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Abstract 

The unsteady flow of Maxwell fluid over a stretching surface is investigated in this paper numerically. The 

governing partial differential equations are transformed into a nonlinear ordinary differential equations by using a 

similarity transformation. The numerical results are guaranteed in comparison with the previous under special 

assumptions. The effects of elasticity number and material parameter on velocity and micro-rotation profiles are presented 

and discussed in aid of tables and graphs. 

Keywords: Maxwell Fluid, stretching surface, and micro-rotation  

Introduction 

Sakiadis’ flow is an introductory work accomplished to detect the required force to pull a plate 

steadily through an incompressible Newtonian fluid. In real life, the most industrial fluids are non-

Newtonian such as polymers melts, paints, lubricants, and suspended solutions. They are used in the 

production of adhesive taps, glass fiber, drawing of plastic sheets, etc. Figure 1 shows a melted 

substance extrudes through a die then it is stretched by wind roll-up while moving in a stationary fluid. 

The final mechanical properties of the product depend on the rate of cooling, drawing speed, and the 

properties of the cooling fluid such as thermal conductivity and viscosity. The non-Newtonian fluids 

branches into three categories; the differential type, rate type, and integral type. The Upper-Convected 

Maxwell (UCM) fluid is a viscoelastic fluid classified as rate type which takes into account the effect 

of the fluid elasticity on the boundary layer properties considering the characteristics of the relaxation 

time. Recently, a lot of numerical and analytical research analyzed the Maxwell fluid flow above a 

stretching surface. A lot of factors are considered such as magnetic parameter, Prandtl number, 

Deborah number, thermal heat transfer, etc. 

Sadeghy et al. [1] introduced a simple analysis to predict the required force to pull a surface 

through a non-Newtonian fluid. Sadeghy’s work stated that the fluid's elasticity destroys the similarity 

between the velocity profiles and lowers the drag force for large values of Deborah number (high 

Deborah number is close to reality). The flow and heat transfer of Maxwell fluid over a stretching 
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surface are analyzed by Hayat et al. [2] presenting a series solution for the heat equation with 

convective boundary conditions. Singh and Agarwal [3] considered a variable viscosity and thermal 

conductivity over exponentially stretching surface. 

Aliakbar et al. [4] mentioned that increasing the elasticity number and the radiation parameter 

increases the rate of cooling. Furthermore, they predicted that increasing Prandtl number causes a 

decrease in the fluid temperature in contrary with Eckert number. Subhas et al. [5] presented almost 

similar investigation for magneto-hydrodynamic (MHD) fluid. 

 

Nomenclature 

𝑓, 𝑔 Dimensionless functions 𝜇 Dynamical viscosity 

𝑗  The micro-inertia per unit mass 𝑣 Kinematical viscosity 

𝐾 The material parameter 𝜌 Fluid density 

𝑛, 𝑏 Constants 𝜆  The relaxation time of the fluid 

𝑁  The micro-rotation. 𝛽  The elasticity parameter 

𝑠 the vortex viscosity 𝛾  The spin-gradient viscosity 

𝑡 Time 𝜂 Dimensionless coordinate 

𝑈𝑤 Velocity of solid surface 𝜓 The stream function 

𝓊, 𝓋 Velocity components Subscripts 

𝑥, 𝑦 Spatial coordinates W Condition on the wall 

Greek symbols ∞ Free stream condition 

𝜁 Unsteadiness parameter   

 

Fig. 1 schematic for flow above stretching surface 

Alizadeh and Sadeghy [6] presented an analytical solution using homotopy technique for the 

unsteady MHD flow of Maxwell fluid above impulsively stretching surfaces which may be used as a 

comparator to check the performance of other numerical solutions. 

The MHD Maxwell fluid is considered in a lot of research. Hayat and Qasim [7] studied the effects 

of thermophoresis and thermal radiation parameters. Furthermore, Shateyi [8] studied the 

thermophoresis effect in the presence of a chemical reaction in Darcian porous medium. 

Mukhopadhyay et al. [9] presented the effects of transpiration on the unsteady flow in the presence of 
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first-order constructive/destructive chemical reaction. Nadeem et al. [10] considered the existence of 

the nanoparticle. 

Hsiao [11] used the improved parameters control method to investigate the effects of the electrical 

MHD ohmic dissipation forced and free convection on the Maxwell fluid with a stagnation point. 

Furthermore, Hsiao [12] extended the previous study for a viscoelastic non-Newtonian Carreau-

nanofluid on a stagnation point. 

On the other side, Eringen [13] introduced the theory of micropolar fluid which describes the 

inertial motion of the substructure particles. This phenomenon is related to the microscopic effects 

which in turn is related to the micro-rotation and the spin inertia of the suspended elements. All of 

these reveals the non-Newtonian behavior. 

Aldawody and Elbashbeshy [14] studied the micropolar fluid considering the effects of the 

thermal and magnetic parameters. Then, Haque et al. [15] presented a numerical solution for the free 

convection and mass transfer in a porous medium with constant heat and mass flux. Furthermore, 

Qasim et al. [16] studied the effect of Newtonian heating. Hsiao [17] studied the effects of conjugate 

mixed convection, electrical magneto hydrodynamic, and heat source/sink on the nanofluid flow over 

a slip boundary stretching surface. Then, it was corrected in [18]. Furthermore, Hsiao [19] investigated 

the hydromagnetic flow with magnetic and viscous dissipation effects for a micropolar nanofluid over 

a stretching surface. 

The heterogeneous reactions for the reactants of two or more phases and the homogeneous 

reactions for reactants of one phase take place while studying the stretching surfaces and cylinders. 

Hayat et al. [20] examined the thermally stratified mixed convection flow of an Oldroyd-B fluid and 

discussed the stagnation point flow towards a stretching surface. Hayat et al. [21] investigated same 

effects for viscoelastic fluid over a stretching cylinder with melting heat transfer. The fluid was 

electrically conducting through an inclined magnetic field. Hayat et al. [22] considered these effects 

with Newtonian heating in MHD flow of Powell-Eyring fluid by a stretching cylinder. 

The analysis for single and multi-wall carbon nanotubes combined with the previous 

parameters is discussed by Hayat et al. [23]. Also, Hayat et al. [24] extended the investigation 

considering the stagnation point flow of viscous nanofluid towards a nonlinear stretching surface with 

variable thickness. Hayat et al. [25] presented an analysis dealt with a nanofluid flow due to a cylinder. 

Heat transfer mechanism was inspected under the physically acceptable convective type conditions. 

The present work investigates the micropolar effect on the Maxwell fluid above stretching surface. 

The aim is to discuss the effects of the elasticity and the spin rotation on the Non-Newtonian fluids. 

The similarity transformation is used to obtain the non-dimensional ordinary equations which in turn 

are solved numerically. This solution considers the effects of the material parameter 𝐾 and the 

elasticity number 𝛽 on the velocity profile and the angular velocity of fluid rotation. 

Mathematical formulation 

Consider an incompressible, viscous, and unsteady state flow of non-Newtonian Maxwell fluid 

over a two dimensional stretching surface in the presence of a micropolar effect. The surface is 

stretched by the velocity 𝑈𝑤 = 𝑏𝑥 where 𝑏 is a constant. The surface is assumed to be impermeable, 

i.e., 𝓋𝑤 = 0. The 𝑥-axis is chosen along the stretching surface in the direction of the motion and 𝑦-

axis is normal to it. The mathematical model governing this type of flow can be formulated as follows 

[7, 14]: 
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𝜕𝓊

𝜕𝑥
+

𝜕𝓋

𝜕𝑦
= 0                                                                                                                                                       (1) 
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𝜕𝑦
                                                                                                          (2) 

𝜕𝑁

𝜕𝑡
+ 𝓊

𝜕𝑁

𝜕𝑥
+ 𝓋

𝜕𝑁
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)
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𝜕𝑦2
−

𝑠

𝜌𝑗
(2𝑁 +

𝜕𝓊

𝜕𝑦
)                                                                                   (3) 

subjected to boundary conditions 

at 𝑡 = 0:   𝓊(𝑥, 0) = 0,    𝓋(𝑥, 0) = 0,    lim
𝑦→∞

𝓊(𝑥, 𝑦) = 0                                                                       (4) 

for 𝑡 > 0:   𝓊(𝑥, 0) = 𝑈𝑤,   𝓋(𝑥, 0) = 0,   𝑁(𝑥, 0) = −𝑛
𝜕𝓊

𝜕𝑦
,   lim

𝑦→∞
𝓊(𝑥, 𝑦) = lim

𝑦→∞
𝓋(𝑥, 𝑦) = 0   (5) 

Equation (1) introduces the continuity equation where 𝓊 and 𝓋 are the 𝑥 and 𝑦 components of 

the fluid velocity, respectively. Equation (2) introduces the 𝑥-momentum of the flow where the micro-

rotation is 𝑁, the relaxation time parameter is 𝜆, and the vortex viscosity is 𝑠. The density is 𝜌 and the 

dynamic viscosity is 𝑣 for the fluid. Equation (3) introduces the micro-rotation of the flow where the 

micro-inertia per unit mass is 𝑗 = 𝑣/𝑏, the spin gradient is 𝛾, and 𝑡 is the time. The constant 𝑛 takes 

different values; 𝑛 = 0 for strong concentration and 𝑛 = 0.5 for weak concentration. The Maxwell 

fluid is viscous for 𝜆 > 0 and 𝑠 > 0 while it is inviscid when 𝜆 = 𝑠 = 0. 

The mathematical analysis of the problem is simplified by introducing the following 

dimensionless similarity variables 

𝜁 = 1 − 𝑒−𝑏𝑡;    𝜂 = √
𝑏

𝑣𝜁
𝑦;    𝜓 = √𝑏𝑣𝜁 𝑥𝑓(𝜂);    𝑁 = 𝑏√

𝑏

𝑣𝜁
 𝑥𝑔(𝜂)                                                    (6) 

to convert the partial differential equations into nonlinear ordinary differential equations where 𝜁 is 

the unsteadiness parameter, 𝜂 is a dimensionless variable, and 𝜓 is the stream function. The 

dimensionless functions are 𝑓 and 𝑔. The continuity equation (1) is satisfied by assuming  

𝓊 =
𝜕𝜓

𝜕𝑦
= 𝑏𝑥𝑓′(𝜂),    𝓋 = −

𝜕𝜓

𝜕𝑥
= −√𝑏𝑣𝜁𝑓(𝜂)                                                                                       (7) 

where prime denotes the differentiation with respect to 𝜂. Upon using equations (6-7), the governing 

equations are reduced into the dimensionless form 

(1 + 𝐾)𝑓′′′ +
1

2
(1 − 𝜁)𝜂𝑓′′ + 𝜁(𝑓𝑓′′ − 𝑓′2) + 𝜁𝛽(2𝑓𝑓′𝑓′′ − 𝑓2𝑓′′′) + 𝐾𝑔′ = 0                            (8) 

(1 +
𝐾

2
) 𝑔′′ +

1

2
(1 − 𝜁)(𝑔 + 𝜂𝑔′) + 𝜁(𝑓𝑔′ − 𝑓′𝑔) − 𝐾𝜁(2𝑔 + 𝑓′′) = 0                                             (9) 

𝑓(0) = 0;   𝑓′(0) = 1;     𝑔(0) = −𝑛𝑓′′(0)                                                                                               (10) 
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lim
𝜂→∞

𝑓′(𝜂) = 0;   lim
𝜂→∞

𝑔(𝜂) = 0                                                                                                                    (11) 

where the elasticity number is 𝛽 = 𝑏𝜆 and the material parameter is 𝐾 = 𝑠/𝜌𝑣 = 𝑠/𝜇. The skin 

friction coefficient takes the form 

𝐶𝑓 =
𝜏𝑤

𝜌𝑈2/2
= [(𝜇 + 𝜆𝑏 + 𝑠)

𝜕𝓊

𝜕𝑦
+ 𝑠𝑁]

𝑎𝑡 𝑦=0

                                                                                        (12) 

where 𝜏𝑤 is the skin friction and the modified-skin friction is 

𝐶𝑓√𝑅𝑒𝑥 = −𝜁−0.5[1 + 𝛽 + (1 − 𝑛)𝐾]𝑓′′(0)                                                                                            (13) 

where the local Reynolds number is 

𝑅𝑒𝑥 =
𝜌𝑈𝑤𝑥

𝜇
                                                                                                                                                      (14) 

Numerical solution 

The nonlinear differential equations (8-9) subjected to the boundary conditions (10-11) are 

converted into the following simultaneous system of first order differential equations as follows: 

𝑦1
′ = 𝑦2                                                                                                                                                                (15) 

𝑦2
′ = 𝑦3                                                                                                                                                                (16) 

𝑦3
′ =

0.5𝜂(𝜁 − 1)𝑦3 + 𝜁(𝑦2
2 − 𝑦1𝑦3 + 𝑀𝑦3) − 2𝜁𝛽𝑦1𝑦2𝑦3 − 𝐾𝑦5

(1 + 𝐾 − 𝜁𝛽𝑦1
2)

                                                     (17) 

𝑦4
′ = 𝑦5                                                                                                                                                                (18) 

𝑦5
′ =

0.5(𝜁 − 1)(𝑦4 + 𝜂𝑦5) + 𝜁(𝑦2𝑦4 − 𝑦1𝑦5) + 𝐾𝜁(2𝑦4 + 𝑦3)

(1 + 𝐾/2)
                                                         (19) 

where 𝑦1 = 𝑓, 𝑦2 = 𝑓′, 𝑦3 = 𝑓′′, 𝑦4 = 𝑔, and 𝑦5 = 𝑔′. The initial conditions are 

𝑦1(0) = 0,  𝑦2(0) = 1,  𝑦3(0) = 𝑠1,  𝑦4(0) = −𝑛𝑦3(0),  𝑦5(0) = 𝑠2                                                   (20) 

where 𝑠1and 𝑠2 are priori unknowns to be determined as a part of the solution. 

The system of equations (15-19) subjected to the initial conditions (20) are solved by fourth/fifth 

order Runge-Kutta method in combination with shooting method as used and explained by 

Elbashbeshy et al. [27]. 

Results and discussion 

Tables 1-3 present a comparison with others. The tables show an excellent agreement for different 

settings. Table 1 presents the results for the modified skin friction at 𝛽 = 0 considering the steady 

state (𝜁 = 1) and strong concentration (𝑛 = 0) in comparison with Aldawody and Elbashbeshy [14], 

Qasim et al. [16], and Ishak et al. [28]. Table 2 considers a weak concentration (𝑛 = 0.5). Finally, 

Table 3 presents a comparison for −𝑓′′(0) with Subahs et al. [5], Swati et al. [9], Hsiao [19], and 

Sadeghy et al. [29].  
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Table 4 introduces a tabulated data for −𝑓′′(0) and the modified skin friction at different settings. 

The first part in Table 4 shows the effect of the material parameter 𝐾 at 𝛽 = 0 with strong 

concentration (𝑛 = 0). The value of −𝑓′′(0) decreases while the modified skin friction increases by 

increasing the values of 𝐾 which explains the increase in the shear stress. Part 2 of Table 4 presents 

the same response for weak concentration (𝑛 = 0.5). By comparing parts 1 and 2, the modified skin 

friction for strong concentration is a little higher than for weak concentration. Part 3 in Table 4 

introduces the previous settings in part 1 considering the Maxwell fluid (𝛽 = 0.2). It shows a decrease 

in −𝑓′′(0) and an increase in the modified skin friction. 

Table 1. Comparison of 𝐶𝑓√𝑅𝑒𝑥 with others at 𝛽 = 0, 𝜁 = 1, and 𝑛 = 0 for different values of 𝐾. 

 Modified Skin Friction 𝑪𝒇√𝑹𝒆𝒙 

𝑲 Aldawody [14] Qasim [16] Ishak [28] Present results 

0 1 1 1 0.999999 

1 1.3679 1.367872 1.3679 1.36793 

2 1.6213 1.621225 1.6213 1.62133 

4 2.0043 2.004133 2.0042 2.0054 

 

Table 2. Comparison of 𝑪𝒇√𝑹𝒆𝒙 with others at 𝜷 = 𝟎, 𝜻 = 𝟏, and 𝒏 = 𝟎. 𝟓 for different values of 𝑲. 

 Modified Skin Friction 𝐶𝑓√𝑅𝑒𝑥 

𝑲 Aldawody [14] Qasim [16] Ishak [28] Present results 

0 1 1 1 0.99999 

1 1.2247 1.224741 1.2247 1.22463 

2 1.4142 1.414218 1.4142 1.41421 

4 1.7343 1.732052 1.7343 1.73205 

 

For high elasticity parameter 𝛽, the viscosity and resistivity of the fluid are increased 

inducing more friction within the fluid and reducing the velocity of the flow. These effects 

appear in the increasing of the modified skin friction and −𝑓′′(0) as tabulated in parts 4 and 5 

of Table 4 for strong and weak concentration (neglecting the micropolar effect 𝐾 = 0), 

respectively. The two previous parts show that the concentration has no effect on the modified 

Table 3. Comparison of −𝒇′′(𝟎) with others at 𝜻 = 𝟏 and 𝒏 = 𝟎 for different values of 𝜷 and 𝑲. 

𝑲 𝛽 
Subahs et al. 

[5] 

Swati et al. 

[9] 

Hsiao [19] Sadeghy et al. 

[29] 

Present results 

0 

0 0.999962 0.999963  1 0.999999999 

0.2 1.051948 1.051949  1.0549 1.051889896 

0.4 1.101850 1.101851  1.10084 1.101903319 

0.6 1.150163 1.150162  1.15016 1.150137398 

0.8 1.196692 1.196693  1.19872 1.196711332 

1.2 1.285257    1.285363315 

1.6 1.368641    1.368758413 

2 1.447617    1.447650711 

0.2 0   0.9098  0.909750320 
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skin friction if 𝐾 = 0. Part 6 of Table 4 shows the effect of 𝛽 in combination with micropolar 

effect (𝐾 = 2). It presents an increase in the modified skin friction in comparison with part 4.  

The last two parts of Table 4 present the effect of 𝜁 for the Maxwell fluid (𝛽 = 0.4) 

considering the micropolar effect (𝐾 = 2) on the modified skin friction. The modified skin 

friction decreases with increasing the unsteadiness parameter 𝜁. The weak concentration enhances 

the decrease of the modified skin friction in comparison with the strong one. 

The material parameter 𝐾 presents the vortex viscosity. This type of viscosity relates the 

average shear stress in the flow to the vertical gradient of the velocity. Figures 2 and 3 present 

the influences of the material parameter on the velocity profile at 𝛽 = 0 for strong and weak 

concentrations, respectively. The velocity profile increases with increasing the material 

parameter. 

Figures 4 and 5 present the effects of the material parameter 𝐾 on the micro-rotation profile. 

For strong concentration (𝑛 = 0), Figure 4 shows an increase in the micro-rotation profile. On 

the other hand, Figure 5 shows that the micro-rotation profile decreases as 𝐾 increases if 𝜂 <
1.3 while the reverse process takes place if 𝜂 > 1.3. 

Figures 6 and 7 show the effects of elasticity parameter 𝛽 on the velocity profile in the 

absence of micropolar effect (𝐾 = 0). The two figures show a decrease in the velocity with 

increasing the elasticity number. Physically, the elasticity number increases the resistance within 

the fluid then the velocity decreases. At a high elasticity number, the material behavior 

approaches the solid behavior which in turn slows down the flow velocity. Furthermore, Figures 

8 and 9 present a decrease in the velocity with increasing the elasticity parameter in the existence 

of micropolar effect. In comparison between Figures (6-7) and Figures (8-9), the micropolar 

effect decreases the effect of 𝛽 on the velocity. 

 

Table 4. The modified skin-friction at different values of 𝑛, 𝛽, 𝐾, and 𝜁 

Concentration 𝜁 𝐾 𝛽 −𝑓′′(0) 𝐶𝑓√𝑅𝑒𝑥 

 1 0 0 1 1 

Strong 𝑛 = 0  1  0.683965 1.367930 

  2  0.540446 1.621338 

 1 0 0 1 1 

Weak 𝑛 = 0.5  1  0.816382 1.224573 

  2  0.707106 1.414212 

 1 0 0.2 1.051889 1.2622668 

Strong 𝑛 = 0  1  0.720763 1.5856786 

  2  0.570292 1.8249344 

 1 0 0.4 1.10903 1.552642 

Strong  𝑛 = 0   0.6 1.150137 1.8402192 

   0.8 1.196711 2.1540798 

 1 0 0.4 1.101903 1.5426642 

Weak 𝑛 = 0.5   0.6 1.150137 1.8402192 

   0.8 1.196711 2.1540798 

 1 2 0.4 0.599089 2.0369026 
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Strong 𝑛 = 0   0.6 0.626929 2.2569444 

   0.8 0.653857 2.4846566 

Strong 𝑛 = 0 

0.4 2 0.4 0.448511 2.41113774 

0.8   0.553371 2.10353779 

1   0.599089 2.0369026 

Weak 𝑛 = 0.5 

0.4 2 0.4 0.581557 2.20685365 

0.8   0.719301 1.93008712 

1   0.778817 1.8691608 

  

Fig. 2. The effect of 𝐾 on the velocity at 𝛽 = 0, 

𝑛 = 0, and 𝜁 = 1 

Fig. 3. The effect of 𝐾 on the velocity at 𝛽 = 0, 

𝑛 = 0.5, and 𝜁 = 1 

  

Fig. 4. The effect of 𝐾 on the micro-rotation 

velocity at 𝛽 = 0, 𝑛 = 0, and 𝜁 = 1 

Fig. 5. The effect of 𝐾 on the micro-rotation 

velocity at 𝛽 = 0, 𝑛 = 0.5, and 𝜁 = 1 
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Fig. 6. The effect of 𝛽 on the velocity profile at 

𝐾 = 0, 𝑛 = 0, and 𝜁 = 1 

Fig. 7. The effect of 𝛽 on the velocity profile at 

𝐾 = 0, 𝑛 = 0.5, and 𝜁 = 1 

  

Fig. 8. The effect of 𝛽 on the velocity profile at 

𝐾 = 1, 𝑛 = 0, and 𝜁 = 1 

Fig. 9. The effect of 𝛽 on the velocity profile at 

𝐾 = 2, 𝑛 = 0, and 𝜁 = 1 

Figures 10-12 present the effects of the elasticity parameter on the micro-rotation profile. Figure 

10 shows a slight increase in the maximum value of the angular velocity at 𝐾 = 0 for weak 

concentration (𝑛 = 0.5). Figures 11 and 12 show that the increase of micro-rotation profile inverses 

at 𝜂 = 1.75 for strong concentration (𝑛 = 0) in the presence of micropolar effect (𝐾 = 1 and 𝐾 = 2). 
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Fig. 10. The effect of 𝛽 on the micro-rotation 

profile at 𝐾 = 0, 𝑛 = 0.5, and 𝜁 = 1 

Fig. 11. The effect of 𝛽 on the micro-rotation 

profile at 𝐾 = 1, 𝑛 = 0, and 𝜁 = 1 

Figures 13-14 present the increase of velocity profile by increasing the material parameter for the 

Maxwell fluid at 𝛽 = 0.1 and 0.2, respectively. Figures 15-16 present the increase in the micro-

rotation profile with increasing the material parameter for the Maxwell fluid at 𝛽 = 0.1 and 0.2, 

respectively. 

By increasing the unsteadiness parameter 𝜁, Figures 17 and 20 show a decrease in the velocity 

profile and an increase in the micro-rotation profile, respectively; while reaching the steady-state flow 

for strong concentration (𝑛 = 0). From Figure 18, the velocity profile is decreased for weak 

concentration. As shown in Figure 20, the micro-rotation profile is increased if 𝜂 < 0.5 but it is 

reversed if 𝜂 > 0.5 for weak concentration (𝑛 = 0.5). 

 
 

Fig. 12. The effect of 𝛽 on the micro-rotation 

profile at 𝐾 = 2, 𝑛 = 0, and 𝜁 = 1 

Fig. 13. The effect of 𝐾 on the velocity profile at 

𝛽 = 0.1, 𝑛 = 0, and 𝜁 = 1 
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Fig. 14. The effect of 𝐾 on the velocity at 𝛽 =
0.2, 𝑛 = 0, and 𝜁 = 1 

Fig. 15. The effect of 𝐾 on the micro-rotation 

profile at 𝛽 = 0.1, 𝑛 = 0, and 𝜁 = 1 

  

Fig. 16. The effect of 𝐾 on the micro-rotation 

velocity at 𝛽 = 0.2, 𝑛 = 0, and 𝜁 = 1 

Fig. 17. The effect of 𝜁 on the velocity profile at 

𝐾 = 2, 𝑛 = 0, and 𝛽 = 0.4 

  

Fig. 18. The effect of 𝜁 on the velocity profile at 

𝐾 = 2, 𝑛 = 0.5, and 𝛽 = 0.4 

Fig. 19. The effect of 𝜁 on the micro-rotation 

profile at 𝐾 = 2, 𝑛 = 0.5, and 𝛽 = 0.4 
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Fig. 20. The effect of 𝜁 on the micro-rotation 

profile at 𝐾 = 2, 𝑛 = 0, and 𝛽 = 0.4 

 

Conclusions 

This dissertation can be considered as a numerical treatment for the boundary-layer problem for 

the Maxwell fluid considering the micro-rotation effect. An excellent agreement with the previous 

results for Micropolar fluids and Maxwell fluids is achieved. The numerical results are presented 

graphically, and the local skin friction also is investigated at different settings. Finally The 

observations of the present study can be summarized in the following points. 

1- Increasing the elasticity number produces a drag force in the flow. Then, the velocity 

decreases while the maximum value of the angular velocity increases. 

2- The effect of the material parameter in increasing the horizontal velocity and the maximum 

value of the angular velocity is obvious for the Maxwell fluid. This effect is equal either for 

strong or weak concentration. Thus, the shear stress increases.  

3- The skin friction increases as the material parameter decreases and the elasticity number 

increases. 
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