time according to the values of S  (and consequently with the power m  of the time) 

as shown in Figs.6, 9 and 10. Also, the surface temperature and the surface concentration 

always decrease moving away from the slot according to the horizontal distance x (and 

consequently with the power r  of x ). So, the temperature and the concentration profiles 

fall with rising r  as shown in Figs. 7 and 11.  

Finally, Figs.13 and 14 illustrate the curves of the local skin friction xCf , the 

local Nusselt number xNu  and the local Sherwood number xNm   versus the local 

Reynolds number xRe  at selected values of the unsteadiness parameter S . These figures 

confirm the same previous deduction that is the unsteadiness parameter has a critical 

value ( )2=S . At this critical value the wall shear stress, the wall heat and mass fluxes 
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curve approach to zero. Also, the unsteadiness parameter reduces the wall shear stress as 

well as the heat and mass fluxes.  

 

6. Conclusion   

In this paper, the effect of the thermosolutal Marangoni convection on the MHD 

unsteady flow is examined with taking into account the existence of the thermal diffusion 

and the diffusion thermo effects. The analytical solution of the steady state problem is 

obtained and compared with the numerical QLM solution. Also, the present results are 

compared with the previous results of Andersson et al. [12] and Mahmoud [11] for a 

special choice of some parameters. The effect of the Marangoni convection, in the 

present study, is compared with the previous experimental results of Aubeterre et al [31] 

in the discussion section. An agreement is found between the theoretical results of the 

present study and the previous experimental results which support the study. The main 

results can be concluded as follows: 

1- The free surface loses its rigidity with reducing the surface tension and 

accordingly the flow movement increases. While, an increase in the temperature 

and the concentration provokes the free surface and makes it volatile easily, this 

coincides with the decreasing of the surface tension. 

2- The unsteadiness parameter retards the film thickness growth and at a certain 

critical value of the unsteadiness parameter the motion, the heat and mass transfer 

are vanishing. 

3- As well known, the transverse magnetic field retards the flow velocity and 

enhances both of the heat and mass transfer. 
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Appendix 

 

1-The elements of the matrices 77A and 17B are given as follows 
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where, the elements jia ,  are defined as follows 

kxa 31,3 −= ,    SMxa k ++= 22,3 2 ,      


2

13,3

S
xa k +−= ,   ( )kk xxDfSc

DfSrSc
a 571,5 PrPr

Pr1

1
−

−
= , 

( )kk xDfScx
DfSrSc

r
a 642,5 PrPr

Pr1
−

−
= ,      ( )mSxr

DfSrSc
a k PrPr

Pr1

1
24,5 +

−
= ,  









+−

−
= 

2
PrPr

Pr1

1
15,5

S
x

DfSrSc
a k

( )mSDfScxrDfSc
DfSrSc

a k PrPr
Pr1

1
26,5 −−

−
= , 

 









−

−
=

2
PrPr

Pr1

1
17,5


SDfScxDfSc

DfSrSc
a k , 

( )kk xScxSrSc
DfSrSc

a 751,7 Pr
Pr1

1
−

−
= , 

( )kk xSrScxSc
DfSrSc

r
a 462,7 Pr

Pr1
−

−
=  

( )mSSrScxrSrSc
DfSrSc

a k PrPr
Pr1

1
24,7 −−

−
= , 









−

−
=

2
PrPr

Pr1

1
15,7


SSrScxSrSc

DfSrSc
a k ,  

( )mSScxrSc
DfSrSc

a k +
−

= 26,7
Pr1

1
,          








+−

−
= 

2Pr1

1
17,7

S
ScxSc

DfSrSc
a k

     

and the elements ib  are defined as follows 
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2-The constants 321 ,, ddd are given as follows  

,,, 3

3
2

2
1

1



=




=




= ddd  

where 

( )
( )
( ) ,)()()()()(

)()()()()(

)()()()()(

)1(

7

)2(

5

)2(

7

)1(

5

)3(

3

)1(

7

)3(

5

)3(

7

)1(

5

)2(

3

)2(

7

)3(

5

)3(

7

)2(

5

)1(

3







−+

−−

−=







UUUUU

UUUUU

UUUUU

 

 

( )( )
( )
( ) ,)()()()()(

)()()()()(

)()()()()()()(

)3(

3

)2(

5

)2(

3

)3(

5

)1(

7

)2(

7

)3(

3

)3(

7

)2(

3

)1(

5

)3(

5

)2(

7

)2(

5

)3(

7

)1(

3

)(

62

)(

411



+



+



+



−−

+−−

−−+=







UUUUq

UUUUq

UUUUqxx

k

k

kkk

 

 

( )( )
( )
( ) ,)()()()()(

)()()()()(

)()()()()()()(

)3(

3

)1(

5

)1(

3

)3(

5

)1(

7

)1(

7

)3(

3

)3(

7

)1(

3

)1(

5

)3(

5

)1(

7

)1(

5

)3(

7

)1(

3

)(

62

)(

412



+



+



+



+−−

−−

+−−+=







UUUUq

UUUUq

UUUUqxx

k

k

kkk

 

 

( )( )
( )
( ) .)()()()()(

)()()()()(

)()()()()()()(

)2(

3

)1(

5

)1(

3

)2(

5

)1(

7

)1(

7

)2(

3

)2(

7

)1(

3

)1(

5

)2(

5

)1(

7

)1(

5

)2(

7

)1(

3

)(

62

)(

413



+



+



+



−−

+−−

−−+=







UUUUq

UUUUq

UUUUqxx

k

k

kkk

 

 

 




