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Abstract
Accelerated life tests are commonly utilized in manufacturing industries to induce early failures of highly reliable

products. In this paper, estimation and optimal design issues of multiple ramp-stress accelerated life tests are discussed
for the generalized half-normal distribution. Assuming inverse power model as a life-stress relationship, the maximum
likelihood estimates of the parameters, as well as Fisher information matrix are derived. In addition, the methods of least
square, moments, Bayes are used for estimating the model parameters. The optimal proportion of test units allocated
to each stress level is obtained under D and A-optimality criteria. A sensitivity analysis of the optimal allocation to
misspecification of the model parameters is carried out. Furthermore, a real data set is used to show the application of
the generalized half-normal distribution in reliability studies. Finally, a Monte Carlo simulation study is carried out to
examine the performance of the estimation methods and the optimality criteria.

Keywords: accelerated life testing; optimal design; Fisher information matrix; generalized half-normal distribution; least
square method; Bayes estimation; simulation study.
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1 Introduction

Due to the rapid development of the modern technology, the products and devices today become more reliable, and
the products’ life gets longer. For such highly reliable products, it is quite hard or even impossible to obtain the failure
information under usual conditions. Therefore, to reduce the time required to obtain failure information, products should
be tested at higher than usual levels of stress such test setting is called accelerated life testing (ALT). The failure time data
from such ALTs are interpreted and analyzed to estimate the life characteristics under usual conditions. Three common
methods of ALTs are constant-stress, step-stress and progressive-stress. The main difference between the three methods of
ALTs is the relation between the stress loading and testing time. The stress is constant over the time in the constant-stress
ALTs, but in the step-stress ALTs, the stress is increased step by step at prespecified times. While, in the progressive-stress
ALTs, the stress is continuously increasing in time. If an ALT includes linearly increasing stress over the time, this test
referred to as a ramp-stress test. ALTs can be categorized on the basic of the number of stress levels into two types: simple
and multiple ALTs. Simple ALT contains only two stress levels while multiple ALT includes more than two stress levels.
Some of the earlier works on ALTs include McCool [1], Miller and Nelson [2] and Nelson [3]. Constant-stress, step-stress
and progressive-stress models were studied by several authors; see Abdel-Hamid [4], Jaheen et al. [5] and Mohie El-Din et
al. [6, 7] for constant-stress ALTs. For step-stress ALTs; see Balakrishnan and Han [8] and Mohie El-Din et al. [9–11]. For
progressive-stress ALTs; see Abdel-Hamid and AL-Hussaini [12,13], AL-Hussaini et al. [14], Abdel-Hamid and Abushul [15]
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and Mohie El-Din et al. [16].
The problems of planning optimal ALTs and making inferences were investigated by numerous authors. Miller and

Nelson [2] initiated the investigation in this area by studying the optimal design of simple step-stress ALT for exponential
distribution under uncensored data. Bai et al. [17] discussed the results of Miller and Nelson [2] in the case of censored
data. Khamis and Higgins [18] studied the optimal plan of three stress levels for the exponential distribution. A comparison
between constant and step-stress optimal design for Weibull failure data was done by Khamis [19]. Khamis and Higgins [20]
introduced a new model for step-stress testing for Weibull distribution. Ng et al. [21] discussed the problem of specifying
the optimal sample size allocation for extreme value distribution. Srivastava and Shukla [22] obtained the optimal plan
for simple step-stress ALT under the log-logistic distribution by minimizing the asymptotic variance of the MLE of the
median life at a design stress. Srivastava and Shukla [23] extended their results in [22] to the case of censored data.
Srivastava and Mittal [24] developed the results of Srivastava and Shukla [23] for truncated logistic distribution. Han
and Ng [25] introduced a comparative study between the optimal design of constant and step-stress ALT for exponential
distribution under type-I censoring. Guan et al. [26] derived the optimal plans of constant-stress ALTs for the generalized
exponential distribution. Han [27] considered time and cost constrained optimal designs of constant and step-stress ALTs
for the exponential distribution. Mohie El-Din et al. [28] obtained the optimal designs of constant-stress ALTs for Lindley
distribution. Abd El-Raheem [29] derived the optimal designs of constant-stress ALTs for the extension of the exponential
distribution. Abd El-Raheem [30] expanded his results in Abd El-Raheem [29] to the censored data.

The generalized half-normal (GHN) distribution was derived from a reliable physical consideration of static fatigue model
by Cooray and Ananda [31]. This distribution displays more statistical attraction with an elastic thicker left tail than the
existing lifetime distributions such as gamma, Weibull, lognormal, etc. Furthermore, the shapes of the hazard rate function
such as increasing, decreasing, and bathtub make this distribution more applicable and a flexible lifetime distribution than
the other known distributions. For different values of the parameters of GHN, positive skewness, as well as negative skewness
being an excellent property of GHN distribution. This property makes GHN distribution the better fitness for the lifetime
data. Many authors considered the GHN distribution as a life time model, see for example, Ahmadi et al. [32], Olmos et
al. [33], and Wang and Shi [34]. The probability density function (PDF) and cumulative distribution function (CDF) of
GHN(θ, α) distribution are given respectively as

f(t) =
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Unfortunately, there are a few studies on the optimal design of ramp-stress ALTs as compared to constant and step-stress
planning. Furthermore, the most recent studies on the optimal design of ramp-stress ALT considering the simple ramp-stress
ALT; see for instance, Bai et al. [35], and Srivastava and Sharma [36]. Thus, designing an effective multiple ramp-stress
ALT for GHN distribution is required and of great attention. In this paper, the problems of estimation and optimal designs
of multiple ramp-stress ALT for GHN distribution are studied. Under the assumption that the lifetime follows the GHN
distribution and the scale parameter satisfies inverse power model, the proportion of test units allocated to each stress level
are specified by D-criterion and A-criterion. Moreover, some inferring such as maximum likelihood estimates (MLEs), least
square estimates (LSEs), moments estimates (MEs) and Bayes estimates (BEs) for the model parameters are investigated.

The article is planned as follows: In Section 2, test assumptions are exhibited. Some estimation techniques are discussed
in Section 3. The optimal proportion of test items assigned to each stress level is obtained under D and A-optimality criteria,
in Section 4. In Section 5, a real data set is investigated to demonstrate the theoretical results in Sections 3 and 4. In Section
6, the results obtained in Sections 3 and 4 are explained and compared using simulated data from the suggested model. The
A-optimal design depends on the unknown model parameters, and for this cause, we study the sensitivity of the optimal
design to misspecification of the parameters through Section 7. Lastly, conclusion is presented in Section 8.
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2 Test assumptions

Assume n be the overall number of specimens under the examination and S1(t) < ... < Sk(t) be the stress levels in the
examination. Under every stress level Si(t), i = 1, 2, ..., k, ni identical specimens are tested until all the ni units fail, such

that
∑k
i=1 ni = n. Suppose ti1, ti2, ..., tini be the noticed failure times at stress level Si(t) such that 0 < ti1 < ti2 < ... <

tini , i = 1, 2, ..., k.

The goal here is to specify n1, n2, ..., nk according to some optimality criteria. The subsequent assumptions are used
during the paper in the context of multiple ramp-stress ALT:

1. Under each stress level Si(t), i = 1, 2, ..., k, ni = Υ(nπi) identical specimens are allocated under ramp-stress loading,
where Υ(.) is an approximate function, mapping its argument to a positive integer. To ensure Υ(nπi) ≈ nπi, Υ(.)
could be one of round(.), floor(.), ceiling(.) and trunc(.). Since the above definition of ni complicates the distributional
derivation of associated random quantities, for simplicity, we shall assume in all subsequent derivations that ni ≡ nπi,
such that

∑k
i=1 πi = 1,

∑k
i=1 ni = n, 0 ≤ πi ≤ 1, where πi is the proportion of test units allocated to the stress level

Si(t); see Han [27].

2. Under every stress level Si(t), the lifetime of a unit follows GHN(θi, α) distribution.

3. The progressive-stress Si(t) is directly proportional to the time with constant rate νi, i.e. Si(t) = νit, 0 < ν1 < ν2 <
... < νk.

4. The relationship between the life characteristic θi and the stress Si(t) holds the inverse power model, i.e.

θi(t) =
1

a[Si(t)]b
, i = 1, 2, ..., k, (2.1)

where a, b are positive parameters should be estimated. For further information on this accelerated model; see Chapter
2 of Nelson [3].

5. The linear cumulative exposure model (LCEM) holds to demonstrate the impact of changing the stress from one level
to another level, see Nelson [3, p. 507].

From the life-stress relationship in (2.1), the parameter θi can be expressed as

θi = θ1ψi
b, i = 1, 2, ..., k, (2.2)

where θ1 is the scale parameter of the GHN distribution under the low-stress level S1(t) and ψi = ν1

νi
, i = 1, 2, .., k is the

stress rate factor satisfying 0 < ψk < ψk−1 < ... < ψ2 < ψ1 = 1.

2.1 Life distribution under multiple ramp-stress ALT

From Equation (1.2) and using the LCEM, the CDF under multiple ramp-stress is given by, see Nelson [3, p. 507]

Gi(t) = 2Φ

[(
t

σi

)α]
− 1, t > 0, (2.3)

the PDF of (2.3) is given by:

gi(t) =
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2
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)2α
}
, t > 0, (2.4)

where σi = (b+ 1)θ1ψi
b, i = 1, 2, ..., k.

3 Statistical inference

In this section, some estimation techniques are applied to estimate the unknown parameters α, b and θ1 of PDF in (2.4).
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3.1 Method of moments

Let tij be the observed values of the lifetime Ti under progressive-stress level Si(t), i = 1, 2, ..., k and j = 1, 2, ..., ni. The
MEs (α̌, b̌, θ̌1) of the parameters (α, b, θ1) can be obtained by solving the following three equations with respect to α, b and
θ1.

k∑
i=1

E (T ri ) =

k∑
i=1

1

ni

ni∑
j=1

trij , r = 1, 2, 3. (3.1)

Based on the PDF in (2.4)

E (T ri ) =

√
2r/αΓ

(
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2α

) (
(b+ 1)θ1ψ

b
i

)
r

√
π

.

In spite of the simplicity of moment method, squaring and cubing of the sample observations can increase the sampling
errors in the case of heavy-tailed situations. Outliers may also exist in the sample causing considerable distortion of the
results.

3.2 Least square estimation

The least square technique is applied to estimate the unknown parameters by solving the normal equations of the sum of
the squared deviations between the observed responses and the functional portion of the model. From (2.3) one has

log

[
Φ−1

(
1 +Gi(tij)

2

)]
= α log(tij)− β0 − β1 log(ψi), (3.2)

where β0 = α log((b+ 1)θ1) and β1 = αb.
Let Ĝi(tij) be the empirical distribution function of Gi(tij) under Si(t), where Ĝi(tij) equals j/ni. To avert log(0) in (3.2),

we change Ĝi(tij) to be pij = j/(ni + 1). Therefore, the LSEs of β0, β1 and α can be obtained from

Q(β0, β1, α) =

k∑
i=1

ni∑
j=1

(xij − α log(tij) + β0 + β1 log(ψi))
2
, (3.3)

where xij = log
[
Φ−1 ((1 + pij)/2)

]
. Solving the normal equations
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Hence the LSEs of β, say β̆ = (β̆0, β̆1, ᾰ)′, can be obtained as β̆ = A−1B, which indicates that the LSEs of b and θ1 are

given by b̆ = β̆1/ᾰ and θ̆1 = eβ̆0/ᾰ

β̆1
ᾰ +1

.

As we mentioned for the moment method also, least square method is sensitivity to outliers.
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3.3 Maximum likelihood estimation

This portion considers the issue of obtaining the MLEs of the parameters α, b and θ1 and the associated Fisher information
matrix for multiple ramp-stress ALT. From the PDF in (2.4), the likelihood function of the three parameters α, b and θ1 is
obtained along these lines:

L(α, b, θ1) =

k∏
i=1
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√
2

π
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)(
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the log-likelihood function can be formulated as
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i .

The likelihood equations of α, b and θ1 are respectively
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The MLEs α̂, b̂ and θ̂1 can be obtained by solving the system of nonlinear equations (3.6), (3.7) and (3.8).
The asymptotic normality distribution of MLEs can be used to obtain normal approximation confidence intervals (NACIs)

of Θ = (α, b, θ1). Miller [37] defined the asymptotic distribution of the MLEs of Θ as(
(α̂− α), (b̂− b), (θ̂1 − θ1)

)
∼ N

(
0,F−1(α, b, θ1)

)
,

where F−1(α, b, θ1) is the variance-covariance matrix of α, b and θ1.

100 (1− ρ)% NACI of ϑ is given by (
ϑ̂l, ϑ̂u

)
= ϑ̂± Z1−ρ/2

√
V ar(ϑ̂), (3.9)

where ϑ is α, b or θ1, and Zq is the 100q − th percentile of a standard normal distribution.

Theorem 3.1. According to the assumptions of the multiple ramp-stress ALT for GHN distribution, the Fisher information
matrix of α, b and θ1 is
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where γ is Euler’s constant and δi = (b+ 1) log(ψi) + 1.
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Proof. From (3.6), (3.7) and (3.8), we have
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From (2.4), one has
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− 4].

Then by some algebraic computations, we get the Fisher information matrix as in (3.10).

3.4 Bayes estimation

BEs of the model parameters α, b and θ1 are calculated according to square error (SE) and linear exponential (LINEX)
loss functions. Consider the model parameters α, b and θ1 are independent and have priors along these lines:

P1(α) ∝ αµ1−1e−λ1α., α > 0, µ1, λ1 > 0, (3.17)

P2(b) ∝ bµ2−1e−λ2b, b > 0, µ2, λ2 > 0, (3.18)

P3(θ1) ∝ θµ3−1
1 e−λ3θ1 , θ1 > 0, µ3, λ3 > 0. (3.19)

The non-informative priors (NIPs) case can be obtained when µi = λi → 0, i = 1, 2, 3. From (3.17), (3.18) and (3.19), the
joint prior of the parameters α, b and θ1 is

P (α, b, θ1) ∝ αµ1−1bµ2−1θµ3−1
1 e−(αλ1+bλ2+θ1λ3), α, b, θ1 > 0. (3.20)
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From (3.4) and (3.20), the joint posterior density function of the parameters α, b and θ1 can be formulated as follows:

P ∗(α, b, θ1) ∝ α
∑k
i=1 ni+µ1−1bµ2−1θµ3−1

1 exp

−αλ1 − bλ2 − θ1λ3 −
1

2

k∑
i=1

ni∑
j=1

(
tij
σi

)2α


k∏
i=1

ni∏
j=1

1

σi

(
tij
σi

)α−1

. (3.21)

The BEs of the function of parameters U(Θ) = U(α, b, θ1) under SE and LINEX loss functions are respectively

ŨSE(Θ) =

∫
Θ

U(Θ) P ∗(Θ) dΘ, (3.22)

and

ŨLINEX(Θ) = −1

c
log[

∫
Θ

e−cU(Θ) P ∗(Θ) dΘ], (3.23)

where c 6= 0 is the shape parameter of LINEX loss function.
Regrettably, we cannot calculate the integrations in (3.22) and (3.23) explicitly. As a result, Markov chain Monte Carlo
(MCMC) technique is applied to approximate these integrations. From the joint posterior density function in (3.21), the
conditional posterior distributions of α, b and θ1 are given respectively by

P ∗(α|b, θ1) ∝ α
∑k
i=1 ni+µ1−1 exp

−αλ1 −
1

2

k∑
i=1

ni∑
j=1

(
tij
σi

)2α


k∏
i=1

ni∏
j=1

(
tij
σi

)α
, (3.24)

P ∗(b|α, θ1) ∝ bµ2−1 exp

−bλ2 −
1

2

k∑
i=1

ni∑
j=1

(
tij
σi

)2α


k∏
i=1

ni∏
j=1

((b+ 1)ψbi )
−α, (3.25)

P ∗(θ1|α, b) ∝ θ
−α

∑k
i=1 ni+µ3−1

1 exp

−θ1λ3 −
1

2

k∑
i=1

ni∑
j=1

(
tij
σi

)2α
 . (3.26)

We cannot simplify (3.24), (3.25) and (3.26) to popular distribution. Subsequently, Metropolis algorithm with normal
proposal distribution N(., .) is utilized to simulate samples from these distribution. The following algorithm is suggested to
evaluate BEs of U = U(α, b, θ1) under SE and LINEX loss functions.
Algorithm(1)

1. Begin with initial guess point of (α, b, θ1) say (α(0), b(0), θ
(0)
1 ).

2. Set i = 1.

3. Generate α∗ from proposal distribution N(α(i−1), var(α(i−1))).

4. Obtain the acceptance probability

r(α(i−1)|α∗) = min

[
1,

P ∗(α∗|b(i−1), θ
(i−1)
1 )

P ∗(α(i−1)|b(i−1), θ
(i−1)
1 )

]
.

5. Generate U ∼ U(0, 1).

6. If U ≤ r(α(i−1)|α∗), approve the proposal distribution and set α(i) = α∗. Otherwise, refuse the proposal distribution
and set α(i) = α(i−1).

7. To generate b∗, perform the steps ((2)-(6)) for b.

8. To generate θ∗1 , perform the steps ((2)-(6)) for θ1.

9. Set i = i+ 1.
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10. Duplicate steps ((3)-(9)), N times.

11. Evaluate the BEs of α, b and θ1 using MCMC under SE loss function as

ϑ̃ =
1

N −M

N∑
i=M+1

ϑ(i), where ϑ is α, b or θ1,

where M is the burn-in period.

12. Evaluate the BEs of α, b and θ1 using MCMC under LINEX loss function as

ϑ̃ = −1

c
log

[
1

N −M

N∑
i=M+1

e−c ϑ
(i)

]
, where ϑ is α, b or θ1.

13. Sort the posterior sample {ϑ(i), i = M + 1, ..., N} to obtain the ordered values as {ϑ[1], ϑ[2], ..., ϑ[N−M ]}. Then, the
100 (1− ρ)% Bayesian credible interval (BCI) of ϑ is given by(

ϑ̃l, ϑ̃u

)
=
(
ϑ[ρ(N−M)/2], ϑ[(1−ρ/2)(N−M)]

)
, where ϑ is α, b or θ1.

4 Optimal ramp-stress ALT plans

The optimal proportion Π∗ = (π∗1 , π
∗
2 , ..., π

∗
k) of test units allocated to each stress level is obtained under D and A-

optimality criteria.

4.1 D-optimality

The D-optimality criterion is frequently used in designing ALT by maximizing the determinant of the Fisher information
matrix. Therefore, our aim is to obtain the optimal proportions π∗1 , π

∗
2 , ..., π

∗
k to maximize the determinant of the Fisher

information matrix |F(α, b, θ1)|.

Based on (3.10), one has

|F(α, b, θ1)| = n3α2(π2 − 4)

(b+ 1)2θ2
1

 k∑
i=1

πiδ
2
i −

(
k∑
i=1

πiδi

)2
 . (4.1)

For a multiple ramp-stress ALT, maximizing |F(α, b, θ1)| is equivalent to selecting π1, π2, ..., πk for maximizing the objective
function

φ(Π) =

 k∑
i=1

πiδ
2
i −

(
k∑
i=1

πiδi

)2
 . (4.2)

It is very interesting that (4.2) is independent on the parameters α, b and θ1. In other words, the optimal proportions
π∗1 , π

∗
2 , ..., π

∗
k are same for any values of α, b and θ1. That is, the optimal plan is very robust.

Theorem 4.1. The D-optimality allocation proportions of a simple ramp-stress ALT for GHN distribution under complete
sampling are π∗1 = 1

2 and π∗2 = 1
2 .

Proof. In the case of a simple ramp-stress ALT, k = 2 and π2 = 1− π1, the objective function in (4.2) becomes

φ(π1) = π1 + (1− π1)δ2
2 − (π1 + (1− π1)δ2)2, (4.3)

to maximize φ(π1) with respect to π1, solving dφ(π1)
dπ1

= 0, gives π∗1 = 1
2 as a root of this equation and consequently π∗2 = 1

2 .

Theorem 4.2. The D-optimality allocation proportions of a multiple ramp-stress ALT for GHN distribution under complete
sampling are π∗1 = 1

2 , π
∗
i = 0, ∀ i = 2, 3, ..., k − 1 and π∗k = 1

2 .

Proof. Straight from (4.2), with πk = 1−
∑k−1
i=1 πi, then the first partial derivatives of φ(Π) are obtained as

∂φ(Π)

∂πj
= (δ2

j − δ2
k)− 2(δj − δk)

k∑
i=1

πiδi, ∀ j = 1, 2, ..., k − 1. (4.4)
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The value of π1 which maximize φ(Π) can be found by solving ∂φ(Π)
∂π1

= 0, implies

2

k∑
i=1

πiδi = (δ1 + δk). (4.5)

From (4.5) in (4.4), we get
∂φ(Π)

∂πj
= (δj − δk)(δj − δ1), ∀ j = 2, 3, ..., k − 1. (4.6)

Since δk < δk−1 < ... < δ1 = 1, then (δj − δk) > 0, ∀ j = 2, 3, ..., k − 1, and (δj − δ1) < 0, ∀ j = 2, 3, ..., k − 1.

Thus, ∂φ(Π)
∂πj

< 0, ∀ j = 2, 3, ..., k − 1. Therefore, φ(Π) is monotonically decreasing in πj for j = 2, 3, ..., k − 1. Since

0 ≤ πj ≤ 1, then φ(Π) is maximized at π∗j = 0, ∀ j = 2, 3, ..., k − 1. As a result, the only nonzero πj for j = 1, 2, ..., k − 1 is
π1.

Now, from (4.5) with πj = 0, ∀ j = 2, 3, ..., k − 1, and πk = 1−
∑k−1
i=1 πi, then

(δ1 − δk)(1− 2π1) = 0,

then π∗1 = 1
2 , and consequently π∗k = 1

2 .

4.2 A-optimality

In this subsection, we consider another optimality criterion which depends on the trace of the variance-covariance matrix
of the MLEs. The A-optimality criterion gives an overall measure of the total variance of the parameter estimates. The
A-optimal allocation proportions π∗1 , π

∗
2 , ..., π

∗
k can be obtained by minimizing the objective function defined by

ϕ(Π) = n tr(F−1(α, b, θ1))

=
(b+ 1)2 + θ2

1

(∑k
i=1 πiδi

)2

2α2

[∑k
i=1 πiδ

2
i −

(∑k
i=1 πiδi

)2
] +

8α4 + θ2
1

(
2(2− log(2)− γ)2 + π2 − 4

)
2α2(π2 − 4)

.
(4.7)

For a multiple ramp-stress ALT, minimizing ϕ(Π) in (4.7) is equivalent to selecting π1, π2, ..., πk for minimizing

η(Π) =

 (b+ 1)2 + θ2
1

(∑k
i=1 πiδi

)2

∑k
i=1 πiδ

2
i −

(∑k
i=1 πiδi

)2

 . (4.8)

Theorem 4.3. The A-optimal allocation proportions of a simple ramp-stress ALT for GHN distribution under complete
sampling are

π∗1 =
(b+ 1)2 + θ2

1δ
2
2 ±

√
((b+ 1)2 + θ2

1)((b+ 1)2 + θ2
1δ

2
2)

θ2
1(δ2

2 − 1)
, and π∗2 = 1− π∗1 .

Proof. In the case of a simple ramp-stress ALT, k = 2 and π2 = 1− π1, then the objective function in (4.8) becomes

η(π1) =

[
(b+ 1)2 + θ2

1 ((1− π1) δ2 + π1) 2

π1 + (1− π1) δ2
2 − ((1− π1) δ2 + π1) 2

]
, (4.9)

to minimize η(π1) with respect to π1, solving dη(π1)
dπ1

= 0, gives

π∗1 =
(b+ 1)2 + θ2

1δ
2
2 ±

√
((b+ 1)2 + θ2

1)((b+ 1)2 + θ2
1δ

2
2)

θ2
1(δ2

2 − 1)
, and consequently π∗2 = 1− π∗1 .
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Theorem 4.4. The A-optimal allocation proportions of multiple ramp-stress ALT for GHN distribution under complete
sampling are

π∗1 =
(b+ 1)2 + θ2

1δ
2
k ±

√
((b+ 1)2 + θ2

1)((b+ 1)2 + θ2
1δ

2
k)

θ2
1(δ2

k − 1)
, π∗i = 0, ∀ i = 2, 3, ..., k − 1, and π∗k = 1− π∗1 .

Proof. From the objective function in (4.8), with πk = 1−
∑k−1
i=1 πi, then

∂η(Π)

∂πj
=

2
(
θ2

1

∑k
i=1 πiδ

2
i + (b+ 1)2

)(∑k
i=1 πiδi

)
(δj − δk)− (δ2

j − δ2
k)

(
(b+ 1)2 + θ2

1

(∑k
i=1 πiδi

)2
)

(∑k
i=1 πiδ

2
i −

(∑k
i=1 πiδi

)2
)2 ,

j = 1, 2, ..., k − 1.

(4.10)

To get the value of π1 which minimize η(Π), solving ∂η(Π)
∂π1

= 0, implies

2

(
(b+ 1)2 + θ2

1

k∑
i=1

πiδ
2
i

)(
k∑
i=1

πiδi

)
= (δ1 + δk)

(b+ 1)2 + θ2
1

(
k∑
i=1

πiδi

)2
 . (4.11)

From (4.11) in (4.10), then

∂η(Π)

∂πj
=

(δj − δk)(δ1 − δj)
(

(b+ 1)2 + θ2
1

(∑k
i=1 πiδi

)2
)

(∑k
i=1 πiδ

2
i −

(∑k
i=1 πiδi

)2
)2 , ∀ j = 2, 3, ..., k − 1. (4.12)

Since δk < δk−1 < ... < δ1 = 1, then (δj − δk) > 0, ∀ j = 2, 3, ..., k − 1, and (δ1 − δj) > 0, ∀ j = 2, 3, ..., k − 1.

Thus, ∂η(Π)
∂πj

> 0, ∀ j = 2, 3, ..., k − 1. Therefore, η(Π) is monotonically increasing in πj for j = 2, 3, ..., k − 1. Because of

0 ≤ πj ≤ 1, then η(Π) is minimized at π∗j = 0, ∀ j = 2, 3, ..., k − 1. As a result, the only nonzero πj for j = 1, 2, ..., k − 1 is
π1.

Now, from (4.11) with πj = 0, ∀ j = 2, 3, ..., k − 1 and πk = 1−
∑k−1
i=1 πi, then

2
(
(b+ 1)2 + θ2

1(π1 + δ2
k(1− π1))

)
(π1 + δk(1− π1)) = (1 + δk)

(
(b+ 1)2 + θ2

1(π1 + δk(1− π1))2
)
,

then

π∗1 =
(b+ 1)2 + θ2

1δ
2
k ±

√
((b+ 1)2 + θ2

1)((b+ 1)2 + θ2
1δ

2
k)

θ2
1(δ2

k − 1)
, and consequently π∗k = 1− π∗1 .

From Theorems 4.2 and 4.4, we observed the following:

1. From Theorems 4.2 and 4.4, we observed that the optimal multiple ramp-stress ALT is degenerate to simple ramp-stress
ALT under D and A-optimality criteria.

2. From Theorem 4.2, we noted that the D-optimality allocates an equal number of test units at the lowest stress level
S1(t) and the highest stress level Sk(t).
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5 Application

In this section, the theoretical results developed in Sections 3 and 4 are illustrated with a real data example. Moreover,
this example is used to show that the GHN distribution can be a possible alternative to gamma, Weibull and exponentiated
exponential distributions.

The lifetime data in Table 5.1 from Zhu [38] were collected from ramp-voltage tests of miniature light bulbs. In this test,
62 miniature light bulbs were tested under ramp-rate 2.01 V/h, and 61 miniature light bulbs were tested under ramp-rate
2.015 V/h.

To check the validity of GHN, gamma, Weibull and exponentiated exponential distributions with the data in Table 5.1
for each ramp-stress Si(t), i = 1, 2. We compute Kolmogorov-Smirnov (K-S) distance between the empirical distribution
function and the fitted distribution function when the parameters are obtained by MLE. The values of K-S distance and the
corresponding P-values for each stress level are presented in Table 5.2. It is clear that the estimated GHN, gamma, Weibull
and exponentiated exponential distributions provide a good fit to the given data due to all P-values are greater than 0.05.

Akaike information criterion (AIC) is used for the purpose of comparison between the four models. For this reason, the
method of maximum likelihood is used to obtain the estimates of the parameters of the four distributions. The MLEs of
the parameters α, b and θ1, and AIC for the four distributions are summarized in Table 5.3. Since the four models have the
same number of parameters, it follows that the GHN distribution provides a better fit compared to gamma, Weibull and
exponentiated exponential distributions regarding AIC.

Table 5.1. The lifetime data from ramp-voltage tests

Ramp-Rate 2.01 V/h Ramp-Rate 2.015 V/h
No. Failure Time No. Failure Time No. Failure Time No. Failure Time No. Failure Time No. Failure Time

1 13.57 22 72.33 43 42.06 1 19.3 22 49.65 43 31.00
2 19.92 23 72.60 44 47.88 2 23.28 23 51.42 44 34.81
3 23.3 24 75.43 45 54.21 3 23.50 24 51.27 45 36.03
4 27.81 25 75.85 46 54.55 4 26.50 25 53.25 46 43.08
5 31.16 26 76.20 47 55.85 5 27.42 26 54.25 47 45.63
6 31.56 27 77.78 48 56.43 6 28.32 27 55.47 48 46.03
7 34.00 28 79.13 49 58.86 7 28.62 28 56.83 49 46.33
8 46.26 29 80.65 50 60.60 8 30.62 29 56.17 50 49.62
9 46.41 30 82.65 51 62.48 9 34.42 30 8.85 51 49.86
10 50.60 31 90.33 52 62.81 10 35.30 31 11.31 52 50.66
11 56.76 32 14.51 53 63.41 11 35.48 32 11.83 53 50.93
12 56.85 33 15.61 54 63.76 12 38.30 33 14.50 54 51.03
13 60.13 34 15.85 55 64.18 13 40.52 34 14.83 55 51.73
14 65.00 35 17.73 56 66.15 14 43.83 35 17.73 56 51.95
15 65.86 36 19.65 57 66.41 15 43.00 36 19.35 57 52.36
16 66.20 37 21.05 58 69.91 16 43.00 37 25.50 58 54.78
17 66.40 38 21.20 59 71.73 17 43.12 38 26.15 59 55.58
18 66.80 39 24.21 60 72.46 18 44.43 39 27.45 60 55.83
19 66.93 40 24.85 61 73.78 19 45.32 40 27.61 61 57.13
20 68.25 41 31.18 62 78.91 20 47.58 41 28.05
21 70.23 42 35.08 21 47.65 42 30.96

Table 5.2. K-S distances and the corresponding P-values of each stress level for GHN, gamma, Weibull and exponentiated
exponential distributions

GHN gamma Weibull exponentiated exponential
Ramp-Rate 2.01 V/h 2.015 V/h 2.01 V/h 2.015 V/h 2.01 V/h 2.015 V/h 2.01 V/h 2.015 V/h

K-S distance 0.1290 0.1311 0.1612 0.1639 0.1290 0.1803 0.1774 0.2131
P-value 0.6846 0.6748 0.3980 0.3879 0.6846 0.2747 0.2849 0.1254

Table 5.3. AIC and estimated parameters for GHN, gamma, Weibull and exponentiated exponential distributions

Distribution AIC Estimated parameters

α̂ b̂ θ̂1

GHN 980.19 2.6268 134.053 0.4699
gamma 1071.74 5.2859 123.329 0.0801
Weibull 1048.84 3.0831 131.889 0.4486

exponentiated exponential 1082.41 6.0945 118.33 0.1813
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Figure 1: MCMC trace plots of simulated samples for α, b and θ1.

Figure 2: Kernel densities estimate of α, b and θ1.

The MLEs, LSEs, MEs, and BEs under SE and LINEX loss functions of the parameters α, b and θ1 are introduced in
Table 5.4. For this data set, Bayesian analysis is conducted in case of NIPs. Table 5.5 includes 99% and 95% NACIs and
BCIs of the parameters α, b and θ1. From the results in Table 5.5, we note that the BEs of b and θ1 give more accurate
results than the MLEs through the length of the intervals while the MLE of α more accurate than the BE of α. The MCMC
iterations of α, b and θ1 are plotted in Figure 1. Trace plots indicate that the MCMC samples are well mixed and stationary
achieved. Kernel densities estimate of α, b and θ1 are plotted in Figure 2. This figure indicates that the marginal posterior
distributions of α, b and θ1 are symmetric.

Table 5.4. MLEs, LSEs, MEs, and BEs under SE (BSE) and LINEX (BLINEX) loss functions of α, b and θ1 for ramp-
voltage tests

ϑ MLE LSE ME BSE BLINEX (c = 3) BLINEX (c = −3)
α̂ 2.6268 0.823987 2.2881 2.5992 2.5326 2.6715

b̂ 134.053 112.503 78.6234 132.346 96.442 154.548

θ̂1 0.4699 0.5509 0.7578 0.4811 0.4777 0.48474

Table 5.5. 99% and 95% NACIs and BCIs for α, b and θ1 for ramp-voltage tests

ϑ 99% NACI and BCI 95% NACI and BCI
NACI BCI NACI BCI

α (2.0820,3.1716) (2.0752,3.2134) (2.2130,3.0407) (2.1964,3.0500)
b (83.6364,184.471) (101.062,178.988) (95.7521,172.355) (105.131,166.873)
θ1 (0.3205,0.6192) (0.3744,0.6032) (0.3564,0.5833) (0.3884,0.5765)

Based on the MLEs (α̂ = 2.6268, b̂ = 134.053 and θ̂1 = 0.4699), the optimal allocation proportions can be found by
employing the methods described in Section 4. For the D-optimality, the optimal allocation is found to be (0.50, 0.50). For
the A-optimality, the optimal allocation is found to be (0.50, 0.50).

6 Simulation study

In this section, based on Monte Carlo simulations, a numerical study is conducted in order to compare the performance of
the estimation methods. The numerical results are carried out based on 1,000 different samples of different sizes generated
from CDF in (2.3). The population parameters values used in the simulation study are α = 1.1, b = 0.66 and θ1 = 0.6
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with two settings of stress rate factor. The first setting is 0.1 = ψk < ψk−1 < ... < ψ2 < ψ1 = 1, and the second setting is
0.01 = ψk < ψk−1 < ... < ψ2 < ψ1 = 1. The BEs of the model parameters under SE and LINEX loss functions are obtained
using algorithm (1), with N = 11000, M = 1000. Tables 6.1 and 6.3 introduce the average of the MEs, LSEs and MLEs of
the parameters α, b and θ1 with their mean square errors (MSEs). Tables 6.2 and 6.4 give the average of the BEs under SE
and LINEX loss functions with their MSEs. While, Tables 6.5 and 6.6 include the 95% NACIs, BCIs, and their lengths and
the coverage probabilities of the model parameters.

Table 6.1. The average of MEs, LSEs and MLEs of (α, b, θ1) with their MSEs. The population parameters values are (α = 1.1, b = 0.66
and θ1 = 0.6), values of the prior parameters (µ1 = 12.1, µ2 = 4.356, µ3 = 3.6 λ1 = 11, λ2 = 6.6 and λ3 = 6) and ψk = 0.1.

MEs LSEs MLEs

k n criterion ni

α̌ MSE(α̌) ᾰ MSE(ᾰ) α̂ MSE(α̂)

b̌ MSE(b̌) b̆ MSE(b̆) b̂ MSE(b̂)

θ̌1 MSE(θ̌1) θ̆1 MSE(θ̆1) θ̂1 MSE(θ̂1)

4 40 D


20, i = 1
0, i = 2, 3
20, i = 4

0.9475 0.1690 0.3100 0.6286 1.1594 0.0308
0.3865 0.1925 0.6659 0.0170 0.6576 0.0070
0.5484 0.0119 0.6280 0.0111 0.5918 0.0050

4 40 A


23, i = 1
0, i = 2, 3
17, i = 4

0.9256 0.1535 0.3175 0.6168 1.1796 0.0336
0.3686 0.1971 0.6389 0.0172 0.6519 0.0066
0.5501 0.0114 0.6107 0.0078 0.5845 0.0044

4 80 D


40, i = 1
0, i = 2, 3
40, i = 4

0.9667 0.1257 0.3113 0.6248 1.1339 0.0130
0.4216 0.1678 0.6653 0.0098 0.671 0.0035
0.5612 0.0070 0.6202 0.0058 0.6075 0.0019

4 80 A


46, i = 1
0, i = 2, 3
34, i = 4

0.9572 0.1171 0.3131 0.6221 1.1259 0.0117
0.4287 0.1586 0.6761 0.0087 0.6824 0.0037
0.5595 0.0073 0.6309 0.0067 0.6201 0.0024

4 120 D


60, i = 1
0, i = 2, 3
60, i = 4

0.9551 0.1109 0.3117 0.6232 1.1118 0.0067
0.4258 0.1574 0.6764 0.0058 0.6777 0.0024
0.5648 0.0059 0.6205 0.0031 0.6173 0.0013

4 120 A


69, i = 1
0, i = 2, 3
51, i = 4

0.9772 0.0995 0.3119 0.6228 1.1166 0.0077
0.4541 0.1421 0.6798 0.0067 0.6863 0.0040
0.5679 0.0058 0.6237 0.0039 0.6217 0.0026

Table 6.2. The average of BEs under SE (BSE) and LINEX (BLINEX) loss functions of (α, b, θ1) with their MSEs. The population
parameters values are (α = 1.1, b = 0.66 and θ1 = 0.6), values of the prior parameters (µ1 = 12.1, µ2 = 4.356, µ3 = 3.6 λ1 = 11,
λ2 = 6.6 and λ3 = 6) and ψk = 0.1.

BSE BLINEX(c=-3) BLINEX(c=3)

k n criterion ni

α̃ MSE(α̃) α̃ MSE(α̃) α̃ MSE(α̃)

b̃ MSE(b̃) b̃ MSE(b̃) b̃ MSE(b̃)

θ̃1 MSE(θ̃1) θ̃1 MSE(θ̃1) θ̃1 MSE(θ̃1)

4 40 D


20, i = 1
0, i = 2, 3
20, i = 4

1.1116 0.0162 1.1408 0.0196 1.0842 0.0147
0.6472 0.0062 0.6591 0.0060 0.6353 0.0066
0.5988 0.0042 0.6067 0.0044 0.5913 0.0041

4 40 A


23, i = 1
0, i = 2, 3
17, i = 4

1.1274 0.0167 1.1573 0.0211 1.0993 0.0143
0.6390 0.0060 0.6510 0.0057 0.6270 0.0067
0.5913 0.00371 0.5982 0.00374 0.5848 0.00377

4 80 D


40, i = 1
0, i = 2, 3
40, i = 4

1.0996 0.00246 1.1074 0.00259 1.0920 0.00244
0.6646 0.00178 0.6687 0.00185 0.6604 0.00174
0.6066 0.00105 0.6095 0.00111 0.6037 0.00100

4 80 A


46, i = 1
0, i = 2, 3
34, i = 4

1.0951 0.00231 1.1027 0.00237 1.0876 0.00238
0.6711 0.00174 0.6754 0.00187 0.6667 0.00165
0.6170 0.00139 0.6198 0.00151 0.6141 0.00129

4 120 D


60, i = 1
0, i = 2, 3
60, i = 4

1.0899 0.00020 1.0912 0.00018 1.0886 0.00023
0.6632 0.00020 0.6643 0.00021 0.6622 0.00019
0.6056 0.00018 0.6065 0.00019 0.6047 0.00017

4 120 A


69, i = 1
0, i = 2, 3
51, i = 4

1.0896 0.00022 1.0909 0.00020 1.0884 0.00025
0.6658 0.00027 0.6669 0.00029 0.6647 0.00026
0.6074 0.00038 0.6082 0.00039 0.6065 0.00037
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Table 6.3. The average of MEs, LSEs and MLEs of (α, b, θ1) with their MSEs. The population parameters values are (α = 1.1, b = 0.66
and θ1 = 0.6), values of the prior parameters (µ1 = 12.1, µ2 = 4.356, µ3 = 3.6 λ1 = 11, λ2 = 6.6 and λ3 = 6) and ψk = 0.01.

MEs LSEs MLEs

k n criterion ni

α̌ MSE(α̌) ᾰ MSE(ᾰ) α̂ MSE(α̂)

b̌ MSE(b̌) b̆ MSE(b̆) b̂ MSE(b̂)

θ̌1 MSE(θ̌1) θ̆1 MSE(θ̆1) θ̂1 MSE(θ̂1)

4 40 D


20, i = 1
0, i = 2, 3
20, i = 4

1.2574 0.1036 0.3127 0.6244 1.1590 0.0268
0.8036 0.1338 0.6626 0.0048 0.6613 0.0019
0.5565 0.0110 0.0164 0.0540 0.5968 0.0059

4 40 A


28, i = 1
0, i = 2, 3
12, i = 4

1.2281 0.0700 0.3141 0.6223 1.1602 0.0269
0.8060 0.1317 0.6629 0.0052 0.6670 0.0023
0.5611 0.0087 0.6248 0.0098 0.5994 0.0049

4 80 D


40, i = 1
0, i = 2, 3
40, i = 4

1.1858 0.0443 0.3137 0.6207 1.1320 0.0121
0.7345 0.0531 0.6616 0.0024 0.6619 0.00099
0.5832 0.0042 0.6135 0.0076 0.6023 0.0031

4 80 A


57, i = 1
0, i = 2, 3
23, i = 4

1.1563 0.0290 0.3144 0.6197 1.1343 0.0131
0.7129 0.0424 0.6604 0.0028 0.6636 0.0013
0.5869 0.0036 0.6079 0.0040 0.5998 0.0021

4 120 D


60, i = 1
0, i = 2, 3
60, i = 4

1.1671 0.0310 0.3122 0.6226 1.1216 0.0087
0.7055 0.0294 0.6630 0.0016 0.6646 0.00061
0.5860 0.0027 0.6144 0.0049 0.6099 0.0019

4 120 A


85, i = 1
0, i = 2, 3
35, i = 4

1.1450 0.0232 0.3093 0.6268 1.1167 0.0082
0.7028 0.0324 0.6563 0.0019 0.6609 0.00072
0.5881 0.0020 0.6020 0.0033 0.5987 0.0015

Table 6.4. The average of BEs under SE (BSE) and LINEX (BLINEX) loss functions of (α, b, θ1) with their MSEs. The
population parameters values are (α = 1.1, b = 0.66 and θ1 = 0.6), values of the prior parameters (µ1 = 12.1, µ2 = 4.356,
µ3 = 3.6 λ1 = 11, λ2 = 6.6 and λ3 = 6) and ψk = 0.01.

BSE BLINEX(c=-3) BLINEX(c=3)

k n criterion ni

α̃ MSE(α̃) α̃ MSE(α̃) α̃ MSE(α̃)

b̃ MSE(b̃) b̃ MSE(b̃) b̃ MSE(b̃)

θ̃1 MSE(θ̃1) θ̃1 MSE(θ̃1) θ̃1 MSE(θ̃1)

4 40 D

 20, i = 1
0, i = 2, 3
20, i = 4

1.1111 0.0142 1.1400 0.0172 1.0840 0.0130
0.6578 0.00181 0.6609 0.00181 0.6547 0.00183
0.6038 0.0051 0.6140 0.0055 0.5944 0.0048

4 40 A

 28, i = 1
0, i = 2, 3
12, i = 4

1.1114 0.0139 1.1404 0.0170 1.0842 0.0127
0.6581 0.00219 0.662 0.00219 0.6541 0.0022
0.6048 0.0043 0.6124 0.0046 0.5976 0.00419

4 80 D

 40, i = 1
0, i = 2, 3
40, i = 4

1.0985 0.00231 1.1062 0.00242 1.0909 0.00232
0.6600 0.00072 0.6613 0.00072 0.6587 0.00075
0.6025 0.00161 0.6060 0.00167 0.5990 0.00158

4 80 A

 57, i = 1
0, i = 2, 3
23, i = 4

1.0996 0.00248 1.1073 0.00262 1.0919 0.00247
0.6596 0.00100 0.6612 0.00100 0.6580 0.00101
0.6006 0.00126 0.6034 0.00129 0.5979 0.00125

4 120 D

 60, i = 1
0, i = 2, 3
60, i = 4

1.0915 0.00019 1.0927 0.00017 1.0902 0.00021
0.6612 0.00020 0.6617 0.00020 0.6607 0.00024
0.6024 0.00017 0.6033 0.00018 0.6015 0.00017

4 120 A

 85, i = 1
0, i = 2, 3
35, i = 4

1.0965 0.00251 1.1026 0.00257 1.0905 0.00253
0.6583 0.00060 0.6594 0.00060 0.6571 0.00061
0.5999 0.00109 0.6019 0.00110 0.5979 0.00108

Table 6.5. NACIs and BCIs of (α, b, θ1) with their lengths (LNACIs and LBCIs) and coverage probabilities (CPNACIs and
CPBCIs). The population parameters values are (α = 1.1, b = 0.66 and θ1 = 0.6), values of the prior parameters (µ1 = 12.1,
µ2 = 4.356, µ3 = 3.6 λ1 = 11, λ2 = 6.6 and λ3 = 6) and ψk = 0.1.
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NACIs BCIs

k n criterion ni

NACI(α) LNACI(α) CPNACI(α) BCI(α) LBCI(α) CPBCI(α)
NACI(b) LNACI(b) CPNACI(b) BCI(b) LBCI(b) CPBCI(b)
NACI(θ1) LNACI(θ1) CPNBCI(θ1) BCI(θ1) LBCI(θ1) CPBCI(θ1)

4 40 D

 20, i = 1
0, i = 2, 3
20, i = 4

( 0.85737, 1.46155) 0.6041 0.94 ( 0.85913, 1.39224 ) 0.5331 0.97
(0.48969, 0.82551) 0.3358 0.94 ( 0.4723, 0.82159 ) 0.3492 0.97
(0.45757, 0.72605) 0.2684 0.91 ( 0.47213, 0.75159 ) 0.2794 0.95

4 40 A

 23, i = 1
0, i = 2, 3
17, i = 4

( 0.87265, 1.48673 ) 0.6140 0.95 ( 0.87166, 1.4116 ) 0.5399 0.98
( 0.48521, 0.81874 ) 0.3335 0.96 ( 0.46035, 0.81184 ) 0.3514 0.97
( 0.45969, 0.70948 ) 0.2497 0.92 ( 0.47167, 0.73296 ) 0.2612 0.95

4 80 D

 40, i = 1
0, i = 2, 3
40, i = 4

( 0.9266, 1.34131 ) 0.4147 0.94 ( 0.96379, 1.24364 ) 0.2798 0.99
( 0.55102, 0.79098 ) 0.2399 0.96 ( 0.56146, 0.76838 ) 0.2069 0.99
( 0.50826, 0.70681 ) 0.1985 0.97 ( 0.52516, 0.69857 ) 0.1734 0.99

4 80 A

 46, i = 1
0, i = 2, 3
34, i = 4

( 0.92065, 1.33125 ) 0.4105 0.96 ( 0.95979, 1.238 ) 0.2782 0.99
( 0.5603, 0.80458 ) 0.2442 0.95 ( 0.56491, 0.77644 ) 0.2115 0.99
( 0.52242, 0.71787 ) 0.1954 0.95 ( 0.53619, 0.7074 ) 0.1712 0.97

4 120 D

 60, i = 1
0, i = 2, 3
60, i = 4

( 0.94692, 1.27672 ) 0.329 0.97 ( 1.03368, 1.14761 ) 0.1139 1
( 0.5783, 0.77724 ) 0.1989 0.95 ( 0.61165, 0.71582 ) 0.1041 1
( 0.53343, 0.70122 ) 0.1678 0.97 ( 0.55972, 0.65415 ) 0.0944 1

4 120 A

 69, i = 1
0, i = 2, 3
51, i = 4

( 0.9509, 1.28246 ) 0.3315 0.96 ( 1.03338, 1.14746 ) 0.1140 1
( 0.58608, 0.78656 ) 0.2004 0.91 ( 0.61344, 0.71919 ) 0.1057 1
( 0.54107, 0.70237 ) 0.1613 0.92 ( 0.56179, 0.65561 ) 0.0938 0.99

Table 6.6. NACIs and BCIs of (α, b, θ1) with their lengths (LNACIs and LBCIs) and coverage probabilities (CPNACIs and
CPBCIs). The population parameters values are (α = 1.1, b = 0.66 and θ1 = 0.6), values of the prior parameters (µ1 = 12.1,
µ2 = 4.356, µ3 = 3.6 λ1 = 11, λ2 = 6.6 and λ3 = 6) and ψk = 0.01.

NACIs BCIs

k n criterion ni

NACI(α) LNACI(α) CPNACI(α) BCI(α) LBCI(α) CPBCI(α)
NACI(b) LNACI(b) CPNACI(b) BCI(b) LBCI(b) CPBCI(b)
NACI(θ1) LNACI(θ1) CPNBCI(θ1) BCI(θ1) LBCI(θ1) CPBCI(θ1)

4 40 D

 20, i = 1
0, i = 2, 3
20, i = 4

( 0.85797, 1.46016 ) 0.6021 0.96 ( 0.85942, 1.39068 ) 0.5312 0.98
( 0.57752, 0.7451 ) 0.1675 0.94 ( 0.56739, 0.74691 ) 0.1795 0.95
( 0.44655, 0.74709 ) 0.3005 0.93 ( 0.46458, 0.77891 ) 0.3143 0.97

4 40 A

 28, i = 1
0, i = 2, 3
12, i = 4

( 0.85775, 1.46274 ) 0.6049 0.95 ( 0.85967, 1.39187 ) 0.5322 0.97
( 0.57579, 0.75838 ) 0.1825 0.92 ( 0.55226, 0.75275 ) 0.2004 0.95
( 0.46773, 0.73106 ) 0.2633 0.91 ( 0.47936, 0.75378 ) 0.2744 0.97

4 80 D

 40, i = 1
0, i = 2, 3
40, i = 4

( 0.9252, 1.33879 ) 0.4135 0.95 ( 0.96285, 1.24218 ) 0.2793 1
( 0.60191, 0.72203 ) 0.1201 0.94 ( 0.60209, 0.71678 ) 0.1146 0.96
( 0.49335, 0.71142 ) 0.2180 0.95 ( 0.51436, 0.70391 ) 0.1895 0.98

4 80 A

 57, i = 1
0, i = 2, 3
23, i = 4

( 0.92733, 1.34129 ) 0.4139 0.94 ( 0.9636, 1.24367 ) 0.2800 0.99
( 0.59739, 0.7299 ) 0.1325 0.94 ( 0.59258, 0.72235 ) 0.1297 0.96
( 0.50562, 0.69403 ) 0.1884 0.95 ( 0.52125, 0.69017 ) 0.16889 0.97

4 120 D

 60, i = 1
0, i = 2, 3
60, i = 4

( 0.95505, 1.28823 ) 0.3331 0.95 ( 1.03498, 1.14947 ) 0.1144 1
( 0.61526, 0.71398 ) 0.0987 0.96 ( 0.6248, 0.69688 ) 0.0720 0.99
( 0.51907, 0.70078 ) 0.1817 0.95 ( 0.55475, 0.65309 ) 0.0983 1

4 120 A

 85, i = 1
0, i = 2, 3
35, i = 4

( 0.9508, 1.28275 ) 0.3319 0.95 ( 0.97482, 1.22413 ) 0.2493 0.99
( 0.60642, 0.71546 ) 0.1090 0.97 ( 0.60327, 0.71052 ) 0.1072 0.97
( 0.52081, 0.67668 ) 0.1558 0.94 ( 0.53165, 0.67517 ) 0.1435 0.97

From Tables 6.1-6.6, the following observations can be made.

1. The MSEs of MEs, LSEs, MLEs and BEs of the considered parameters decrease as the sample size increases.

2. The BEs of α, b and θ1 give more accurate results through the MSEs than MLEs, MEs and LSEs.

3. The MLEs of α, b and θ1 give more accurate results through the MSEs than MEs and LSEs.

4. The LSEs of b give more accurate results through the MSEs than MEs while MEs of α give more accurate results
through the MSEs than LSEs.

5. The LNACIs and LBCIs decrease as the sample size increases.

6. The BCIs of α, b and θ1 give more accurate results than NACIs through the lengths of CIs.

7. The CPBCIs and CPNACIs are close to the nominal value (95%).

8. The BCIs of α, b and θ1 have large coverage probabilities compared with NACIs.
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Figure 3: Relative efficiency against varying values of the parameters under A-optimality for the true values (α0, b0, θ0
1) =

(1.1, 0.66, 0.6).

Figure 4: Relative efficiency against varying values of the parameters under A-optimality for the true values (α0, b0, θ0
1) =

(2.6268, 134.053, 0.4699).

7 Sensitivity analysis

The sensitivity analysis identifies the sensitive parameters which need to be estimated with special care for the purpose
of minimizing the risk of obtaining an erroneous optimal solution. Our D-optimal plan is independent of the parameters α, b
and θ1. That is, the D-optimal plan is very robust. On the other hand, our A-optimal plan depends on the two parameters
b and θ1. As a result, in this section, we consider a sensitivity analysis of the A-optimal plan for the sensitive parameters b
and θ1.

Let α0, b0 and θ0
1 are the true values of the parameters α, b and θ1, respectively. Further, let α∗, b∗ and θ∗1 be the

specified values of the unknown parameters. Then, we can define the A-optimal relative efficiency of the specified values
relative to the true values as follows:

REA(b∗) =
tr(F−1(α0, b0, θ0

1))

tr(F−1(α0, b∗, θ0
1))

, (7.1)

and

REA(θ∗1) =
tr(F−1(α0, b0, θ0

1))

tr(F−1(α0, b0, θ∗1))
. (7.2)

To examine the sensitivity of the A-optimal allocations in term of relative efficiency, we plot the A-optimal relative efficiency
for two settings of the true parameters. The first setting is (α0, b0, θ0

1) = (1.1, 0.66, 0.6) with ψk = 0.1 which used in the
simulation study. The second setting is (α0, b0, θ0

1) = (2.6268, 134.053, 0.4699) with ψk = 0.99 which used in the real data
example. We compute the relative efficiencies of one parameter while keeping the others fixed. Plots of the relative efficiencies
against the changing values of that parameters are presented in Figures 3 and 4.

We note that when the values of the three parameters α, b, and θ1 are not far removed from the true values, the changing
in the relative efficiencies is not significantly large. Thus, the optimal allocation schemes are not sensitive to misspecification
of the model parameters as long as they are not far deviated from the true values.
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8 Conclusion

This article has investigated some inferences on multiple ramp-stress ALT when the lifetime of a product follows the GHN
distribution. We have obtained the MEs, LSEs, MLEs and BEs of the considered parameters and studied their performance
via simulated. Normal approximation CIs and credible intervals were constructed for the considered parameters. From
the results we recommend the use of maximum likelihood and Bayes methods in estimating the parameters under the
consideration rather than moment and least square methods. We recommend the D- and A-optimality criteria to determine
the optimal proportion of test units allocated to each stress level for the GHN distribution.
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