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Abstract

The main objective of this paper is to investigate the analytical solution of a special case of the general class of
challenged functional equations given by

A1(x, y)f(x, y) = A2(x, y)f(x, 0) + A3(x, y)f(0, y) + A4(x, y)f(0, 0) + A5(x, y),

where Ai(x, y), i = 1, ..., 5 are given functions in two complex variables x, y. The main unknown function f(x, y) is defined
in such a way that for every fixed x it is analytic in the y−unit disk, and similarly for y. The unknown function f(x, 0) is
defined as f(x, 0) : D → C, where D stands for the unit disk, and a similar definition holds for the other unknown function
f(0, y). The functional equation considered in this article is not solved yet. However it is an interesting equation as it
arose from a queueing model of a network gateway linking two ethernet local area networks. The solution is obtained by
reduction to Riemann-Hilbert boundary value problem via using conformal mappings.

keyword Functional equation , Two-variable , Queueing model , Complex analysis
Classification No: 30D05, 39B72, 65Q20, 93C30, 97I80

1 Introduction

Functional equations are a relatively old subject of mathematics see e.g. [1,2]. However, they have various recent applications
in many fileds like e.g. in information theory see [3], in applied sciences see [4], in databases see [5], and in communications
see [6,7]. This article is mainly concerned with a solution of a two-place functional equation arising from a network gateway
queueing model originally published in [8]. The current functional equation is a special case of the general structure of
functional equations introduced recently in [9]. It should be noted that in [10] the authors introduced a closed from solution
of the equation of interest by utilizing to a great extent the knowledge of the physical properties of the underlying gateway.
In the current article we introduce an analytic solution using only mathematical techniques. The solution of the equation of
interest is obtained by using the theory of boundary value problems. It is worth stating that Malyshev [11] pioneered the
approach of transforming functional equations to boundary value problems in the early 1970s. The idea to reduce functional
equations for the generating function to a standard Riemann–Hilbert boundary value problem stems from the work of Fayolle
and Iasnogorodski [12] on two parallel M/M/1 queues with coupled processors.

Lion’s share of boundary value problems for analytic functions exists in the book of Cohen and Boxma [13] and that of
Fayolle et al. [14]. As far as we know the functional equation in [8] is not yet solved, and hence in the current article we
investigate the solution using boundary value problems approach. We will solve the current functional equation by reduction
to a boundary value problem of the following form: Find a function h(.) such that:
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1. h(.) is analytic in D+

2. h(.) is continuous in the closure cl(D+) of the unit disk

3. h(.) satisfies
<(ia(u)h(u)) = b(u), u ∈ D, (1)

for some given hölder continuous functions a(.) and b(.) with a 6= 0 on D.

Since the function h(u) is real on the real axis. This can be easily seen from the definition since, the unknown h(u) is in
general defined as

h(u) =

∞∑
k=0

pku
k, u ∈ C,

for some real nonnegative coefficient pk. Then it is possible to define by using the Schwartz reflection principle (see e.g.
[15–18]), the function g(u) = h(1/u), which is analytic in D−. The function h(u) (resp. g(u)) is the restriction to D
(resp.D−) of the sectionally analytic function (see e.g. [19]) H(u), which satisfies the following Riemann–Hilbert problem:
Find a sectionally analytic function H(u) with respect to the unit circle, bounded at infinity (H(∞) = h(0)) such that for
u ∈ D

a(u)H+(u)− a(u)H−(u) = −2ib(u),

where H+(u) (resp. H−(u)) is the interior (resp. exterior) limit of the function H(u) on the unit circle. The solution of this
problem, when it exists, is given by (see e.g. [20])

H(u) =
φ+(u)

2πi

∫
D

B(z)

φ+(z)(z − u)
dz +Q(u)φ(u), (2)

where Q(u) is some polynomial, which can be determined by using the conditions at infinity, the function B(u) is given by

B(u) = −2i
b(u)

a(u)

and the function φ(u) is defined by

φ(u) =

exp
(

1
2iπ

∫
D

log
(
z−κ a(z)a(z)

)
dz
z−u

)
if u ∈ D+

1
uκ exp

(
1

2iπ

∫
D

log
(
z−κ a(z)a(z)

)
dz
z−u

)
if u ∈ D−

with κ denoting the index of the Riemann–Hilbert problem (the index of a(z)/a(z)) and φ(+)(u) being the interior limit of
the function φ(u) on the unit circle.

The article is organized as follows: In section 2 we recall the functional equation from the original article [8], in section
3 we introduce some preliminary results including the analysis of the kernel, in section 4 an analytic continuation of the
function defined by the kernel is proved, in section 5 we recall the idea of the resultant of two polynomials to compute the
potential singularities of the two unknowns as done in a recent paper. The singularities play a crucial role in the construction
of the boundary value problems, in section 6 we solve the functional equation by reduction to a special case of the boundary
value problem stated in the introduction. In section 7 we conclude this article.

2 The functional equation

The article [8] ends up with the following two-place functional equation

(M(x, y)− xy) f(x, y) = (1− y)(M(x, 0) + r̃1ξ2xy)f(x, 0)

+(1− x)(M(0, y) + r̃2ξ1xy)f(0, y)− (1− x)(1− y)M(0, 0)f(0, 0), (3)

where
M(x, y) = (r̃1 + r1s̃1y + ξ1xy)(r̃2 + r2s̃2x+ ξ2xy),
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and 0 < rj , sj , ξj := rjsj < 1, j = 1, 2. By using the above equation, we can write equation (3) in the form

((r̃1 + r1s̃1y + ξ1xy)(r̃2 + r2s̃2x+ ξ2xy)− xy)f(x, y)

= (1− y)r̃1(r̃2 + r2s̃2x+ ξ2xy)f(x, 0) + (1− x)r̃2(r̃1 + r1s̃1y + ξ1xy)f(0, y)

−(1− x)(1− y)r̃1r̃2f(0, 0). (4)

The main unknown function f(x, y) is defined in [8] as a probability generating function (PGF) of the sequence pm,n

f(x, y) =

∞∑
m,n=0

pm,nx
myn, |x| ≤ 1, |y| ≤ 1

while the marginal PGFs f(x, 0) and f(0, y) are defined as

f(x, 0) =

∞∑
m=0

pm,0x
m, |x| ≤ 1,

and

f(0, y) =

∞∑
n=0

p0,ny
n, |y| ≤ 1.

The solution of equation (4) will be investigated in the next sections.

3 Preliminary results

We introduce some results towards the reduction to a boundary value problem

3.1 The set-up

For simplicity reasons equation (4) can be written as

A1(x, y)f(x, y) = A2(x, y)f(x, 0) +A3(x, y)f(0, y) +A4(x, y)f(0, 0), (5)

where

A1(x, y) = (r̃1 + r1s̃1y + ξ1xy)(r̃2 + r2s̃2x+ ξ2xy)− xy,
= ξ2ξ1x

2y2 + r2s̃2ξ1x
2y + ξ2r1s̃1xy

2 + (r̃1ξ2 + r1r2s̃1s̃2 + r̃2ξ1 − 1)xy

+ r̃1r2s̃2x+ r1r̃2s̃1y + r̃1r̃2,

A2(x, y) = r̃1(1− y)(r̃2 + r2s̃2x+ ξ2xy),

= r̃1r̃2 + r̃1r2s̃2x− r̃1r̃2y + (r̃1ξ2 − r̃1r2s̃2)xy − r̃1ξ2xy2

A3(x, y) = r̃2(1− x)(r̃1 + r1s̃1y + ξ1xy),

= r̃1r̃2 + r1r̃2s̃1y − r̃1r̃2x+ (r̃2ξ1 − r1r̃2s̃1)xy − r̃2ξ1x2y,

and

A4(x, y) = r̃1r̃2(x− 1)(1− y)

= r̃1r̃2x+ r̃1r̃2y − r̃1r̃2xy − r̃1r̃2.

Since by definition the main function f(x, y) is an analytic function in the unit disk, then this means that if A1(x, y) = 0,
then also

A2(x, y)f(x, 0) +A3(x, y)f(0, y) +A4(x, y)f(0, 0) = 0. (6)
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Since the unknown f(0, 0) 6= 0 (necessary for the stability of the underlying system), then equation (6) is equivalent to

A2(x, y)
f(x, 0)

f(0, 0)
+A3(x, y)

f(0, y)

f(0, 0)
+A4(x, y) = 0. (7)

Introducing new functions

F (x) :=
f(x, 0)

f(0, 0)
, G(y) :=

f(0, y)

f(0, 0)
. (8)

By using (8) in (7) we get the following functional equation

A2(x, y)F (x) +A3(x, y)G(y) +A4(x, y) = 0 (9)

on the set
{(x, y) : A1(x, y) = 0}.

Now the solution of equation (4) is reduced to the solution of the equation (9) in only two unknowns namely F (x) and G(y).
It is obvious that it suffices to find one unknown and plug it in the above equation to find the other unknown as done in [21].
The next and basic step in solving the functional equation is the analysis of the kernel defined by

{(x, y) : A1(x, y) = M(x, y)− xy = 0}.

First note that the current functional equation is somehow different from the equations that appear in the literature (see
e.g. [22], [23], [21]) in the following facts:

1. The functions A2(x, y), A3(x, y), and A4(x, y) are not related to each other unlike the case in [22].

2. It is not possible to find the unknown f(0, 0) by a direct substitution in the main functional equation unlike the case
in [21]. This is because there are no values for x or y for which both A2(x, y) = 0 and A3(x, y) = 0.

3. We have a completely symmetric equation i.e. the approach applied to find F (x) will exactly be applied to find G(y)
this is due to the complete symmetry of the kernel A1(x, y).

4. We don’t know the unknown f(0, 0) unlike the case in [22].

5. We have many parameters namely r1, r2, s1, s2, ξ1 and ξ2 which may complicate the analysis.

6. The contours L1 and L2 defined below are not circles unlike the case in [12].

7. The function F (x) may have singularities in the domain L+
1 .

8. There is no explicit stability condition of the system producing the functional equation unlike the case in [24].

9. We have a different random walk (in the interior of the random walk there are transitions to the east, north east, and
north) producing the functional equation so we cannot use the compensation approach unlike the cases in [25–28].

3.2 Kernel analysis

A crucial role (see e.g. [29], [30], and [12]) in the solution of our equation is played by the kernel given by

{(x, y) : A1(x, y) = (r̃1 + r1s̃1y + ξ1xy)(r̃2 + r2s̃2x+ ξ2xy)− xy = 0}. (10)

From (10) the kernel can be written as

A1(x, y) = ξ1ξ2x
2y2 + r2s̃2ξ1x

2y + r1s̃1ξ2xy
2 + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)xy

+r̃1r2s̃2x+ r̃2r1s̃1y + r̃1r̃2 = 0. (11)

Since equation (11) is a biquadratic equation it can be considered as a quadratic equation in x as a function of y, or as a
quadratic equation in y as a function of x. So we have

A1(x, y+(x)) = A1(x, y−(x)) = 0,

and also
A1(x+(y), y) = A1(x−(y), y) = 0,

where x±(y) are the solutions of (11) when considered as a quadratic equation in x. Similarly, y±(x) are the solution of (11)
when considered as a quadratic equation in y. Now we have to study the two cases separately as follows.
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3.2.1 The kernel as a quadratic equation in x

If we consider equation (11) as an equation in x it can be written as follows

(ξ1ξ2y
2 + r2s̃2ξ1y)x2 + (r1s̃1ξ2y

2 + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)y + r̃1r2s̃2)x

+ r̃2r1s̃1y + r̃1r̃2 = 0,

or in the form
α(y)x2 + β(y)x+ γ(y) = 0, (12)

where
α(y) = ξ1ξ2y

2 + r2s̃2ξ1y,

β(y) = r1s̃1ξ2y
2 + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)y + r̃1r2s̃2, (13)

and
γ(y) = r̃2r1s̃1y + r̃1r̃2.

Equation (12) has two solutions x, in the form

x±(y) =
−β(y)±

√
D1(y)

2α(y)
, (14)

where
D1(y) = β2(y)− 4α(y)γ(y). (15)

It is easy to see that
D1(−1) > 0, D1(0) > 0, D1(1) > 0, and lim

y→∞
D1(y) =∞.

Lemma 3.1. The functions x±(y) given by (14) have four real branch points yi, i = 1, ..., 4 such that

0 < y1 < y2 < 1 < y3 < y4 <∞. (16)

Proof. Branch points are the zeros of the discriminant, D1(y), because as y traverses a small circuit around yi, i = 1, ...4,
D1(y) does not return to its original value. The function D1 is given by

D1(y) = β2(y)− 4α(y)γ(y)

= r21 s̃
2
1ξ

2
2y

4 + [2r̃1r1s̃1ξ
2
2 + 2r21r2s̃

2
1s̃2ξ2 − 2r1s̃1ξ2 − 2r1r̃2s̃1ξ1ξ2]y3

+ [4r1r̃1r2s̃1s̃2ξ2 + r̃21ξ2
2 + r21r

2
2 s̃

2
1s̃

2
2 + r̃22ξ1

2 + 1 + 2r̃2ξ1

− 2r̃1ξ2 + r1r2r̃2s̃1s̃2ξ1 − 2r1r2s̃1s̃2 − 2r̃1r̃2ξ1ξ2]y2

+ [2r̃21r2s̃2ξ2 + 2r1r̃1r
2
2 s̃1s̃

2
2 + r̃1r2r̃2s̃2ξ1 − 2r̃1r2s̃2]y + (r2r̃1s̃2)2. (17)

In order to locate the zeros of D1 it is sufficient to investigate the zeros of the function β(y). This is because at the zeros

(yβi , i = 1, 2) of β(y), the function D1 will be

D1(yβi ) = −4α(yβi )γ(yβi ). (18)

Clearly, from (13) β(y) = 0 has two solutions:

yβ1 =
1− r̃1ξ2 − r2s̃2r1s̃1 − r̃2ξ1 +

√
(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)2 − 4r1s̃1ξ2r̃1r2s̃2

2r1s̃1ξ2
> 1

and

0 < yβ2 =
1− r̃1ξ2 − r2s̃2r1s̃1 − r̃2ξ1 −

√
(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)2 − 4r1s̃1ξ2r̃1r2s̃2

2r1s̃1ξ2
< 1.
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It should be noted first that since yβ1 > 1, and the functions α(.), γ(.) are positive there then the function D1(.) is negative.

For the other root yβ2 we have 0 < yβ2 < 1, this holds only for the system parameters for which the system is stable i.e. it
holds only on

{ri, si, ξi : ξ1 < 1− r2, ξ2 < 1− r1, i = 1, 2} (19)

and in this case also both the functions α(.) and γ(.) are positive so that the function D1(.) using (18) is negative. It follows
from the properties of polynomials that there exist y1, y2, y3 and y4 such that

0 < y1 ≤ yβ2 ≤ y2 < 1 < y3 ≤ yβ1 < y4 <∞,

and D1(yi) = 0, i = 1, 2, 3, 4. Also, by the properties of polynomials, D1(y) > 0 in (−∞, y1)∪ (y2, y3)∪ (y4,∞) and D1(y) < 0
in (y1, y2) ∪ (y3, y4).

It is interesting to find out that selecting any random values of the system parameters ri, si, ξi, i = 1, 2 satisfying the
stability condition (19) we get that the root yβ2 lies in the interval (0, 1).

Lemma 3.2. For every y∈[y1, y2] we have y ∈ R, and the two roots x+(y) and x−(y) given by

x+(y) =
−β(y) +

√
D1(y)

2α(y)
, x−(y) =

−β(y)−
√
D1(y)

2α(y)
, (20)

are complex conjugate. Hence, the interval (y1, y2) is mapped by y 7→ x±(y) onto a contour L1. Any point on such a contour
satisfies

|x(y)|2 =
r̃2r1s̃1y + r̃1r̃2
ξ1ξ2y2 + r2s̃2ξ1y

.

Proof. Follows directly from the fact that the discriminant D1(y) is zero for y = y1 and y2 and negative for y ∈ (y1, y2),
which is symmetric with respect to the real line, see figure 1. For a point x(y) on the contour L1 we have from (12) and
Vieta’s formula that

x+(y)x−(y) = x(y)x(y) = |x(y)|2

=
γ(y)

α(y)
=

r̃2r1s̃1y + r̃1r̃2
ξ1ξ2y2 + r2s̃2ξ1y

.

Figure 1: The function x±(y) as a map from [y1, y2] to the contour L1
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Remark 3.1. The functions x±(y) defined by (14) have the following properties:

• They are local analytic functions except at zeros of the function α(y).

• They are well defined except at some algebraic branch points, which are the real zeros of the discriminant D1(y).

Remark 3.2. The function x+(y) has the following properties:

• It has removable singularities at y = 0, and at y = ξ2−r2
ξ2

which are the zeros of the function α(y), since it is easily
verified that

lim
y→0

x+(y) = 0, lim
y→ ξ2−r2

ξ2

x+(y) = K,

for some finite value K.

• It can be expanded as a convergent power series of y in some neighborhood of the points 0, and at y = ξ2−r2
ξ2

, which

both are removable singularities for the function x+(y).

On the other hand the function x−(y) is an analytic function except for a pole singularity at y = 0, since limy→0 x−(y) =
−∞.

3.2.2 The kernel as a quadratic equation in y

If we consider equation (11) as a quadratic equation in y it can be written as follows:

(ξ1ξ2x
2 + r1s̃1ξ2x)y2 + (r2s̃2ξ1x

2 + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)x+ r̃2r1s̃1)y

+ r̃1r2s̃2x+ r̃1r̃2 = 0

or in the form
µ(x)y2 + ν(x)y + δ(x) = 0, (21)

where
µ(x) = ξ1ξ2x

2 + r1s̃1ξ2x,

ν(x) = r2s̃2ξ1x
2 + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)x+ r̃2r1s̃1,

and
δ(x) = r̃1r2s̃2x+ r̃1r̃2.

Equation (21) has two solutions in y, in the form

y±(x) =
−ν(x)±

√
D2(x)

2µ(x)
, (22)

where

D2(x) = ν2(x)− 4µ(x)δ(x)

= r22 s̃
2
2ξ

2
1x

4 + [2r2r̃2s̃2ξ
2
1 + 2r1r

2
2 s̃

2
2s̃1ξ1 − 2r2s̃2ξ1 − 2r̃1r2s̃2ξ1ξ2]x3

+ [4r1r2r̃2s̃1s̃2ξ1 + r̃22ξ1
2 + r21r

2
2 s̃

2
1s̃

2
2 + r̃21ξ2

2 + 1

− 2r̃1ξ2 − 2r̃2ξ1 + r̃1r1r2s̃2s̃1ξ2 − 2r2r1s̃2s̃1 − 2r̃1r̃2ξ1ξ2]x2

+ [2r1r̃
2
2 s̃1ξ1 + 2r21r2r̃2s̃

2
1s̃2 + r̃2r1r̃1s̃1ξ2 − 2r1r̃2s̃1]x

+ (r1r̃2s̃1)2. (23)

Lemma 3.3. The functions y±(x) defined by C1(x, y) = 0, have four real branch points

0 < x1 < x2 < 1 < x3 < x4 <∞.

Proof. Similar argument as in lemma 3.1
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Lemma 3.4. For each x∈[x1, x2], the two roots y+(x) and y−(x) are complex conjugate. Hence, the interval (x1, x2) is
mapped by x 7→ y±(x) onto a closed contour L2, which is symmetric with respect to the real line, fulfills

|y(x)|2 =
r̃1r2s̃2x+ r̃1r̃2
ξ1ξ2x2 + r1s̃1ξ2x

.

Proof. Similar argument as in lemma 3.2

The functions y±(x) defined by (22) have similar properties like in remarks 3.1 and 3.2.

4 Analytic continuation

Using the results of the previous section we assume that for z∈C, arg(z)∈(−π, π], and we define the square root such that√
x2=x if x≥0, and

√
−1 = i. The couple (y+(x), (−∞, x1)) defines a germ of analytic function see [ [31], p. 42]. The

following lemma shows how this germ can be analytically continued in the complex plane deprived of the segments [x1, x2]
and [x3, x4]. Let z++ = <(z) + i|=(z)|.

Lemma 4.1. The function

Y ∗(x) =


y+(x) x ∈ {z : <(z) ≤ x2,=(D2(z++)) < 0} ∪ (−∞, x1),

y+(x) x ∈ {z : <(z) ≥ x3,=(D2(z++)) > 0} ∪ (x4,∞),

y−(x) otherwise

is an analytic function in C \ ([x1, x2] ∪ [x3, x4]).

Proof. Let x = u+ iv with u, v ∈ R. We write D2(x) = <(D2(x)) + i=(D2(x)). Since

D2(x) = ν2(x)− 4µ(x)δ(x).

Using x = u+ iv to rewrite the functions ν(.), µ(.), δ(.) as

ν(x)|x=u+iv = r2s̃2ξ1(u+ iv)2 + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)(u+ iv) + r̃2r1s̃1

= [r2s̃2ξ1(u2 + v2) + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)u+ r̃2r1s̃1]

+ i[2r2s̃2ξ1uv + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)v],

µ(x)|x=u+iv = ξ1ξ2(u+ iv)2 + r1s̃1ξ2(u+ iv),

= (ξ1ξ2(u2 − v2) + r1s̃1ξ2u) + (2ξ1ξ2uv + r1s̃1ξ2v)i,

and

δ(x)|x=u+iv = r̃1r2s̃2(u+ iv) + r̃1r̃2

= (r̃1r2s̃2u+ r̃1r̃2) + (r̃1r2s̃2v)i.

Now we can write D2(x) as

D2(x)|x=u+iv = ν(u, v)2 − 4µ(u, v)δ(u, v)

= [r2s̃2ξ1(u2 + v2) + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)u+ r̃2r1s̃1]2

− [2r2s̃2ξ1uv + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)v]2

+ 2i[r2s̃2ξ1(u2 + v2) + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)u+ r̃2r1s̃1]×
[2r2s̃2ξ1uv + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)v]

−4[(ξ1ξ2(u2 − v2) + r1s̃1ξ2u) + i(2ξ1ξ2uv + r1s̃1ξ2v)][(r̃1r2s̃2u+ r̃1r̃2) + ir̃1r2s̃2v].
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Using the above equation we can write the real and imaginary parts of D2(x) as follows

<(D2(x)) = [r2s̃2ξ1(u2 + v2) + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)u+ r̃2r1s̃1]2

− [2r2s̃2ξ1uv + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)v]2

− 4(ξ1ξ2(u2 − v2) + r1s̃1ξ2u)(r̃1r2s̃2u+ r̃1r̃2) + 4(2ξ1ξ2uv + r1s̃1ξ2v)r̃1r2s̃2v, (24)

and

=(D2(x)) = 2[r2s̃2ξ1(u2 + v2) + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)u+ r̃2r1s̃1]×
[2r2s̃2ξ1uv + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)v]

− 4(ξ1ξ2(u2 − v2) + r1s̃1ξ2u)r̃1r2s̃2v − 4(2ξ1ξ2uv + r1s̃1ξ2v)(r̃1r2s̃2u+ r̃1r̃2). (25)

It is obvious from (25) that =(D2(x)) = 0 if (u, v) satisfies

[r2s̃2ξ1(u2 + v2) + (r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)u+ r̃2r1s̃1]

× v[2r2s̃2ξ1u+ r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1]

= 2(ξ1ξ2(u2 − v2) + r1s̃1ξ2u)r̃1r2s̃2v − 2(2ξ1ξ2uv + r1s̃1ξ2v)(r̃1r2s̃2u+ r̃1r̃2), (26)

which can be written as

[2r2s̃2ξ1r2s̃2ξ1u+ r2s̃2ξ1r̃1ξ2 + r2s̃2ξ1r2s̃2r1s̃1 + r2s̃2ξ1r̃2ξ1 − r2s̃2ξ1 + 2ξ1ξ2r̃1r2s̃2]v2

=− 2r2s̃2ξ1r2s̃2ξ1u
3 − [r2s̃2ξ1r̃1ξ2 + r2s̃2ξ1r2s̃2r1s̃1 + r2s̃2ξ1r̃2ξ1 − r2s̃2ξ1]u2

+2ξ1ξ2r̃1r2s̃2u
2 − 4ξ1ξ2r̃1r2s̃2u

2 − 2r2s̃2ξ1u
2(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)

+ 2r1s̃1ξ2r̃1r2s̃2u− r̃1ξ2u(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)

− r2s̃2r1s̃1u(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)− r̃2ξ1u(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)

+ u(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)− 2r2s̃2ξ1r̃2r1s̃1u− 4ξ1ξ2r̃1r̃2u− 2r1s̃1ξ2r̃1r2s̃2u

− r̃1ξ2r̃2r1s̃1 − r2s̃2r1s̃1r̃2r1s̃1 − 2r1s̃1ξ2r̃1r̃2 − r̃2ξ1r̃2r1s̃1 + r̃2r1s̃1. (27)

For simplicity reasons the above equation can be written in the form

(a1u+ a2)v2 = a3u
3 + a4u

2 + a5u+ a6, (28)

where
a1 = −2r22 s̃

2
2ξ

2
1 < 0, (29)

a2 = −3r2s̃2r̃1ξ1ξ2 − r22 s̃22r1s̃1ξ1 − r2s̃2r̃2ξ21 + r2s̃2ξ1 > 0, (30)

a3 = 2r22 s̃
2
2ξ

2
1 > 0, (31)

a4 = 3r̃1r2s̃2ξ1ξ2 + r22 s̃
2
2r1s̃1ξ1 + r2s̃2r̃2ξ

2
1 − r2s̃2ξ1

+2r2s̃2ξ1(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1) < 0, (32)

a5 = −2r1s̃1ξ2r̃1r2s̃2 + r̃1ξ2(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)

+r2s̃2r1s̃1(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1) + r̃2ξ1(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1)

−(r̃1ξ2 + r2s̃2r1s̃1 + r̃2ξ1 − 1) + 2r2s̃2ξ1r̃2r1s̃1

+4ξ1ξ2r̃1r̃2 + 2r1s̃1ξ2r̃1r2s̃2 > 0, (33)

and
a6 = 3r̃1ξ2r̃2r1s̃1 + r2s̃2r

2
1 s̃1r̃2s̃

2
1 + r̃22ξ1r1 − r̃2r1s̃1 > 0. (34)

It should be noted that (29-34) satisfied by the coefficients aj , j = 1, · · · , 6 are tested using some stability system parameters
i.e. parameters satisfying (ξ1 < 1− r2 and ξ2 < 1− r1). Assume that d1(u) is the polynomial in the right-hand side of (28).
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It is easy to see that limu→+∞ d1(u) > 0, and d1(0) > 0. The polynomial d1 is of degree three and has at least one real root.
Equation (28) has two roots in v given by

v =±

√
a3u3 + a4u2 + a5u+ a6

a1u+ a2

=±

√
d1(u)

a1u+ a2
. (35)

From (35) we would then obtain two curves, one in the half-plane {x : =(x) > 0} (corresponding to the plus sign) and the
other in the half-plane {x : =(x) < 0} (corresponding to the minus sign). Along each of these curves, the sign of <(D2(x))
should be constant since the imaginary and real parts cancel only for x ∈ R (namely for x equals to one of the roots x1, x2, x3
and x4). When u→ −∞, v2 ∼ −u2 and then <(D2(x)) ∼ −u3, which contradicts the fact that the sign of <(D2(x)) should
be constant along the curve =(D2(x)) = 0. As a consequence, the polynomial d1(u) has three real roots (say x1a, x2a, x3a),
which are positive since d1(0) > 0 such that x1a ∈ (0, 1) and x2a, x3a ∈ (1,∞) we assume that

0 < x1 ≤ x1a < x2 < 1 < x2a ≤ x3 ≤ x3a ≤ x4.

In order to prove that the function Y ∗(x) is analytic in the whole of C deprived of the segments ([x1, x2] ∪ [x3, x4]), by
Moreira’s theorem (see e.g. [17, 18]), it is sufficient to show that this function is continuous on the branch {x : =(D2(x)) =
0,<(D2(x)) ≤ 0} separating the two above domains. But this is clearly checked from the choice of the determination of the
square root.

This lemma will be used in the reduction to the boundary value problem.

5 Potential singularities of the unknowns

In this section we will use the idea of the resultant between two polynomials to investigate the potential singularities of the
unknowns.

5.1 The main idea of the singularities

Generally speaking, when we have two polynomials in two variables, say,

g1(x, y) = a0(y) + a1(y)x+ · · ·+ an1
(y)xn1 ,

and
g2(x, y) = b0(y) + b1(y)x+ · · ·+ bn2

(y)xn2 ,

the resultant (Resx(g1, g2; y)) (see e.g. [32] in Appendix B) of the polynomials g1 and g2 with respect to x is the determinant
of the matrix 

an1 an1−1 · · · a0 0 · · · · · ·
0 an1

an1−1 · · · a0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · 0 an1

an1−1 · · · a0
bn2 bn2−1 · · · b0 0 · · · · · ·
0 bn2 bn2−1 · · · b0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · 0 bn2

bn2−1 · · · b0



x
x
y

yn2 − rows
y
y
x

yn1 − rows

(36)

which is a polynomial in y. The resultant with respect to x is 0 at y0 if the polynomials g1 and g2 have a common nontrivial
root (x0, y0) or the leading coefficients are zero. We used the results published in [33].

6 Boundary value problem

In this section we will describe how our functional equation could be solved by reduction to the Riemann-Hilbert boundary
value problem via using some conformal mapping.
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6.1 The unknown F (x)

The function x±(y) defined by (14) is defined in C \ ([y1, y2] ∪ [y3, y4]). Assume now that the image of the slit [y1, y2] by
x±(y) is a closed contour L1 see figure 1. The following Lemmas show how the functional equation (9) is reduced to a
Riemmann-Hilbert boundary value problem in the unknown F (x). Regarding the analyticity of the function F in L+

1 since
we cannot guarantee that such function is analytic in L+

1 then we have to consider two cases:
Case 1: If the function F (x) is analytic in L+

1 .
In this case the main functional equation is reduced to the following Riemann-Hilbert Boundary value problem.

Lemma 6.1. Find an analytic function F such that

<(im1(τ(u))F (τ(u))) = <(m2(τ(u))), u ∈ D

where τ(u) is the inverse of some conformal mapping, and m1(u) and m2(u) are known functions.

Proof. Since the main PGF function f(x, y) is analytic in the unit disk, this implies that if A1(x, y) = 0 then also

A2(x, y)f(x, 0) +A3(x, y)f(0, y) +A4(x, y)f(0, 0) = 0,

which is equivalent to
A2(x, y)F (x) +A3(x, y)G(y) +A4(x, y) = 0. (37)

Now assume that y ∈ (y1, y2) then y ∈ R, x ∈ L1, so <(i(G(y))) = 0. Now equation (37) can be written as follows

<(i
A2(x, y)

A3(x, y)
F (x)) = −<(i

A4(x, y)

A3(x, y)
),

the right hand side of the above equation can be written as follows

−<(i
A4(x, y)

A3(x, y)
) = =(

A4(x, y)

A3(x, y)
).

Now for x ∈ L1 and y = Y ∗(x), we have a problem of the form

<(i
A2(x, Y ∗(x))

A3(x, Y ∗(x))
F (x)) = =(

A4(x, Y ∗(x))

A3(x, Y ∗(x))
), (38)

which is a Riemann-Hilbert boundary value problem. To solve the constructed Riemann–Hilbert problem, a classical approach
(see e.g [21]) is to consider a conformal mapping θ between the bounded domain L+

1 delineated by the contour L1 and the
unit disk

θx(x) : L+
1 → D+,

with inverse
τx(u) : D+ → L+

1 .

This conformal mapping exists by Riemann’s conformal mapping theorem. The function θ(.) can be chosen so as to preserve
the symmetry with respect to the horizontal axis. The Riemann–Hilbert problem (38) is then transformed into a Riemann–
Hilbert problem of the form

<(im1(τ(u))F (τ(u))) = <(m2(τ(u))),

for some functions m1(u) and m2(u) given by

m1(τ(u)) =
C2(τx(u), Y ∗(τx(u)))

C3(τx(u), Y ∗(τx(u)))
,

and

m2(τ(u)) =
C4(τx(u), Y ∗(τx(u)))

C3(τx(u), Y ∗(τx(u)))
.
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An explicit form of this conformal mapping is not an easy task but can be obtained using the results in e.g. [35–37].
Case 2: If the function F (x) has potential singularities in L+

1

In this case we will remove such potential singularities and the main functional equation is reduced to the following boundary
value problem.

Lemma 6.2. Find an analytic function Fx(Ωx(u)) satisfying

<(i
A2(Ωx(u), Y ∗(Ωx(u)))

A3(Ωx(u), Y ∗(Ωx(u)))
Fx(Ωx(u))) =

=[
A4(Ωx(u), Y ∗(Ωx(u)))

A3(Ωx(u), Y ∗(Ωx(u)))
+
A2(Ωx(u), Y ∗(Ωx(u)))

A3(Ωx(u), Y ∗(Ωx(u)))

Rx
Ωx(u)− x∗

], u ∈ D (39)

which is a special case of (1).

Proof. Since the main PGF function f(x, y) is analytic in the unit disk, this implies that if C1(x, y) = 0 then also

A2(x, y)f(x, 0) +A3(x, y)f(0, y) +A4(x, y)f(0, 0) = 0,

which is equivalent to
A2(x, y)F (x) +A3(x, y)G(y) +A4(x, y) = 0. (40)

Now assume that y ∈ (y1, y2) then y ∈ R, so <(i(G(y))) = 0, now equation (40) can be written as follows

<(i
A2(x, y)

A3(x, y)
F (x)) = −<(i

A4(x, y)

A3(x, y)
),

the right hand side of the above equation can be written as follows

−<(i
A4(x, y)

A3(x, y)
) = =(

A4(x, y)

A3(x, y)
).

Now for x ∈ L1 and y = Y ∗(x), we have a problem of the form

<(i
A2(x, Y ∗(x))

A3(x, Y ∗(x))
F (x)) = =(

A4(x, Y ∗(x))

A3(x, Y ∗(x))
). (41)

Since the function F (x) has potential singularities inside the contour L1, then in order to remove such singularities we assume
that

Fx(x) := F (x)− Rx
x− x∗

, (42)

where x∗ represents the potential singularities of F (x) that lies inside the contour L1 with residue Rx. Using (41), the
function Fx(x) is an analytic function in the interior of the contour L1 and satisfies for x ∈ L1 and y = Y ∗(x)

<(i
A2(x, Y ∗(x))

A3(x, Y ∗(x))
[Fx(x) +

Rx
x− x∗

]) = =(
A4(x, Y ∗(x))

A3(x, Y ∗(x))
). (43)

The residue Rx of the function F (x) at x∗ is given by

Rx = − A3(x∗, y∗)G(y∗) +A4(x∗, y∗)
∂
∂xA2(x∗, y∗) + ∂

∂yA2(x∗, y∗)dY
∗

dx (x∗)
,

where y∗ = Y ∗(x∗). It should also be noted that from section 5, the function F (x) has simple poles. In the case that there
are more than one simple pole singularities then (42) will be modified to be

Fx(x) := F (x)−
n]∑
k=1

Rx
x− xk

,
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where n] is the number of singularities that lie inside the contour L1. If this is the case then (43) will be changed a bit. To
solve the problem (43), we consider the conformal mapping Λx(x) from L+

1 onto the unit disk

Λx(x) : L+
1 → D+,

with inverse
Ωx(u) : D+ → L+

1 .

This conformal mapping can be chosen to preserve the symmetry with respect to the horizontal axis, because in this case the
real axis is an axis of symmetry. Moreover, by imposing the condition Λx(0) = 0, the conformal mapping Λx(x) is unique.
We are then led to consider the following problem on the unit circle: The function Fx(Ωx(u)) is analytic in the unit disk D+

and satisfies for u on the unit circle D

<(i
A2(Ωx(u), Y ∗(Ωx(u)))

A3(Ωx(u), Y ∗(Ωx(u)))
Fx(Ωx(u))) = =(

A4(Ωx(u), Y ∗(Ωx(u)))

A3(Ωx(u), Y ∗(Ωx(u)))
)

−<(i
A2(Ωx(u), Y ∗(Ωx(u)))

A3(Ωx(u), Y ∗(Ωx(u)))
)

Rx
Ωx(u)− x∗

.

6.2 The solutions

The unknown F (x) is given as a solution of the boundary value problem constructed in the previous lemma

F (x) :=
f(x, 0)

f(0, 0)
= Fx(x) +

Rx
x− x∗

=
Rx

x− x∗
+
φi(x)

2πi

∫
L1

Ax(z)dz

φi(z)(z − x)
+Q(x)φ(x), (44)

where Q(x) is a polynomial, which can be determined by using the conditions at infinity, the function A(x) is given by

Ax(u) = −2i
bx(u)

ax(u)
,

and the function φ(.) is given as in the introduction section:

φ(u) =

exp
(

1
2iπ

∫
L1

log
(
z−κ a(z)a(z)

)
dz
z−u

)
if u ∈ L+

1

1
uκ exp

(
1

2iπ

∫
L1

log
(
z−κ a(z)a(z)

)
dz
z−u

)
ifu ∈ L−1

In the current case we have

ax(u) =
A2(Ωx(u), Y ∗(Ωx(u)))

A3(Ωx(u), Y ∗(Ωx(u)))
,

and

bx(u) = =[
A4(Ωx(u), Y ∗(Ωx(u)))

A3(Ωx(u), Y ∗(Ωx(u)))
+
A2(Ωx(u), Y ∗(Ωx(u)))

A3(Ωx(u), Y ∗(Ωx(u)))

Rx
Ωx(u)− x∗

].

The index (κ) of this Riemann–Hilbert boundary value problem is defined as the increment of the argument of the function
ax(u)/ax(u) divided by 2π when u traverses the unit circle once. It should be noted that according to [20] and based on the
value of the index κ we have the following:

1. if κ = 0,
there exists a unique solution of the problem corresponding to Q(x) ≡ 0;

2. if κ > 0,
there exists an infinite number of solutions of the problem corresponding to each polynomial Q(x) of degree less than
or equal to κ− 1.
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3. if κ < 0,
there exists a unique solution if and only if the function A(z) satisfies the conditions:∫

L

λmA(λ)dλ

φi(λ)
= 0, 0 ≤ m ≤ −(κ+ 1).

The unknown f(0, 0) can be eventually obtained using (44), and using f(1, 0) = (ξ2 − r̃1)/r̃1 which is obtained by using the
normalization condition f(1, 1) = 1 in the original equation.

7 Conclusion

In this article we investigated the solution of a challenging two-place functional equation which arose from a queueing model
of a network gateway. The solution is obtained by the following steps: First, an extensive analysis of the kernel is done.
Second, an analytic continuation of the function defined by the kernel is proved. Third, the potential singularities of the
unknowns are obtained directly from the idea of the resultant. The last step is the reduction to boundary value problem
using some conformal mapping. It should be clarified that the solution is only given as a function of some conformal mapping
between L+

1 and the unit disk. According to some recent work an explicit form of such conformal mapping exists only for a
certain type of random walks which is not the case in our case. The conformal mappings in those recent cases are obtained
using the conformal gluing function process. However, for a general random walk such a conformal gluing process exist and
can be obtained, which will be some potential future work.
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113



[11] V.A. Malyshev, An analytical method in the theory of two-dimensional positive random walks, Siberian Mathematical
Journal, vol. 13, no. 6, (1972) pp.917–929.

[12] G. Fayolle and R. Iasnogorodski, Two coupled processors: the reduction to a Riemann-Hilbert problem, Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 47, no. 3, (1979). pp. 325–351.

[13] J. W. Cohen, O. Boxma, Boundary value problems in queueing system analysis, vol. 79, Elsevier.(2000)

[14] G. Fayolle, R. Iasnogorodski, V.A. Malyshev, Random walks in the quarter-plane: algebraic methods, boundary value
problems and applications, vol. 40, Springer.(1999)

[15] S. Ponnusamy, An introduction to complex analysis, 1st edition, Springer. (2011)

[16] S. Ponnusamy, Applied and computational complex analysis, discrete Fourier analysis, Cauchy integrals, construction
of conformal maps, univalent functions, John Wiley & Sons, vol. 3. (1993)

[17] S. Ponnusamy, Complex analysis an introduction to the Theory of Analytic Functions of One Complex Variable, McGraw-
Hill Book Company, vol. 3. (1966)

[18] S. Ponnusamy, Complex variables with applications, Birkhäuser, Boston.(2006)
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