
https://kjis.journals.ekb.eg/

Kafrelsheikh Journal of Information Sciences ISSN (Online): 2535-1478, ISSN (Print): 2537-0677 Volume 3, Issue 2, 2022, PP. 1-10

Summarizing Graph Data Via the
Compactness of Disjoint Paths

Mosab Hassaan

Faculty of Science, Benha University, Egypt

E-mail: mosab.hassaan@fsc.bu.edu.eg

Abstract: Graphs are widely used to model many real-world data in many application domains such as chemical

compounds, protein structures, gene structures, metabolic pathways, communication networks, and images entities. Graph

summarization is very important task which searching for a summary of the given graph. There are many benefits of the

graph summarization task which are as follows. By graph summarization, we reduce the data volume and storage as much as

possible, speedup the query processing algorithms, and apply the interactive analysis. In this paper, we propose a new graph

summarization method based on the compactness of disjoint paths. Our algorithm called DJ_Paths. DJ_Paths is edge-

grouping technique. The experimental results show that DJ_Path outperforms the state-of-the-art method, Slugger, with

respect to compression ratio (It achieves up to 2x better compression), total response time (It outperforms Slugger by more

than one order of magnitude), and memory usage (It is 8x less memory consumption).

Keywords: Graph Data, Graph Summarization, Disjoint Paths, Compression Ratio

1. INTRODUCTION
Graphs are non-linear data structures that represent

many real-world data such as chemical compounds
[17], protein structures, gene structures, metabolic
pathways, communication networks, social networks
[2], citation networks, transaction networks, and images
entities. For instance, Figure 1 shows the graphs that
have been used to represent many complex data types
as follows. Figure 1(a), Figure 1(b), Figure 1(c), and
Figure 1(d) show the representation of protein
structure, metabolic pathway, chemical compound, and
gene structure respectively.

Figure 1. Representations of Graph Data

There are different meaning of the vertices and the

edges of the given graph when this graph model

different types of data as follows.

 In protein structure, the vertices represent the

amino acids in the protein structure while the

edges represent the strength of the non-covalent

interactions between two amino acids.

 In Metabolic pathway, the vertices is a set of

enzymes, reactions and chemicals while the

edges represent the connections between them.

 In chemical compound, the vertices represent

the atoms while the edges represent the bonds

between the atoms.

 In gene structure, the vertices represent the gene

products (mRNA transcripts) while the edges

represent the pairwise relationships between

genes products.

 In this paper, we focus on the graph summarization

problem. The objective of this problem is searching

for a compact representation of the given graph which

called the summary. This summary allows us to

decrease the footprint of the graph and query [4, 11, 5,

3] in efficient way. In other words, Graph

summarization has many benefits such as reduction of

data volume and storage, speedup of graph algorithms

and queries, and interactive analysis support.

https://kjis.journals.ekb.eg/

There are two types of graph summarizations

which are lossless graph summarization [9, 15, 6, 16]

and lossy graph summarization [10, 8, 18]. In this

paper, we focus on the lossless graph summarization

which can reconstruct the original from summary.

Here, we propose an efficient method to reduce the

number of edges with lossless. This method based on

the edge-merging technique which merges the edges

in the given graph into virtual nodes. There are many

challenges to use efficient method to summarize

graphs in lossless way as follows.

1. Efficient summarized representation is essential

since the memory is not free and there are

tradeoffs between the fast compression and the

efficiency of the space.

 2. Real graphs are already highly compressible.

Our new method for summarizing graphs denoted

as DJ_Paths which uses the DisJoint Paths to

summarize the given graphs in efficient way. Here, we

set the size of disjoint paths to two, i.e. each disjoint

path contains only two edges. Then, we replace each

disjoint path of size two by its corresponding virtual

node. i.e., our summary contains a set of virtual nodes

and virtual edges which represent the connections

among virtual nodes. Details about disjoint paths are

discussed in Definition 3.1 and Example 3.1. Our

experiments on four real datasets show that DJ_Paths

has the best performance compared to the state-of-the-

art algorithm, Slugger [9], in terms of compression

ratio, total response time and memory consumption.

Organization. This paper is organized as follows.

Section 2 presents the preliminary concepts. Section 3

reports the related work. Section 4 discusses the

proposed algorithm. Section 5 reports the

experimental results. Finally, Section 6 concludes the

paper.

2. PRELIMINARY CONCEPTS

As a general data structure, labeled graph is used to

model complex structured. In labeled graph, vertices

and edges represent entities and their relationships,

respectively. Below, the terminology that used in this

paper is discussed.

Definition 2.1. (Labeled Graph)

A labeled graph G is defined as a 4-tuple <VG,EG, LG,

lG>, where VG is the set of vertices (nodes), EG is the

set of edges, LG is the labels set, and lG is a function

that maps each vertex or edge to a label in LG.

The edges count (|EG|) in the given graph G is called

its size.

Definition 2.2. (Path)

A path from a vertex v1 to a vertex vk in a labeled

graph G is a sequence of vertices in the following

order: < v1, v2, v3, . . .vk−1, vk > such that ∀ vi−1 and vi

we have (vi−1, vi) ∈ EG.

Definition 2.3. (Vertex Neighborhood)

Given a graph G, the neighborhood of u ∈ VG is the

set NG(u) = {v ∈ VG | (u, v) ∈ EG}.

The degree of a vertex v ∈ VG is defined as deg(v) =

|NG(v)|.

Problem Definition: Given graph H(V, E), the

objective is to search for a summary graph HS(VS, ES)

of H such that HS conserves all characteristics of H

and the size of HS is sharply less than the size of H.

3. RELATED WORK

 Recall, there are two types of graph

summarizations which are lossless graph

summarization [9, 15, 6, 16] and lossy graph

summarization [10, 8, 18]. In lossless graph

summarization, we enable to reconstruct the original

graph while in lossy graph summarization, we do not

enable to reconstruct the original graph. In this paper,

we focus on lossless graph summarization. Many

methods have been proposed for lossless graph

summarization. These methods are divide into two

categories. The first category is the grouping-based

category (which contains edge-grouping methods and

node-grouping methods) and the second category is

the bit compression-based category. We discuss these

categories in details as follows.

In node-grouping methods, some methods apply

clustering techniques to catch a clusters that will be

mapped to supernodes. Others recursively merge

nodes into supernodes, which connected via

superedges. This is done based on the function of

application-dependent optimization. In Randomized

[15] repeats (a) randomly catching a vertex v and (b)

merging the vertex v with a vertex in the 2-hop

https://kjis.journals.ekb.eg/

neighborhood of v such that the cost of encoding is

minimized.

The authors of Slugger [9] proposed hierarchical

graph summarization model, which is an expressive

graph representation model that contains the previous

one [15]. This model represents an unweighted graph

via positive edges (P+) and negative edges (P−) among

hierarchical supernodes (S), each of which can include

others. In this algorithm, given the graph G(V, E), the

objective of this method is searching for hierarchical

graph summarization model M(S, P+, P−, H) with

minimum cost. For more details about S, P+, P−, and H

(set of hierarchy edges among supernodes), please see

[9].

 SWeG [16] improves Randmomized [15] by

adding a dividing phase that divides the vertices into

smaller groups prior to merging and proposing an

approximation metric for catching the vertices to

merge. Another method called SAGS [6] selects the

vertices to be merged via the locality sensitive

hashing.

 In edge-grouping methods, edges are merged to

virtual nodes to minimize the number of edges in a

graph in lossless way. For instance, the authors of [14]

present a dedensification method (edge-grouping-

based method) that compresses the neighbourhood

around high-degree vertices in lossless way. They

proposed a query processing technique over the

compressed graph without decompressing the graph.

 In bit compression-based category, the objective

is to minimize the count of bits needed to describe the

given graph, where the summary graph includes the

model of the given graph and its unmodeled pieces.

For instance, SlashBurn [12] proposed for this

category. At beginning, it searches for a nodes that

connected with many edges which called hubs. Then,

it removes these hubs to result in catching a large

connected subgraphs which called spokes. At end,

based on the hubs and spokes, it gains a good

compression by resorting and transforming the

representation of the adjacency matrix of the graph.

More details about these methods are reported in

the survey [13].

4. PROPOSED ALGORITHM

In this section, we propose new algorithm called

DJ_Paths for summarizing graphs using disjoint paths.

At beginning, we define the disjoint paths (disjoint

paths appeared in our previous paper [4]) and discuss

how construct them from a given graph.

Definition 4.1. (Disjoint Paths)

Paths in a given graph H are disjoint if they are edge

disjoint only.

Setting the size of disjoint paths is very important

step. Therefore, we should be carefully when set this

size. In this paper, we set the size of disjoint paths to

two, i.e. each disjoint path contains only two edges.

The reasons of selection this size are as the follows.

 1. In any graph H, the number of compact disjoint

paths with size two in H is known which is |EH| /

2 if |EH| is even otherwise it is (|EH| - 1) / 2 as

we will see.

 2. When we join two disjoint paths with size two

that are connected by some nodes in the given

graph, the result is one of five distinct

substructures only. Note that, large size of these

disjoint paths, the more of these distinct

substructures. If the number of these distinct

substructures is increased, this will lead to poor

summarization.

For abbreviation, each following disjoint path has

size two namely, pk and we denote the set of all

disjoint paths of size two in a given graph as P.

Now, we discuss how construct the disjoint paths

from a given graph as follows. We propose an

efficient method to construct the disjoint paths from a

given graph. In this method, we iteratively remove

one disjoint path from the given graph such that the

remaining graph is connected. This iteration process

terminates when the remaining graph is empty or the

remaining graph has only one edge. Algorithm 1

outlines this method.

Theorem 4.1.
The proposed method for constructing the disjoint

paths returns a compact set of disjoint paths with size

two.

https://kjis.journals.ekb.eg/

Algorithm 1: Constrution Disjoint Paths (H)

Input: Graph H.

Output: The set of disjoint paths, P and each pk ∈ P

with size two.

1. while (∃ pk ∈ H such that H \ pk is connected)

 // pk is a disjoint path with size two.

2. P = P ∪ pk

3. H = H \ pk // The remaining graph

4. if H != NULL // i.e. This case occurs when H has

only one edge, e.

5. Store the edge e.

6. return P

 The set of disjoint paths is compact when the size

of the set of disjoint paths is maximized as possible.

In other words, we divide the graph into a set of

disjoint paths of size two with one edge (This occurs

when the size of the given graph is odd) or without

any edge (This occurs when the size of the given

graph is even). See next example.

Figure. 2. Running Example (Graph H)

Example 4.1. Given the graph H in Figure 2. Based

on our construction method, the disjoint paths of H

and the remaining graphs are listed in Table 1. In this

case, there are three iterations and the set of disjoint

paths is compact since it contains three disjoint paths

i.e. |P| = 3 (maximum value). In contrast, if we

remove the disjoint path <w2,w3,w5> from H in the

first iteration, then the remaining graph is

disconnected as in Figure 3(a). In the second iteration,

we can remove the disjoint path <w2,w4,w3> from H,

then the remaining graph is also disconnected as in

Figure 3(b). The second iteration is last one since the

remaining graph contains two disconnected edges. In

other words, it has not any disjoint path of size two. In

this case, the set of disjoint paths is not compact since

it contains two disjoint paths only i.e. |P| = 2. Here, in

this inefficient case, we store two remaining edges.

Note that, in the first case (the efficient one that based

on Algorithm 1), we do not store any edges since the

size of graph H is even (it has six edges).

Table 1. The Set of Compact Disjoint Paths of the Graph H

Figure. 3. Two Disconnected Remaining Graphs

In previous, we constructed the set of disjoint

paths of size two (P) of a given graph H that based on

Algorithm 1. Thereafter, we discuss how summarize

the graph H(V, E) into its summary graph denoted as

HS(VS, ES) with respect to P with lossless way as

follows.

In the first phase (Construction the vertices of HS,

VS), we replace each disjoint path pk ∈ P with its

corresponding virtual vertex denoted as vS(pk) in the

summary graph, HS. Note that, we should preserve the

connections in the summary graph to enable us to

conserve all characteristics of the original graph as

we see in the second phase.

In the second phase (Construction the edges of HS,

ES), if we have two disjoint paths pi and pj ∈ P such

that pi and pj are joint with some vertices in H. Then

their corresponding virtual vertices vS(pi) and vS(pj) ∈

VS will be connected with an edge eS ∈ ES.

Definition 4.2 outlines the previous two phases for

summarizing the graph H.

https://kjis.journals.ekb.eg/

Definition 4.2. (The Summary Graph HS)

Given graph H(V,E) with disjoint path set P. The

summary graph of H is HS(VS,ES) where VS = { f(pk) ∀

pk ∈ P } where f is a function that maps each pk to its

corresponding virtual vertex f(pk) = vS(pk) (i.e. |VS| =

|P|) and ES = { eS ∀ eS = (vS(pi), vS(pj)) such that

f−1(vS(pi)) and f−1(vS(pj)) are joinable }.

Example 4.2 Given the graph H in Figure 1. Recall,

there are three disjoint paths of H which are p1=<

w1,w2,w3>, p2=< w2,w4,w3>, and p3=< w3,w5,w6>.

Since we have three disjoint paths in H then there are

also three virtual vertices in HS (According to

Definition 4.2). In other words, VS = { vS(p1) , v
S(p2),

vS(p3) }. Note that p1, p2, and p3 are joinable to each

other. Then, there are three edges in HS. In other

words, ES = {e1
S , e2

S , e3
S} where e1

S = (vS(p1), v
S(p2)),

e2
S = (vS(p1), vS(p3)), and e3

S = (vS(p2) , vS(p3)). The

summary graph of H (HS) is shown in Figure 4.

Figure 4. The Summary Graph, HS

Note that, the join between any two disjoint paths

in H will produce a subgraph g with size equals to 4.

The subgraph g has five possible distinct structures

namely, S1, S2, S3, S4, and S5. For simplicity, we draw

these structures without labels, see Figure 5.

To conserve all characteristics of the original

graph, we should do the following. The edge eS =

(vS(pi), vS(pj)) ∈ ES will represent the structure that

will be produced when joining pi and pj. Therefore, we

associate with each eS a number k that represents the

resulted structure Sk where 1 ≤ k ≤ 5. At the same

time, the edge eS must determine which vertices
in V (at most two vertices) contributing the join

between pi and pj. For more details, see the following.

Figure 5. The Five Distinct Structures with Size Four

For each disjoint path pt ∈ P, we label its three

vertices as left vertex, middle vertex, and right vertex

namely, wl
t, w

m
t,, and w

r
t respectively. Next, we discuss

all possible joins between any two disjoint paths pi =

< wl
i, w

m
i,, w

r
i > and pj= < wl

j, w
m

j,, w
r
j> to result Sk

where 1 ≤ k ≤ 5. Recall, the count of vertices that

contributing the join is at most two as we will see.

For the first three structures S1, S2, and S3, only

one vertex contributing the join between pi and pj .

Next, we determine this vertex for each structure.

– In S1, the vertex wm
i = w

m
j contributing the join

between pi and pj. Then there is only one

possible combination.

– In S2, the vertex wm
i = w

l
j or wm

i = w
r
j or wl

i =

wm
j or wr

i = w
m

j contributing the join between

pi and pj . Then there are four possible

combinations.

– In S3, the vertex wl
i = w

l
j or wl

i = w
r
j or wr

i = w
l
j

or wr
i = w

r
j contributing the join between pi and

pj . Then there are four possible combinations.

While for the last two structures S4 and S5, two

vertices contributing the join between pi and pj. Next,

we determine these vertices for each structure.

– In S4, the two vertices wl
i = w

l
j and wr

i = w
r
j (or

wl
i = wr

j and wr
i = wl

j) contributing the join

between pi and pj. Then there are two possible

combinations.

– In S5, the two vertices wr
i = w

r
j and wl

i = w
m

j (or

wl
i = w

r
j and wr

i = w
m

j or wr
i = w

m
j and wl

i = w
l
j or

wl
i = w

m
j and wr

i = w
l
j or wr

i = w
l
j and wm

i = w
r
j or

wr
i = w

r
j and wm

i = w
l
j or wm

i = w
l
j and wl

i = w
r
j or

wm
i = wr

j and wl
i = wl

j) contributing the join

between pi and pj. Then there are eight possible

combinations.

Table 2 contains a summary for each structure Sk

with respect to the count of the vertices that

contributing the join to result Sk and the count of all

possible combinations.

Table. 2. A summary for Structure Si

https://kjis.journals.ekb.eg/

Figure 6. The Final Summary Graph, HS

At this moment, for the summary graph HS =

(VS,ES), we can label each edge eS= (vS(pi), v
S(pj)) ∈

ES with the pair (k, l) where k is the index of the

produced structure and l is the index of the used

combination. For instance, if we label eS with (5, 3)

then this means that the edge eS with the two virtual

vertices vS(pi) ∈ VS and vS(pj) ∈ VS constructed the

structure S5 that produced using the third possible

combination. By this, the summary graph HS

conserves all characteristics of the original graph H. In

other word, we can decode HS to get H with lossless

way. Figure 6 shows the final form of the summary

graph that reported in Figure 4. From Definition 4.2,

we have |VS| = |P|. Since each path p ∈ P contains two

edges, then |P| = |E|/2. In other words, the count of

virtual vertices in HC equals to the half of the count

edges in H, formally, |VC| = |E| / 2. While the count of

edges in HC, |EC| is based on the joins among paths in

P. Algorithm 2 outlines our method, DJ_Paths, for

summarizing a given graph H.

In the experimental evaluation section, we will

show the better summarization of DJ_Paths against

the state-of-art algorithm (Slugger) on many real

datasets. To achieve this, we used the compression

ratio to measure how well the graph is summarized.

Here, the larger compression ratio is the better

summarization we have. The compression ratio

equations of the two methods are as follows.

 – In our proposed method, DJ_Paths, the

compression ratio calculated by dividing |V| +

|E| (before summarization) with |VS| + |ES|

(after summarization). For instance, from Figure

2, the count of vertices and edges in H are 6 and

6 respectively (i.e. |V| + |E| = 12). While, from

Figure 6, the count of vertices and edges in HS

are 3 and 3 respectively (i.e. |VS| + |ES| = 6).

Then the compression ratio is (|V| + |E|) / (|VS|

+ |ES|) = 12 / 6 = 2.

– In Slugger method, the compression ratio

calculated by (|V| + |E|) / (|V| + |P+| + |P−|

+ |H|) = (6+6) / (6 + 6 + 0 + 0) = 12 / 12 =

1.

Here, our method DJ_Paths achieves the best

summarization which has the higher compression

ratio.

Algorithm 2: DJ_Paths (H)

Input: Graph H = (V, E).

Output: The summarized graph HS = (VS,ES).

1. P = Construction Disjoint Paths(H) // Algorithm 1

2. Construct |P| virtual vertices for HS (i.e. |VS| = |P|)

such that ∀ pm ∈ P we have vS(pm) ∈ VS and vS(pm)

= f(pm)

3. for i = 1 to |VS|

4. for j = i + 1 to |VS|

5. if f−1(vS(pi)) = pi and f−1(vS(pj)) = pj are joinable

6. Construct the edge eS = (vS(pj) , vS(pj))

where eS ∈ ES

7. Label eS with the pair (k, l), where k is

theindex of the resulted structure when

joining pi and pj and l is the index of the

used combination.

8. return HS

5. EXPERIMENTAL EVALUATION

This section shows the results of experiments on

four real datasets. We compare the performance of

DJ_Paths against Slugger algorithm [9]. The code of

Slugger was downloaded from

https://github.com/KyuhanLee/slugger. We used

Slugger for comparison since it outperforms the four

algorithms in [15, 16, 1, 7].

 DJ_Paths is implemented in standard C++ with

STL library support and compiled with GNU GCC.

Experiments were run on laptop with Intel i3 2.4 GHz

and 8G memory running Linux. In next section, we

demonstrates the datasets.

5.1. Datasets

Experimental evaluation are performed on a set of

real datasets as follows. We used four real datasets as

follows.

https://kjis.journals.ekb.eg/

-AIDS: https://wiki.nci.nih.gov/display/NCIDTPdata

-Chemical: https://pubchem.ncbi.nlm.nih.gov/

-Protein: https://fki.tic.heia-fr.ch/databases/iam-graph-

database

-Enzymes: https://networkrepository.com/networks.php

 For the first three datasets, we select from each

dataset five graphs, namely G1, G2, G3, G4, and G5

where the average number of vertices in these datasets

is 153, 124, and 80 respectively and the average

number of edges in these datasets is 155.2, 126.4, and

100 respectively. For the fourth dataset, we select

three graphs, namely G1, G2, and G3 where the average

number of vertices in this dataset is 103.33 and the

average number of edges in this dataset is 128.66.

5.2. Performance of DJ_Paths Against Slugger

The proposed method, DJ_Paths is evaluated

according to the following criteria:

1. Compression Ratio: To measure how well the

graph is summarized using DJ_Paths.

2. Total Response Time: To measure the efficiency

of DJ_Paths.

3. Memory Usage: To show the memory

consumption of DJ_Paths.

5.2.1. Compression Ratio

Figure 7 shows the compression ratio of the two

methods (DJ_Paths and Slugger) on the four real

datasets. Recall, the larger compression ratio is the

better summarization we have. DJ_Paths shows a

better compression ratio in all datasets. It achieves up

to 2× better compression than Slugger.

5.2.2. Total Response Time (MSec)

Figure 8 shows the total response time (MSec) of

the two algorithms (DJ_Paths and Slugger) on the four

real datasets. DJ_Paths has the best execution time on

the most datasets. It outperforms Slugger by more

than one order of magnitude. For example, with G1 in

Enzymes dataset, DJ_Paths takes only 41 MSec while

Slugger takes 476 MSec. Except G2 and G3 in AIDS

dataset, Slugger outperforms DJ_Paths by

approximately two factors. For example, with G3 in

AIDS dataset, DJ_Paths takes 651 MSec while

Slugger takes 383 MSec. Also, at G3 and G5 in

Chemical dataset, Slugger outperforms DJ_Paths by

approximately 1.5 factors.

5.2.3. Memory Usage (MB)

Figure 9 shows the memory consumption in MB

of the two algorithms (DJ_Paths and Slugger) on the

four datasets. This figure plots the peak of the

memory consumption during execution (the

memusage command in Linux was used for measure).

At all four real datasets, we can note that Slugger

generally has more than 8× higher memory

consumption than DJ_Paths. In other words, DJ_Paths

has the best memory consumption on all datasets. For

example, with G1 in Enzymes dataset, the memory

consumption of DJ_Paths is 2.14 MB while the

memory consumption of Slugger is 17.22 MB.

6. CONCLUSIONS

In this paper, we focus on the graph

summarization task. Here, we propose a new

algorithm for graph summarization called DJ_Paths.

DJ_Paths is edge grouping-based method. It replaces

the set of disjoint paths with size two in the given

graph by a set of virtual nodes. In other words, our

summary graph contains a set of virtual nodes and a

set of virtual edges that represent the connections

among virtual nodes. Note that, this summary

conserves all characteristics of the original graph.

Experimental results show that DJ_Paths has the best

performance compared the state-of-the-art method

(Slugger) in terms of compression ratio, total response

time, and memory usage. As future work, we plan to

adapt DJ_Paths method for subgraph search problem

and similarity search problem.

Acknowledgments

I wish to express my deep gratitude to my mentor

Prof Dr. Karam Gouda. I am very grateful to my

parents, my wife, my brother, and my sisters for their

continuous moral support and encouragement.

Conflicts of Interest

The author declares that I don’t have any conflict

of interest regarding this article.

https://wiki.nci.nih.gov/display/NCIDTPdata
https://pubchem.ncbi.nlm.nih.gov/
https://fki.tic.heia-fr.ch/databases/iam-graph-database
https://fki.tic.heia-fr.ch/databases/iam-graph-database
https://networkrepository.com/networks.php

https://kjis.journals.ekb.eg/

Figure 7. Compression Ratio

Figure 8. Total Response Time (MSec)

https://kjis.journals.ekb.eg/

Figure 9. Memory Usage (MB)

REFERENCES

[1] Beg, M., Ahmad, M., Zaman, A. & Khan, I.

(2018). Scalable approximation algorithm for graph

summarization. Proc. of PAKDD.

https://doi.org/10.1007/978-3-319-93040-4_40
[2] Cai, D., Shao, Z., He, X., Yan, X., & Han, J.

(2005) Community mining from multi-relational

networks. Proc. of PKDD.

[3] Chang, L., Feng, X., Yao K., Qin, L. & Zhang, W.

Accelerating Graph Similarity Search via Efficient

GED Computation (2022). IEEE Trans. Knowl. Data

Eng. . https://doi.org/10.1109/TKDE.2022.3153523.

[4] Gouda, K. & Hassaan, M. (2013). Compressed

feature-based filtering and verification approach for

subgraph search. Proc. of EDBT.

https://doi.org/10.1145/2452376.2452411

[5] Gouda, K. & Hassaan, M. (2019). A novel edge-

centric approach for graph edit similarity

computation. Information Systems 80, 91–106.

https://doi.org/10.1016/j.is.2018.10.003

[6] Khan, K. U., Nawaz, W. & Lee, Y., -K. (2015).

Set-based approximate approach for lossless graph

summarization. Computing, 97(12), 1185–1207.

https://doi.org/10.1007/s00607-015-0454-9

[7] Ko, J., Kook, Y. & Shin, K. (2020). Incremental

lossless graph summarization. Proc. of KDD.

https://doi.org/10.1145/3394486.3403074

[8] Lee K., Jo H., Ko J., Lim S. & Shin K. (2020).

Ssumm: Sparse summarization of massive graphs.

Proc. of KDD.

https://doi.org/10.1145/3394486.3403057

[9] Lee, K., Ko, J. & Shin, K. (2022). SLUGGER:

Lossless Hierarchical Summarization of Massive

Graphs. Proc. of ICDE.

[10] LeFevre, K. & Terzi, E. (2010). Grass: Graph

structure summarization. Proc. of SDM.

[11] Licheri, N., Bonnici, V., Beccuti, M. & Giugno

R. (2021). GRAPES-DD: exploiting decision

diagrams for index-driven search in biological graph

databases. BMC Bioinformatics 22, 209.

https://doi.org/10.1186/s12859-021-04129-0

[12] Lim, Y., Kang, U. & Faloutsos, C. (2014).

SlashBurn: Graph compression and mining beyond

caveman communities. IEEE Trans. Knowl. Data

Eng. 26(12), 3077–3089.

https://doi.org/10.1109/TKDE.2014.2320716

[13] Liu, Y., Safavi, T., Dighe, A. & Koutra, D.

(2018). Graph summarization methods and

applications: A survey. CSUR, 51(3), 1–34.

https://doi.org/10.1145/3186727

https://doi.org/10.1109/TKDE.2022.3153523
https://doi.org/10.1145/2452376.2452411
https://doi.org/10.1016/j.is.2018.10.003
https://doi.org/10.1145/3394486.3403074
https://doi.org/10.1145/3394486.3403057
https://doi.org/10.1186/s12859-021-04129-0
https://doi.org/10.1109/TKDE.2014.2320716

https://kjis.journals.ekb.eg/

[14] Maccioni, A. & Abadi, D., J. (2016). Scalable

pattern matching over compressed graphs via

dedensification. Proc. of KDD.

https://doi.org/10.1145/2939672.2939856

[15] Navlakha, S., Rastogi, R. & Shrivastava, N.

(2008). Graph summarization with bounded error.

Proc. of SIGMOD.

[16] Shin, K., Ghoting, A., Kim, M. & Raghavan, H.

(2019). Sweg: Lossless and lossy summarization of

web-scale graphs. Proc. of WWW.

https://doi.org/10.1145/3308558.331340

[17] Willett, P. (1998). Chemical similarity searching.

J. Chem. Inf. Computer Science, 38(6).

https://doi.org/10.1021/ci9800211

[18] Zhou, H., Liu, S., Lee, K., Shin, K., Shen, H. &

Cheng X. (2021). Dpgs: Degree-preserving graph

summarization. Proc. of SDM.

https://doi.org/10.1109/HPEC49654.2021.9622846

https://doi.org/10.1145/2939672.2939856
https://doi.org/10.1021/ci9800211
https://doi.org/10.1109/HPEC49654.2021.9622846

