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Abstract

In this paper, we prove several new explicit estimations for the solutions of some classes of nonlinear dynamic inequalities
of Gronwall–Bellman–Pachpatte type on time scales. Our results formulate some integral and discrete inequalities discussed
in the literature as special cases and extend some known dynamic inequalities on time scales. The inequalities given here
can be used in the analysis of the qualitative properties of certain classes of dynamic equations on time scales. Some
examples are presented to demonstrate the applications of our results.
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1 Introduction

In various situations, we are interested in knowing qualitative properties of solutions without explicit knowledge of the
solution process. One of the best known and widely used inequalities in the study of qualitative properties of solutions of
nonlinear differential equations can be stated as follows:

Theorem 1.1. Let u be a continuous function defined on the interval D = [α, α+ h] and

0 ≤ u(t) ≤
∫ t

α

[δu(s) + γ]ds,

for all t ∈ D, where α, γ, δ and h are nonnegative constants. Then

0 ≤ u(t) ≤ γheδh.

The inequality given in Theorem 1.1, was discovered by Thomas Gronwall [1] in 1919. In the recent years, these inequalities
have been greatly enriched by the recognition of their potential and intrinsic worth in many applications of the applied
sciences, (see [2–12]). In 1943, Richard Bellman in [13], proved the fundamental inequality (see Theorem 1.2) named
Gronwall–Bellman’s inequality as a generalization for Gronwall’s inequality and plays a very important role in studying
stability and asymptotic behaviour of solutions of linear differential-difference equations.

Theorem 1.2. Let u and f be continuous and nonnegative functions defined on [α, β], and let c be nonnegative constant.
Then the inequality

u(t) ≤ c+

∫ t

α

f(s)u(s)ds, t ∈ [α, β], (1.1)

implies that

u(t) ≤ c exp

(∫ t

α

f(s)ds

)
, t ∈ [α, β]. (1.2)

Bellman in [14] proved and made use of the following variant of the inequality given by himself in Theorem 1.2.
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Theorem 1.3. Let u and f be continuous and nonnegative functions defined on [α, β], and let a be a continuous, positive
and nondecreasing function defined on [α, β]; then

u(t) ≤ a(t) +

∫ t

α

f(s)u(s)ds, t ∈ [α, β],

implies that

u(t) ≤ a(t) exp

(∫ t

α

f(s)ds

)
, t ∈ [α, β]. (1.3)

Gollwitzer [15] gave the following generalization of the Gronwall–Bellman inequality:

u(t) ≤ f(t) + g(t)

∫ t

α

h(s)u(s)ds, t ∈ [α, β]. (1.4)

A fairly general version of Theorem 1.2 is given in the following theorem by Pachpatte [16]:

u(t) ≤ p(t) + q(t)

∫ t

α

[f(s)u(s) + g(s)]ds, t ∈ [α, β].

In [17], Pachpatte established also the following inequality:

w(t) ≤ c(t) +

∫ t

a

f(s)w(s)ds+

∫ b

a

g(s)w(s)ds, (1.5)

for all t ∈ [a, b] ⊆ R. Kender et al. [18] established the following further generalizations of the inequality (1.5) proved by of
Pachpatte in [17] where he replaced the linear term of the unknown function ω by nonlinear term ωp in both sides of the
inequality as following

wp(t) ≤ c(t) +

∫ t

a

f(s)w(s)ds+

∫ b

a

g(s)wp(s)ds, (1.6)

for all t ∈ [a, b] ⊆ R. It is well known that, the dynamic inequalities play an important role in the development of the
qualitative theory of dynamic equations on time scales. The study of dynamic equations on time scales which goes back to
Stefan Hilger [19] becomes an area of mathematics and recently has received a lot of attention. The general idea is to prove
a result for a dynamic equation or a dynamic inequality where the domain of the unknown function is a so called time scale
T, which may be an arbitrary closed subset of the real numbers R see [20,21]. The purpose of the theory of time scales is to
unify continuous and discrete analysis. The three most popular examples of calculus on time scales are differential calculus,
difference calculus, and quantum calculus (see [22]), i.e, when T = R,T = N and T = qN0 = {qt : t ∈ N0} where q > 1.
The book on the subject of time scales by Bohner and Peterson [23] summarizes and organizes much of time scale calculus.
During the past decade a number of dynamic inequalities has been established by some authors which are motivated by some
applications, for example, we refer the reader to [23–26] for contributions, and the references cited therein.

In this paper, we present some new nonlinear dynamic inequalities on an arbitrarily time scale T, these dynamic inequal-
ities unify and extend the inequalities presented in [17] and [18]. Our main results will be proved by employing some useful
inequalities which will be presented in Section 2. The paper is organized as in the following: In Section 2, some basic concepts
of the calculus on time scales and useful lemmas are introduced. In Section 3, we state and prove the main results. In Section
4, we present several applications to study some qualitative properties of the solutions of certain dynamic equations.

2 Basic Results and Lemmas on Time Scales

In this section, we present some background on time scales. A time scale T is an arbitrary nonempty closed subset of the
real numbers. The time scales calculus was initiated by Hilger in his PhD thesis in order to unify discrete and continuous
analysis [19]. We assume throughout that T has the topology that it inherits from the standard topology on the real numbers
R. For t ∈ T, first we define the forward jump operator σ : T→ T by:

σ(t) := inf{s ∈ T : s > t}, (2.1)
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and second, the backward jump operator ρ : T :→ T by:

ρ(t) := sup{s ∈ T : s < t}. (2.2)

In this definition, we put inf ∅ = supT and sup ∅ = inf T, where ∅ is the empty set. A point t ∈ T with inf T < t < supT,
is said to be left-dense if ρ(t) = t and is right-dense if σ(t) = t, points that are simultaneously right-dense and left-dense are
said to be dense, is left-scattered if ρ(t) < t and right-scattered if σ(t) > t, points that are simultaneously right-scattered
and left-scattered are said to be isolated. A function g : T→ R is said to be right-dense continuous (rd-continuous) provided
g is continuous at right-dense points and at left-dense points in T, left-sided limits exist and are finite. The set of all such
rd-continuous functions is denoted by Crd(T). A function f : T → R is said to be left-dense continuous (ld-continuous)
provided f is continuous at left-dense points and at right-dense points in T, right-sided limits exist and are finite. The set
of all such ld-continuous functions is denoted by Cld(T).

The forward and backward graininess functions µ and ν for a time scale T is defined by µ(t) := σ(t)−t, and ν(t) := t−ρ(t),
respectively.

Given a time scale T, we introduce the sets Tκ, Tκ, and Tκκ as follows. If T has a left-scattered maximum t1, then
Tκ = T − {t1}, otherwise Tκ = T. If T has a right-scattered minimum t2, then Tκ = T − {t2}, otherwise Tκ = T. Finally,
Tkκ = Tκ ∩ Tκ.

The interval [a, b] in T is defined by
[a, b]T = {τ ∈ T : a ≤ τ ≤ b}.

Open intervals and half-closed interval are defined similarly.
Let f : T → R be a real-valued function on a time scale T. Then for all t ∈ Tκ, we define f∆(t) to be the number (if it

exists) with the property that given any ε > 0 there is a neighborhood U of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, ∀s ∈ U.

For f : T→ R, we define the function fσ : T→ R by fσ(t) = f(σ(t)) for all t ∈ T, that is, fσ = f ◦σ. Similarly, we define the
function fρ : T→ R by fρ(t) = f(ρ(t)) for all t ∈ T, that is, fρ = f ◦ ρ. A time scale T is said to be regular if the following
two conditions are satisfied simultaneously: (1) σ(ρ(t)) = t and (2) ρ(σ(t)) = t, ∀t ∈ T. The product and quotient rules for
the derivative of the product fg and the quotient f/g (where ggσ 6= 0, here gσ = g ◦σ ) of two differentiable functions f and
g are given as the following:

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),

and (
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

A function F : T → R is called a delta antiderivative of f : T → R provided that F∆(t) = f(t) holds for all t ∈ Tκ, and
the delta integral of f is defined by ∫ b

a

f(t)∆t = F (b)− F (a).

We will frequently use the following useful relations between calculus on time scales T and differential calculus on R, difference
calculus on Z, and quantum calculus on qZ. Note that

(i) if T = R, then

σ(t) = t, µ(t) = 0, f∆(t) = f ′(t),

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt; (2.3)

(ii) if T = Z, then

σ(t) = t+ 1, µ(t) = 1, f∆(t) = ∆f(t),

∫ b

a

f(t)∆t =

b−1∑
t=a

f(t); (2.4)

(iii) and if T = qZ = {qk : k ∈ Z} ∪ {0}, q > 1, then

σ(t) = qt, µ(t) = (q − 1)t,

∫ b

a

f(t)∆t = (q − 1)

logq(b)−1∑
k=logq(a)

qkf(qk), ∀a, b ∈ qN0 . (2.5)
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It can be shown (see [23]) that if g ∈ Crd(T), then the Cauchy integral G(t) :=
∫ t
t0
g(s)∆s exists, t0 ∈ T, and satisfies

G∆(t) = g(t), t ∈ T. An infinite integral is defined as∫ ∞
a

f(t)∆t = lim
b→∞

∫ b

a

f(t)∆t.

Now, we will give the definition of the generalized exponential function and its derivatives. We say that p : T → R is
regressive provided 1+µ(t)p(t) 6= 0 for all t ∈ Tκ, we define the set < of all regressive and rd-continuous functions. We define
the set <+ of all positively regressive elements of < by <+ = {p ∈ < : 1 + µ(t)p(t) > 0,∀t ∈ T}. The set of all regressive
functions on a time scale T forms an Abelian group under the addition ⊕ defined by p⊕ q = p+ q + µpq. If p ∈ <, then we
can define the exponential function by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)
, s, t ∈ T,

where ξh(z) is the cylinder transformation, which is defined by

ξh(z) =

{
Log(1+hz)

h , h 6= 0,
z, h = 0.

If p ∈ <, then ep(t, s) is real-valued and nonzero on T. If p ∈ <+, then ep(t, t0) is always positive.
Note that

• if T = R, then

ea(t, t0) = exp

(∫ t

t0

a(s)ds

)
; (2.6)

• if T = Z, then

ea(t, t0) =

t−1∏
s=t0

(
1 + a(s)

)
; (2.7)

• if T = qN0 , then

ea(t, t0) =

t−1∏
s=t0

(
1 + (q − 1)sa(s)

)
. (2.8)

In the following, we present the basic lemmas that will be needed in the proof of our main results.

Lemma 2.1 ( [27]). If p, q ∈ < and a, b, c ∈ T, then

1. ep(t, t) = 1 and e0(t, s) = 1;

2. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

3. if p ∈ <+, then ep(t, t0) > 0, ∀t ∈ T;

4.
∫ b
a
p(t)ep(c, σ(t))∆t = −

∫ b
a

[ep(c, ·)]∆(t)∆t = ep(c, a)− ep(c, b).

Lemma 2.2 (See [27]). If p ∈ < and fix t ∈ T, then the exponential function ep(t, t0) is the unique solution of the following
initial value problem: {

y∆(t) = p(t)y(t),
y(t0) = 1.

(2.9)
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Lemma 2.3 (See [27]). Let t0 ∈ Tκ and k : T × Tκ → R be continuous at (t, t), where t > t0 and t ∈ Tκ. Assume that
k∆(t, ·) is rd-continuous on [t0, σ(t)]. If for any ε > 0, there exists a neighborhood U of t, independent of τ ∈ [t0, σ(t)], such
that

|[k(σ(t), τ)− k(s, τ)]− k∆(t, τ)[σ(t)− s]| ≤ ε|σ(t)− s|, ∀s ∈ U.

If k∆ denotes the derivative of k with respect to the first variable, then

f(t) =

∫ t

t0

k(t, τ)∆τ

yields

f∆(t) =

∫ t

t0

k∆(t, τ)∆τ + k(σ(t), t).

Lemma 2.4 ( [27]). Suppose u, b ∈ Crd and a ∈ <+. Then

u∆(t) ≤ a(t)u(t) + b(t), t ≥ t0, t ∈ Tκ

yields

u(t) ≤ u(t0)ea(t, t0) +

∫ t

t0

ea(t, σ(τ))b(τ)∆τ, t ≥ t0, t ∈ Tκ.

Lemma 2.5 ( [28]). If x ≥ 0 and p ≥ 1, then

x
1
p ≤ m1x+m2, (2.10)

where m1 = 1
pK

1−p
p , m2 = p−1

p K
1
p and K > 0.

Now we are ready to state and prove our main results, which give us the time scales version of the inequalities proved
in [17] and [18].

3 Main results

In this section, we will state and prove the main results and investigate some dynamic Gronwall-Bellman inequalities on time
scales.

Theorem 3.1. Let a, b ∈ Tkk with a < b and ω, g, f , c ∈ Crd([a, b]Tk ,R+), c be delta-differentiable on T with c∆(t) ≥ 0, and
p ≥ 1 be a constant. If

ωp(t) ≤ c(t) +

∫ t

a

g(s)ω(s)∆s+

∫ b

a

f(s)ωp(s)∆s, (3.1)

for all t ∈ [a, b]Tk , then

ω(t) ≤
{
Mem1g(t, a) +

∫ t

a

em1g(t, σ(s))A(s)∆s

} 1
p

, (3.2)

where
A(t) = c∆(t) +m2g(t), (3.3)

and

M =
c(a) +

∫ b
a
f(s)[

∫ s
a
em1g(s, σ(λ))A(λ)∆λ]∆s

1−
∫ b
a
f(s)em1g(s, a)∆s

, (3.4)

such that ∫ b

a

f(s)em1g(s, a)∆s < 1, (3.5)

where m1,m2 are defined as in Lemma 2.5, and em1g(t, a) is a solution of the initial value problem (2.9) in Lemma 2.2 when
p(t) replaced by m1g.
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Proof. Define a function z1(t) by

z1(t) = c(t) +

∫ t

a

g(s)ω(s)∆s+

∫ b

a

f(s)ωp(s)∆s, (3.6)

then, we get that

ω(t) ≤ z
1
p

1 (t), (3.7)

and

z1(a) = c(a) +

∫ b

a

f(s)ωp(s)∆s, (3.8)

from (3.6), and using (3.7), we have:

z∆
1 (t) = c∆(t) + g(t)ω(t) ≤ c∆(t) + g(t)z

1
p

1 (t). (3.9)

Therefore, using Lemma 2.5, from (3.9), we get that

z∆
1 (t) ≤ c∆(t) +m1g(t)z1(t) +m2g(t)

= m1g(t)z1(t) + [c∆(t) +m2g(t)]

= m1g(t)z1(t) +A(t),

(3.10)

where A(t) is as defined in (4.6). Now an application of Lemma 2.3 to (3.10) yields

z1(t) ≤ z1(a)em1g(t, a) +

∫ t

a

em1g(t, σ(s))A(s)∆s, (3.11)

from (3.7) and (3.11), we get that

ωp(t) ≤ z1(a)em1g(t, a) +

∫ t

a

em1g(t, σ(s))A(s)∆s, (3.12)

from (3.8) and (3.12), we have

z1(a) = c(a) +

∫ b

a

f(s)ωp(s)∆s

≤ c(a) +

∫ b

a

f(s)[z1(a)em1g(s, a) +

∫ s

a

em1g(s, σ(λ))A(λ)∆λ]∆s

≤ c(a) +

∫ b

a

f(s)z1(a)em1g(s, a)∆s

+

∫ b

a

f(s)[

∫ s

a

em1g(s, σ(λ))A(λ)∆λ]∆s.

(3.13)

Thus from (3.13), we obtain

z1(a) ≤
c(a) +

∫ b
a
f(s)[

∫ s
a
em1g(s, σ(λ))A(λ)∆λ]∆s

1−
∫ b
a
f(s)em1g(s, a)∆s

= M, (3.14)

and then we get the required inequality (3.2) from (3.12) and (3.14). The proof is complete.

Remark 3.1. If we put p = 1, and T = R, in Theorem 3.1 and using relation (2.3), then we get the continuous inequality
result due to Pachpatte in [17].
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Remark 3.2. By taking T = R in Theorem 3.1 and using the relation (2.3), it is easy to observe that the inequality obtained
in Theorem 3.1 reduces to the inequality obtained by Kender et al. in [18, Theorem 2.1].

As a special case of Theorem 3.1, if T = Z and using the relations (2.4) and (2.7), we obtain the following discrete result.

Corollary 3.1. Let T = Z and assume that ω, g, c and f are nonnegative sequences defined for t ∈ N0, then the inequality

ωp(t) ≤ c(t) +

t−1∑
s=a

g(s)ω(s) +

b−1∑
s=a

f(s)ωp(s),

implies,

ω(t) ≤
{
M̃

t−1∏
s=a

(
1 +m1g(s)

)
+

t−1∑
s=a

Â(s)

t−1∏
τ=s+1

(
1 +m1g(τ)

)} 1
p

,

where

Â(t) = c(t+ 1)− c(t) +m2g(t),

and,

M̂ =
c(a) +

∑b−1
s=a f(s)[

∑s−1
λ=a Â(λ)

∏s−1
τ=λ+1(1 +m1g(τ))]

1−
∑b−1
s=a f(s)

∏s−1
τ=λ(1 +m1g(τ))

,

where,
b−1∑
s=a

f(s)

s−1∏
τ=a

(
1 +m1g(τ)

)
< 1.

Theorem 3.2. Let a, b ∈ Tkk with a < b and ω, g, f , c ∈ Crd([a, b]Tk ,R+), c be delta-differentiable on T with c∆(t) ≥ 0,
and k(t, s), k∆(t, s) ∈ Crd([a, b]Tk × [a, b]Tk ,R+) for a ≤ s ≤ t ≤ b and p ≥ 1 be a constant. If

ωp(t) ≤ c(t) +

∫ t

a

k(t, s)ω(s)∆s+

∫ b

a

g(s)ωp(s)∆s, (3.15)

for all t ∈ [a, b]Tk , then

ω(t) ≤
{
M1em1η(t, a) +

∫ t

a

A1(s)em1η(t, σ(s))∆s

} 1
p

, (3.16)

where
A1(t) = c∆(t) +m2η(t), (3.17)

η(t) = k(σ(t), t) +

∫ t

a

k∆(t, τ)∆τ, (3.18)

and

M1 =
c(a) +

∫ b
a
g(s)[

∫ s
a
em1η(s, σ(τ))A1(τ)∆τ ]∆s

1−
∫ b
a
g(s)em1η(s, a)∆s

, (3.19)

such that ∫ b

a

g(s)em1η(s, a)∆s < 1, (3.20)

where m1,m2 are defined as in Lemma 2.5, and em1η(t, a) is a solution of the initial value problem (2.9) in Lemma 2.2 when
p(t) replaced by m1η.

Proof. Define a function z2(t) by

z2(t) = c(t) +

∫ t

a

k(t, s)ω(s)∆s+

∫ b

a

g(s)ωp(s)∆s, (3.21)
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then, we get that

ω(t) ≤ z
1
p

2 (t), (3.22)

and

z2(a) = c(a) +

∫ b

a

g(s)ωp(s)∆s. (3.23)

Using Lemma 2.3 in (3.21) and from (3.22), we have

z∆
2 (t) = c∆(t) + k(σ(t), t)ω(t) +

∫ t

a

k∆(t, τ)ω(τ)∆τ

≤ c∆(t) + k(σ(t), t)z
1
p

2 (t) +

∫ t

a

k∆(t, τ)z
1
p

2 (τ)∆τ

≤ c∆(t) + [k(σ(t), t) +

∫ t

a

k∆(t, τ)∆τ ]z
1
p

2 (t)

= c∆(t) + η(t)z
1
p

2 (t),

(3.24)

where η(t) is define as in (3.18). Using Lemma 2.5 in (3.24), the inequality (3.24) can be written as,

z∆
2 (t) ≤ c∆(t) +m1η(t)z2(t) +m2η(t)

= m1η(t)z2(t) + [c∆(t) +m2η(t)]

= m1η(t)z2(t) +A1(t),

(3.25)

where A1(t) is define as in (3.17). Now, using Lemma 2.4 in (3.25) yields that

z2(t) ≤ z2(a)em1η(t, a) +

∫ t

a

em1η(t, σ(τ))A1(s)∆τ, (3.26)

from (3.22) and (3.26), we get that

ωp(t) ≤ z2(a)em1η(t, a) +

∫ t

a

em1η(t, σ(τ))A1(τ)∆τ. (3.27)

From (3.23) and (3.27), we have

z2(a) = c(a) +

∫ b

a

g(s)ωp(s)∆s

≤ c(a) +

∫ b

a

g(s)[z2(a)em1η(s, a) +

∫ s

a

em1η(s, σ(τ))A1(τ)∆τ ]∆s

≤ c(a) +

∫ b

a

g(s)z2(a)em1η(s, a)∆s

+

∫ b

a

g(s)[

∫ s

a

em1η(s, σ(τ))A1(τ)∆τ ]∆s.

(3.28)

Thus from (3.28), we obtain

z2(a) ≤
c(a) +

∫ b
a
g(s)[

∫ s
a
em1η(s, σ(τ))A1(τ)∆τ ]∆s

1−
∫ b
a
g(s)em1η(s, a)∆s

= M1, (3.29)

for all t ∈ [a, b]Tk , we get the required inequality (3.16) from (3.27) and (3.29). The proof is complete.

8



Remark 3.3. By taking T = R in Theorem 3.2 and using the relation (2.3), it is easy to observe that the inequality obtained
in Theorem 3.2 reduces to the inequality obtained by Kender et al. in [18, Theorem 2.2].

As a special case of Theorem 3.2, if T = Z and using the relations (2.4) and (2.7), we get the following discrete result.

Corollary 3.2. Let T = Z and assume that ω, g, k(t, s), ∆k(t, s), c and f are nonnegative sequences defined for t ∈ N0,
then the inequality

ωp(t) ≤ c(t) +

t−1∑
s=a

k(t, s)ω(s) +

b−1∑
s=a

g(s)ωp(s),

implies,

ω(t) ≤
{
M̂1

t−1∏
s=a

(
1 +m1η(s)

)
+

t−1∑
s=a

Â1(s)

t−1∏
τ=s+1

(
1 +m1η(τ)

)} 1
p

,

where

Â1(t) = c(t+ 1)− c(t) +m2η(t),

and

η(t) = k(σ(t), t) +

t−1∑
s=a

∆k(t, s),

= k(t+ 1, t) +

t−1∑
s=a

∆k(t, s),

where ∆k(t, s) = k(t+ 1, s)− k(t, s), and

M̂1 =
c(a) +

∑b−1
s=a g(s)[

∑s−1
λ=a Â1(λ)

∏s−1
τ=λ+1(1 +m1η(τ))]

1−
∑b−1
s=a g(s)

∏s−1
τ=λ(1 +m1η(τ))

,

where
b−1∑
s=a

g(s)

s−1∏
τ=a

(
1 +m1η(τ)

)
< 1.

Theorem 3.3. Let ω and c be defined as in Theorem 3.2, k1(t, s), k2(t, s), k∆
1 (t, s) and k∆

2 (t, s) ∈ Crd([a, b]Tk × [a, b]Tk ,R+)
for a ≤ s ≤ t ≤ b and p ≥ 1 be a constant. Assume that a, b ∈ Tkk with a < b. If

ωp(t) ≤ c(t) +

∫ t

a

k1(t, s)ω(s)∆s+

∫ b

a

k2(t, s)ωp(s)∆s, (3.30)

for all t ∈ [a, b]Tk , then

ω(t) ≤
{
M2em1E1+E2

(t, a) +

∫ t

a

A2(s)em1E1+E2
(t, σ(s))∆s

} 1
p

, (3.31)

where

M2 =
c(a) +

∫ b
a
k2(a, s)[

∫ s
a
A2(λ)em1E1+E2

(s, σ(λ))∆λ]∆s

1−
∫ b
a
k2(a.s)em1E+1+E2

(s, a)∆s
, (3.32)

such that ∫ b

a

k2(s, a)em1E1+E2
(s, a)∆s < 1, (3.33)

where

E1(t) =

∫ t

a

k∆
1 (t, s)∆s+ k1(σ(t), t),
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E2(t) =

∫ t

a

k∆
2 (t, s)∆s,

A2(t) = c∆(t) +m2E1(s),

where m1,m2 are as defined in Lemma 2.5, and em1E1+E2
(t, a) is a solution of the initial value problem (2.9) in Lemma 2.2,

when p(t) replaced by m1E1 + E2.

Proof. Define a function z3(t) by

z3(t) = c(t) +

∫ t

a

k1(t, s)ω(s)∆s+

∫ b

a

k2(t, s)ωp(s)∆s, (3.34)

from (3.34) we have z3(t) ≥ 0 nondecreasing function with

z3(a) = c(a) +

∫ b

a

k2(a, s)ωp(s)∆s, (3.35)

and

ω(t) ≤ z
1
p

3 (t), (3.36)

from (3.34), and using (3.36), we have

z∆
3 (t) = c∆(t) + k1(σ(t), t)ω(t) +

∫ t

a

k∆
1 (t, s)ω(s)∆s

+

∫ b

a

k∆
2 (t, s)ωp(s)∆s

≤ c∆(t) + k1(σ(t), t)z
1
p

3 (t) +

∫ t

a

k∆
1 (t, s)z

1
p

3 (s)∆s

+

∫ b

a

k∆
2 (t, s)z3(s)∆s

≤ c∆(t) + [k1(σ(t), t) +

∫ t

a

k∆
1 (t, s)∆s]z

1
p

3 (t)

+

∫ b

a

k∆
2 (t, s)z3(s)∆s

= c∆(t) + E1z
1
p

3 (t) + E2(t)z3(s).

(3.37)

By using Lemma 2.5 on z
1
p

3 (t) and z3(s) in (3.37), we have

z∆
3 (t) ≤ [m1E1(t) + E2(t)]z3(t) + c∆(t) +m2E1(t). (3.38)

Therefore, using Lemma (2.4) in (3.38) we get that

z3(t) ≤ z3(a)em1E1+E2
(t, a) +

∫ t

a

[c∆(s) +m2E1(s)]em1E1+E2
(t, σ(s))∆s, (3.39)

from (3.36) and (3.39), we get that

ωp(t) ≤ z3(a)em1E1+E2(t, a) +

∫ t

a

A2(s)em1E1+E2
(t, σ(s))∆s, (3.40)
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from (3.35) and (3.40), we have

z3(a) ≤ c(a) +

∫ b

a

k2(a, s)[z3(a)em1E1+E2
(s, a)

+

∫ s

a

A2(λ)em1E1+E2(s, σ(λ))∆λ]∆s

≤ c(a) +

∫ b

a

k2(a.s)z3(a)em1E1+E2
(s, a)∆s

+

∫ b

a

k2(a, s)

∫ s

a

A2(λ)em1E1+E2(s.σ(λ))∆λ∆s.

(3.41)

Thus from (3.41), we obtain

z3(a) ≤
c(a) +

∫ b
a
k2(a, s)[

∫ s
a
A2(λ)em1E1+E2

(s, σ(λ))∆λ]∆s

1−
∫ b
a
k2(a, s)em1E1+E2(s, a)∆s

= M2, (3.42)

and then we get the required inequality (3.31) from (3.40) and (3.42). The proof is complete.

Remark 3.4. By taking T = R in Theorem 3.3 and using the relation (2.3), it is easy to observe that the inequality obtained
in Theorem 3.3 reduces to the inequality obtained by Kender et al. in [18, Theorem 2.3].

As a special case of Theorem 3.3, if T = Z and using the relations (2.4) and (2.7), we obtain the following discrete result.

Corollary 3.3. Let T = Z and assume that ω, k1(t, s), k2(t, s)2, ∆k1(t, s), ∆k2(t, s), c and f are nonnegative sequence
defined for t ∈ N0, then the inequality

ωp(t) ≤ c(t) +

t−1∑
s=a

k1(t, s)ω(s) +

b−1∑
s=a

k2(t, s)ωp(s),

implies,

ω(t) ≤
{
M̂2

t−1∏
s=a

(
1 +m1E1(s) + E2(s)

)
+

t−1∑
s=a

Â2(s)

t−1∏
τ=s+1

(
1 +m1E1(τ) + E2(τ)

)} 1
p

,

where

Â2(t) = c(t+ 1)− c(t) +m2E1(t),

and

E1(t) = k1(t+ 1, t) +

t−1∑
s=a

∆k1(t, s),

where ∆k1(t, s) = k1(t+ 1, s)− k1(t, s), and

E2(t) =

t−1∑
s=a

∆k2(t, s),

where ∆k2(t, s) = k2(t+ 1, s)− k2(t, s), and

M̂2 =
c(a) +

∑b−1
s=a k2(a, s)[

∑s−1
a=λ Â2(λ)

∏s−1
τ=λ+1(1 +m1E1(τ) + E2(τ))]

1−
∑b−1
s=a k2(a, s)

∏s−1
τ=λ(1 +m1E1(τ) + E2(τ))

,

where,
b−1∑
s=a

k2(a, s)(s)

s−1∏
τ=a

(
1 +m1E1(τ) + E2(τ)

)
< 1.
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Theorem 3.4. Let ω and c be defined as in Theorem 3.2, k1(t, s), k2(t, s), k3(t, s), k∆
1 (t, s), k∆

2 (t, s) and k∆
3 (t, s) ∈

Crd([a, b]Tk × [a, b]Tk ,R+), and p ≥ 1 be a constant. If a, b ∈ Tkk and a < b, then

ωp(t) ≤ c(t) +

∫ t

a

k1(t, s)

[
ω(s) +

∫ s

a

k2(s, τ)ω(τ)∆τ

]
∆s+

∫ b

a

k3(t, s)ωp(s)∆s, (3.43)

for all t ∈ [a, b]Tk , implies

ω(t) ≤
{
M3em1E3+E4(t, a) +

∫ t

a

A3(s)em1E3+E4(t, σ(s))∆s

} 1
p

, (3.44)

where

M3 =
c(a) +

∫ b
a
k3(a, s)[

∫ s
a
A3(λ)em1E3+E4(s, σ(λ))∆λ]∆s

1−
∫ b
a
k3(a, s)em1E3+E4

(s, a)∆s
, (3.45)

such that ∫ b

a

k3(s, a)em1E3+E4
(s, a)∆s < 1, (3.46)

where

E3(t) =

∫ t

a

k∆
1 (t, s)[1 +

∫ s

a

k2(s, τ)τ ]∆s

+k2(σ(t), t)[1 +

∫ t

a

k2(t, τ)∆τ ],

E4(t) =

∫ b

a

k∆
3 (t, s)∆s,

A3(t) = c∆(t) +m2E3(t),

where m1,m2 are as defined in Lemma 2.5, and em1E3+E4
(t, a) is a solution of the initial value problem (2.9) in Lemma 2.2,

when p(t) replaced by m1E3 + E4.

Proof. The proof is similar to the proof of Theorem 3.3.

Remark 3.5. By taking T = R in Theorem 3.4 and using the relation (2.3), it is easy to observe that the inequality obtained
in Theorem 3.3 reduces to the inequality obtained by Kender et al. in [18, Theorem 2.4].

As a special case of Theorem 3.4, if T = Z and using the relations (2.4) and (2.7), we obtain the following discrete result.

Corollary 3.4. Let T = Z and assume that ω, k1(t, s), k2(t, s)2, ∆k1(t, s), ∆k2(t, s), c and f are nonnegative sequence
defined for t ∈ N0, then the inequality

ωp(t) ≤ c(t) +

t−1∑
s=a

k1(t, s)

[
ω(s) +

b−1∑
s=a

k2(t, s)ω(s)

]
+

b−1∑
s=a

k3(t, s)ωp(s),

implies

ω(t) ≤
{
M̂3

t−1∏
s=a

(
1 +m1E3(s) + E4(s)

)
+

t−1∑
s=a

Â3(s)

t−1∏
τ=s+1

(
1 +m1E3(τ) + E4(τ)

)} 1
p

,

where

Â3(t) = c(t+ 1)− c(t) +m2E3(t),

and

E3(t) =

t−1∑
s=a

∆k1(t, s)[1 +

s−1∑
τ=a

k2(s, τ)] + k2(t+ 1, t) +

t−1∑
s=a

k1(t, s)[1 +

s−1∑
τ=a

k2(s, τ)],
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where ∆k1(t, s) = k1(t+ 1, s)− k1(t, s), and

E4(t) =

t−1∑
s=a

∆k3(t, s),

where ∆k2(t, s) = k2(t+ 1, s)− k2(t, s), and

M̂3 =
c(a) +

∑b−1
s=a k3(a, s)[

∑s−1
a=λ Â3(λ)

∏s−1
τ=λ+1(1 +m1E3(τ) + E4(τ))]

1−
∑b−1
s=a k3(a, s)

∏s−1
τ=λ(1 +m1E3(τ) + E4(τ))

,

where
b−1∑
s=a

k3(a, s)(s)

s−1∏
τ=a

(
1 +m1E3(τ) + E4(τ)

)
< 1.

4 Applications

In this section, we present some applications of Theorem 3.1 and Theorem 3.3 to obtain the explicit estimates on the solutions
of certain dynamic equations, and also prove the uniqueness and global existence of solutions for a class of nonlinear dynamic
integral equations.

Consider the following dynamic integral equation on time scale

(ωp)∆(t) = l + F (s, ω(s),

∫ b

a

H(t, s, ωp(s))∆s), ωp(a) = r, (4.1)

where F : Tkk ×R+×R+ → R+ is a continuous function, and H : Tkk ×Tkk ×R+ → R+ is also a continuous function. Assume
that

|r + l(t− s)| ≤ c(t), (4.2)

|F (s, ω, ν)| ≤ |g(s)ω(s)|+
∫ b

a

|ν(s)|∆s, (4.3)

|H(t, s, ω)| ≤ f(s)ωp(s)

t− a
, t 6= a, (4.4)

where c, f , g ∈ Crd([a, b]Tk ,R+) and r, l are given constants.

Theorem 4.1. Consider the dynamical system (4.1), and suppose that we have the hypothesis (4.2), (4.3) and (4.4), then
each solution ω of the dynamical system (4.1) under discussion verifies the following estimation

ω(t) ≤
{
Mem1g(t, a) +

∫ t

a

em1g(t, σ(s))A(s)∆s

} 1
p

, (4.5)

for all t ∈ [a, b]Tk , where M,A are defined as in the following:

A(t) = c∆(t) +m2g(t), (4.6)

and

M =
c(a) +

∫ b
a
f(s)[

∫ s
a
em1g(s, σ(λ))A(λ)∆λ]∆s

1−
∫ b
a
f(s)em1g(s, a)∆s

, (4.7)

such that ∫ b

a

f(s)em1g(s, a)∆s < 1, (4.8)

where m1,m2 are defined as in Lemma 2.5.
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Proof. Let ω be a solution of the dynamical system (4.1). Then, we see that ω satisfies the following equivalent nonlinear
dynamic integral equation

ωp(t) = r + l(t− a) +

∫ t

a

F (s, ω(s),

∫ b

a

H(τ, ωp(s))∆τ)∆s, (4.9)

from (4.9) and using the hypothesis (4.2), (4.3) and (4.4), we get that

|ωp(t))| ≤ |r + l(t− a)|+
∫ t

a

|F (s, ω(s),

∫ b

a

H(τ, s, ωp(s))∆τ)|∆s

≤ |r + l(t− a)|+
∫ t

a

(g(s)ω(s) +

∫ b

a

H(τ, s, ωp(s))∆τ)∆s

≤ c(t) +

∫ t

a

g(s)ω(s)∆s+ (t− a)

∫ b

a

H(τ, s, ωp(τ))∆τ

≤ c(t) +

∫ t

a

g(s)ω(s)∆s+

∫ b

a

f(s)ωp(s)∆s.

(4.10)

Now applying Theorem 3.1, to (4.10), yields

|ω(t)| ≤
{
Mem1g(t, a) +

∫ t

a

em1g(t, σ(s))A(s)∆s

} 1
p

.

This estimation is the required in (4.5). The proof is complete.

Example 4.1. Consider the following nonlinear dynamic integral equation in time scale

ωp(t)) = h(t) + F1(t,

∫ t

a

H1(s, ω(s), k1)∆s,

∫ b

a

H2(s, ωp(s), k2)∆s), ωp(a) = r̃, (4.11)

if,

|h(t)| ≤ c(t),

|F1(t, u, ν̃)| ≤ |u|+ |ν̃|,
|H1| ≤ k1(t, s)ω(s),

|H2| ≤ k2(t, s)ω(s),

(4.12)

where ω, g, f , c ∈ Crd([a, b]Tk ,R+), c is delta-differentiable on Tk and c∆(t) ≥ 0, and k1(t, s), k∆
1 (t, s), k2(t, s), k∆

2 (t, s)
∈ Crd([a, b]Tk × [a, b]Tk ,R+) for a ≤ s ≤ t ≤ b, r̃ and p ≥ 1, then we have the explicit bound estimation of the solution ω of
(4.11) as the following:

ω(t) ≤
{
M2em1E1+E2(t, a) +

∫ t

a

em1E1+E2(t, σ(s))A2(s)∆s

} 1
p

, (4.13)

for all t ∈ [a, b]Tk , where M2, A2, E1, E2 and em1E1+E2
are defined as the following:

M2 =
c(a) +

∫ b
a
k2(a, s)[

∫ s
a
A2(λ)em1E1+E2

(s, σ(λ))∆λ]∆s

1−
∫ b
a
k2(a.s)em1E+1+E2(s, a)∆s

, (4.14)

such that ∫ b

a

k2(s, a)em1E1+E2(s, a)∆s < 1, (4.15)

E1(t) =

∫ t

a

k∆
1 (t, s)∆s+ k1(σ(t), t),
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E2(t) =

∫ t

a

k∆
2 (t, s)∆s,

A2(t) = c∆(t) +m2E1(s),

where m1, m2 are as defined in Lemma 2.5.

Proof. From (4.11), (4.12), we have

|ω(t)|p ≤ c(t) +

∫ t

a

k1(t, s)|ω(s)|∆s+

∫ b

a

k2(t, s)|ω(s)|p∆s. (4.16)

Now applying Theorem 3.3, to (4.16), we get

ω(t) ≤
{
M2em1E1+E2(t, a) +

∫ t

a

em1E1+E2(t, σ(s))A2(s)∆s

} 1
p

.

This is the desired estimation in (4.13). The proof is complete.

Example 4.2. Assume that

|F (t, γ1, γ2)− F1(t, β1, β2)| ≤ |γ1 − β1|+ |γ2 − β2|
|H1(t, ω1)−H1(t, ω2)| ≤ k1(t, s)|ω1(s)− ω2(s)|
|H2(t, ω1)−H2(t, ω2)| ≤ k2(t, s)|ωp1(s)− ωp2(s)|

|ω1(t)− ω2(t)| ≤ |ωp1(t)− ωp2(t)|,
(4.17)

where ω(t), k1(t, s) and k2(t, s), p are defined as in Example 4.1, then the dynamic equation (4.11) has at most one solution.

Proof. Let ω1 and ω2 be two solutions of (4.11). Then we get that

ωp1(s)− ωp2(s) = F (t,

∫ t

a

H1(s, ω1(s)),

∫ b

a

H2(s, ωp1(s))∆s)

−F (t,

∫ t

a

H1(s, ω2(s)),

∫ b

a

H2(s, ωp2(s))∆s),

(4.18)

from (4.17) and (4.18), we get that

|ωp1(s)− ωp2(s)| ≤
∫ t

a

k1(t, s)|ωp1(s)− ωp2(s)|∆s+

∫ b

a

k2(t, s)|ωp1(s)− ωp2(s)|∆s.

By Theorem 3.3, we have ωp1(s) − ωp2(s) = 0. Therefor ω1 = ω2. Then (4.11) has at most one solution. The proof is
complete.
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