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Abstract: Graphs are widely used to model many real-world data in many application domains such as chemical 

compounds, protein structures, gene structures, metabolic pathways, communication networks, and images entities. Graph 

summarization is very important task which searching for a summary of the given graph. There are many benefits of the 

graph summarization task which are as follows. By graph summarization, we reduce the data volume and storage as much as 

possible, speedup the query processing algorithms, and apply the interactive analysis. In this paper, we propose a new graph 

summarization method based on the compactness of disjoint paths. Our algorithm called DJ_Paths. DJ_Paths is edge-

grouping technique. The experimental results show that DJ_Path outperforms the state-of-the-art method, Slugger, with 

respect to compression ratio (It achieves up to 2x better compression), total response time (It outperforms Slugger by more 

than one order of magnitude), and memory usage (It is 8x less memory consumption). 
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1. INTRODUCTION 
Graphs are non-linear data structures that represent 

many real-world data such as chemical compounds 
[17], protein structures, gene structures, metabolic 
pathways, communication networks, social networks 
[2], citation networks, transaction networks, and images 
entities.  For instance, Figure 1 shows the graphs that 
have been used to represent many complex data types 
as follows. Figure 1(a), Figure 1(b), Figure 1(c), and 
Figure 1(d) show the representation of protein 
structure, metabolic pathway, chemical compound, and 
gene structure respectively.  

Figure 1. Representations of Graph Data 

 

There are different meaning of the vertices and the 

edges of the given graph when this graph model 

different types of data as follows. 

 In protein structure, the vertices represent the 

amino acids in the protein structure while the 

edges represent the strength of the non-covalent 

interactions between two amino acids. 

 In Metabolic pathway, the vertices is a set of 

enzymes, reactions and chemicals while the 

edges represent the connections between them. 

 In chemical compound, the vertices represent 

the atoms while the edges represent the bonds 

between the atoms. 

 In gene structure, the vertices represent the gene 

products (mRNA transcripts) while the edges 

represent the pairwise relationships between 

genes products. 

 

     In this paper, we focus on the graph summarization 

problem. The objective of this problem is searching 

for a compact representation of the given graph which 

called the summary. This summary allows us to 

decrease the footprint of the graph and query [4, 11, 5, 

3] in efficient way. In other words, Graph 

summarization has many benefits such as reduction of 

data volume and storage, speedup of graph algorithms 

and queries, and interactive analysis support. 
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There are two types of graph summarizations 

which are lossless graph summarization [9, 15, 6, 16] 

and lossy graph summarization [10, 8, 18]. In this 

paper, we focus on the lossless graph summarization 

which can reconstruct the original from summary. 

Here, we propose an efficient method to reduce the 

number of edges with lossless. This method based on 

the edge-merging technique which merges the edges 

in the given graph into virtual nodes. There are many 

challenges to use efficient method to summarize 

graphs in lossless way as follows. 

1. Efficient summarized representation is essential  

since the memory is not free and there are 

tradeoffs between the fast compression and the 

efficiency of the space. 

   2. Real graphs are already highly compressible. 

 

Our new method for summarizing graphs denoted 

as DJ_Paths which uses the DisJoint Paths to 

summarize the given graphs in efficient way. Here, we 

set the size of disjoint paths to two, i.e. each disjoint 

path contains only two edges. Then, we replace each 

disjoint path of size two by its corresponding virtual 

node. i.e., our summary contains a set of virtual nodes 

and virtual edges which represent the connections 

among virtual nodes. Details about disjoint paths are 

discussed in Definition 3.1 and Example 3.1. Our 

experiments on four real datasets show that DJ_Paths 

has the best performance compared to the state-of-the-

art algorithm, Slugger [9], in terms of compression 

ratio, total response time and memory consumption. 

 

Organization. This paper is organized as follows. 

Section 2 presents the preliminary concepts. Section 3 

reports the related work. Section 4 discusses the 

proposed algorithm. Section 5 reports the 

experimental results. Finally, Section 6 concludes the 

paper. 

2. PRELIMINARY CONCEPTS 

As a general data structure, labeled graph is used to 

model complex structured. In labeled graph, vertices 

and edges represent entities and their relationships, 

respectively. Below, the terminology that used in this 

paper is discussed. 

 

Definition 2.1. (Labeled Graph) 

A labeled graph G is defined as a 4-tuple <VG,EG, LG, 

lG>, where VG is the set of vertices (nodes), EG is the 

set of edges, LG is the labels set, and lG is a function 

that maps each vertex or edge to a label in LG. 

 
The edges count (|EG|) in the given graph G is called 

its size. 

 
Definition 2.2. (Path) 

A path from a vertex v1 to a vertex vk in a labeled 

graph G is a sequence of vertices in the following 

order:  < v1, v2, v3, . . .vk−1, vk  > such that ∀ vi−1 and vi  

we have (vi−1, vi) ∈ EG. 

 
Definition 2.3. (Vertex Neighborhood) 

Given a graph G, the neighborhood of u ∈ VG is the 

set NG(u) = {v ∈ VG | (u, v) ∈ EG}. 

 
The degree of a vertex v ∈ VG is defined as deg(v) = 

|NG(v)|. 

 
Problem Definition: Given graph H(V, E), the 

objective is to search for a summary graph HS(VS, ES) 

of H such that HS conserves all characteristics of H 

and  the size of HS is sharply less than the size of H. 

3. RELATED WORK 

  Recall, there are two types of graph 

summarizations which are lossless graph 

summarization [9, 15, 6, 16] and lossy graph 

summarization [10, 8, 18]. In lossless graph 

summarization, we enable to reconstruct the original 

graph while in lossy graph summarization, we do not 

enable to reconstruct the original graph. In this paper, 

we focus on lossless graph summarization. Many 

methods have been proposed for lossless graph 

summarization. These methods are divide into two 

categories. The first category is the grouping-based 

category (which contains edge-grouping methods and 

node-grouping methods) and the second category is 

the bit compression-based category. We discuss these 

categories in details as follows. 

 

In node-grouping methods, some methods apply 

clustering techniques to catch a clusters that will be 

mapped to supernodes. Others recursively merge 

nodes into supernodes, which connected via 

superedges. This is done based on the function of 

application-dependent optimization. In Randomized 

[15] repeats (a) randomly catching a vertex v and (b) 

merging the vertex v with a vertex in the 2-hop 



https://kjis.journals.ekb.eg/  

neighborhood of v such that the cost of encoding is 

minimized. 

 

The authors of Slugger [9] proposed hierarchical 

graph summarization model, which is an expressive 

graph representation model that contains the previous 

one [15]. This model represents an unweighted graph 

via positive edges (P+) and negative edges (P−) among 

hierarchical supernodes (S), each of which can include 

others. In this algorithm, given the graph G(V, E), the 

objective of this method is searching for hierarchical 

graph summarization model M(S, P+, P−, H) with 

minimum cost. For more details about S, P+, P−, and H 

(set of hierarchy edges among supernodes), please see 

[9]. 

  SWeG [16] improves Randmomized [15] by 

adding a dividing phase that divides the vertices into 

smaller groups prior to merging and proposing an 

approximation metric for catching the vertices to 

merge. Another method called SAGS [6] selects the 

vertices to be merged via the locality sensitive 

hashing. 

 

  In edge-grouping methods, edges are merged to 

virtual nodes to minimize the number of edges in a 

graph in lossless way. For instance, the authors of [14] 

present a dedensification method (edge-grouping-

based method) that compresses the neighbourhood 

around high-degree vertices in lossless way. They 

proposed a query processing technique over the 

compressed graph without decompressing the graph. 

 

  In bit compression-based category, the objective 

is to minimize the count of bits needed to describe the 

given graph, where the summary graph includes the 

model of the given graph and its unmodeled pieces. 

For instance, SlashBurn [12] proposed for this 

category. At beginning, it searches for a nodes that 

connected with many edges which called hubs. Then, 

it removes these hubs to result in catching a large 

connected subgraphs which called spokes. At end, 

based on the hubs and spokes, it gains a good 

compression by resorting and transforming the 

representation of the adjacency matrix of the graph. 

 

More details about these methods are reported in 

the survey [13]. 

4. PROPOSED ALGORITHM 

In this section, we propose new algorithm called 

DJ_Paths for summarizing graphs using disjoint paths. 

At beginning, we define the disjoint paths (disjoint 

paths  appeared in our previous paper [4]) and discuss 

how construct them from a given graph. 

 

Definition 4.1. (Disjoint Paths)  

Paths in a given graph H are disjoint if they are edge 

disjoint only. 

 

Setting the size of disjoint paths is very important 

step. Therefore, we should be carefully when set this 

size. In this paper, we set the size of disjoint paths to 

two, i.e. each disjoint path contains only two edges. 

The reasons of selection this size are as the follows. 

 

     1. In any graph H, the number of compact disjoint 

paths with size two in H is known which is |EH| / 

2  if  |EH| is even otherwise it is (|EH| - 1) / 2 as 

we will see. 

     2. When we join two disjoint paths with size two 

that are connected by some nodes in the given 

graph, the result is one of five distinct 

substructures only. Note that, large size of these 

disjoint paths, the more of these distinct 

substructures. If the number of these distinct 

substructures is increased, this will lead to poor 

summarization. 

For abbreviation, each following disjoint path has 

size two namely, pk and we denote the set of all 

disjoint paths of size two in a given graph as P. 

Now, we discuss how construct the disjoint paths 

from a given graph as follows. We propose an 

efficient method to construct the disjoint paths from a 

given graph. In this method, we iteratively remove 

one disjoint path from the given graph such that the 

remaining graph is connected. This iteration process 

terminates when the remaining graph is empty or the 

remaining graph has only one edge. Algorithm 1 

outlines this method.  

 

 

Theorem 4.1.  
The proposed method for constructing the disjoint 

paths returns a compact set of disjoint paths with size 

two. 
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Algorithm 1: Constrution Disjoint Paths (H) 

Input: Graph H. 

Output: The set of disjoint paths, P and each pk ∈ P 

with size two. 

1. while (∃ pk ∈ H such that H \ pk is connected)    

     // pk is a disjoint path with size two. 

2.     P = P ∪ pk 

3.     H = H \ pk       // The remaining graph 

4. if H != NULL   // i.e. This case occurs when H has 

only one edge, e. 

5.     Store the edge e. 

6. return P 

                 

  The set of disjoint paths is compact when the size 

of the set of disjoint paths is maximized as possible. 

In other words, we divide the graph into a set of 

disjoint paths of size two with one edge (This occurs 

when the size of the given graph is odd) or without 

any edge (This occurs when the size of the given 

graph is even). See next example. 

 

 
Figure. 2. Running Example (Graph H) 

 

Example 4.1. Given the graph H in Figure 2. Based 

on our construction method, the disjoint paths of H 

and the remaining graphs are listed in Table 1. In this 

case, there are three iterations and the set of disjoint 

paths is compact since it contains three disjoint paths 

i.e. |P| = 3 (maximum value). In contrast, if we 

remove the disjoint path <w2,w3,w5> from H in the 

first iteration, then the remaining graph is 

disconnected as in Figure 3(a). In the second iteration, 

we can remove the disjoint path <w2,w4,w3> from H, 

then the remaining graph is also disconnected as in 

Figure 3(b). The second iteration is last one since the 

remaining graph contains two disconnected edges. In 

other words, it has not any disjoint path of size two. In 

this case, the set of disjoint paths is not compact since 

it contains two disjoint paths only i.e. |P| = 2. Here, in 

this inefficient case, we store two remaining edges. 

Note that, in the first case (the efficient one that based 

on Algorithm 1), we do not store any edges since the 

size of graph H is even (it has six edges). 

 
 

Table 1. The Set of Compact Disjoint Paths of the Graph H 

 
 
 

 

 
Figure. 3. Two Disconnected Remaining Graphs 

 

In previous, we constructed the set of disjoint 

paths of size two (P) of a given graph H that based on 

Algorithm 1. Thereafter, we discuss how summarize 

the graph H(V, E) into its summary graph denoted as 

HS(VS, ES) with respect to P with lossless way as 

follows. 

In the first phase (Construction the vertices of HS, 

VS), we replace each disjoint path pk ∈ P with its 

corresponding virtual vertex denoted as vS(pk) in the 

summary graph, HS. Note that, we should preserve the 

connections in the summary graph to enable us to 

conserve all characteristics of the original graph as 

we see in the second phase. 

In the second phase (Construction the edges of HS, 

ES), if we have two disjoint paths pi and pj ∈ P such 

that pi and pj are joint with some vertices in H. Then 

their corresponding virtual vertices vS(pi) and vS(pj) ∈ 

VS  will be connected with an edge eS ∈ ES. 

Definition 4.2 outlines the previous two phases for 

summarizing the graph H. 



https://kjis.journals.ekb.eg/  

Definition 4.2. (The Summary Graph HS) 

Given graph H(V,E) with disjoint path set P. The 

summary graph of H is HS(VS,ES) where VS = { f(pk) ∀ 

pk ∈ P } where f is a function that maps each pk to its 

corresponding virtual vertex f(pk) = vS(pk) (i.e. |VS| = 

|P|) and ES = { eS ∀ eS = (vS(pi), vS(pj)) such that 

f−1(vS(pi)) and  f−1(vS(pj)) are joinable }. 

Example 4.2 Given the graph H in Figure 1. Recall, 

there are three disjoint paths of H which are p1=< 

w1,w2,w3>,   p2=< w2,w4,w3>, and p3=< w3,w5,w6>. 

Since we have three disjoint paths in H then there are 

also three virtual vertices in HS (According to 

Definition 4.2). In other words, VS = { vS(p1)  , v
S(p2), 

vS(p3) }. Note that p1, p2, and p3 are joinable to each 

other. Then, there are three edges in HS. In other 

words, ES = {e1
S , e2

S , e3
S} where e1

S = (vS(p1), v
S(p2)),  

e2
S = (vS(p1), vS(p3)), and e3

S = (vS(p2)  , vS(p3)). The 

summary graph of H (HS) is shown in Figure 4. 

 

Figure 4. The Summary Graph, HS 

 

Note that, the join between any two disjoint paths 

in H will produce a subgraph g with size equals to 4. 

The subgraph g has five possible distinct structures 

namely, S1, S2, S3, S4, and S5. For simplicity, we draw 

these structures without labels, see Figure 5. 

To conserve all characteristics of the original 

graph, we should do the following. The edge eS = 

(vS(pi), vS(pj)) ∈ ES will represent the structure that 

will be produced when joining pi and pj. Therefore, we 

associate with each eS a number k that represents the 

resulted structure Sk where 1 ≤ k ≤ 5. At the same 

time, the edge eS must determine which vertices 
in V (at most two vertices) contributing the join 

between pi and pj. For more details, see the following. 

Figure 5. The Five Distinct Structures with Size Four 

 

For each disjoint path pt ∈ P, we label its three 

vertices as left vertex, middle vertex, and right vertex 

namely, wl
t, w

m
t,, and w

r
t respectively. Next, we discuss 

all possible joins between any two disjoint paths pi = 

< wl
i, w

m
i,, w

r
i > and pj= < wl

j, w
m

j,, w
r
j> to result Sk 

where 1 ≤ k ≤ 5. Recall, the count of vertices that 

contributing the join is at most two as we will see. 

For the first three structures S1, S2, and S3, only 

one vertex contributing the join between pi and pj . 

Next, we determine this vertex for each structure. 

– In S1, the vertex wm
i = w

m
j  contributing the join 

between pi and pj. Then there is only one 

possible combination. 

 

– In S2, the vertex wm
i = w

l
j   or  wm

i = w
r
j   or  wl

i = 

wm
j   or   wr

i = w
m

j  contributing the join between 

pi and pj . Then there are four possible 

combinations. 

 

– In S3, the vertex wl
i = w

l
j   or  wl

i = w
r
j  or  wr

i = w
l
j   

or wr
i = w

r
j  contributing the join between pi and 

pj . Then there are four possible combinations. 

 

While for the last two structures S4 and S5, two 

vertices contributing the join between pi and pj. Next, 

we determine these vertices for each structure. 

– In S4, the two vertices wl
i = w

l
j  and wr

i = w
r
j  (or 

wl
i = wr

j  and wr
i = wl

j  ) contributing the join 

between pi and pj. Then there are two possible 

combinations. 

 

– In S5, the two vertices wr
i = w

r
j  and wl

i = w
m

j  (or 

wl
i = w

r
j  and wr

i = w
m

j or wr
i = w

m
j  and wl

i = w
l
j  or 

wl
i = w

m
j  and wr

i = w
l
j  or wr

i = w
l
j  and wm

i = w
r
j  or 

wr
i = w

r
j  and wm

i = w
l
j  or wm

i = w
l
j  and wl

i = w
r
j  or 

wm
i = wr

j  and wl
i = wl

j  ) contributing the join 

between pi and pj. Then there are eight possible 

combinations. 

Table 2 contains a summary for each structure Sk 

with respect to the count of the vertices that 

contributing the join to result Sk and the count of all 

possible combinations. 

Table. 2. A summary for Structure Si 
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Figure 6.  The Final Summary Graph, HS 

 

At this moment, for the summary graph HS = 

(VS,ES), we can label each edge  eS= (vS(pi), v
S(pj)) ∈ 

ES with the pair (k, l) where k is the index of the 

produced structure and l is the index of the used 

combination. For instance, if we label eS with (5, 3) 

then this means that the edge eS with the two virtual 

vertices vS(pi) ∈ VS and vS(pj) ∈ VS constructed the 

structure S5 that produced using the third possible 

combination. By this, the summary graph HS 

conserves all characteristics of the original graph H. In 

other word, we can decode HS to get H with lossless 

way. Figure 6 shows the final form of the summary 

graph that reported in Figure 4. From Definition 4.2, 

we have |VS| = |P|. Since each path p ∈ P contains two 

edges, then |P| = |E|/2. In other words, the count of 

virtual vertices in HC equals to the half of the count 

edges in H, formally, |VC| = |E| / 2. While the count of 

edges in HC, |EC| is based on the joins among paths in 

P. Algorithm 2 outlines our method, DJ_Paths, for 

summarizing a given graph H. 

 

In the experimental evaluation section, we will 

show the better summarization of DJ_Paths against 

the state-of-art algorithm (Slugger) on many real 

datasets. To achieve this, we used the compression 

ratio to measure how well the graph is summarized. 

Here, the larger compression ratio is the better 

summarization we have. The compression ratio 

equations of the two methods are as follows. 

       – In our proposed method, DJ_Paths, the 

compression ratio calculated by dividing |V|  + 

|E| (before summarization) with |VS| + |ES| 

(after summarization). For instance, from Figure 

2, the count of vertices and edges in H are 6 and 

6 respectively (i.e. |V| + |E| = 12). While, from 

Figure 6, the count of vertices and edges in HS 

are 3 and 3 respectively (i.e. |VS| + |ES|  = 6). 

Then the compression ratio is (|V| + |E|) / (|VS| 

+ |ES|) = 12 / 6 = 2. 

– In Slugger method, the compression ratio 

calculated by (|V| + |E|) / (|V| + |P+| + |P−| 

+ |H|) = (6+6) / (6 + 6 + 0 + 0) = 12 / 12 = 

1. 

Here, our method DJ_Paths achieves the best 

summarization which has the higher compression 

ratio.  

 
Algorithm 2: DJ_Paths (H) 

Input: Graph H = (V, E). 

Output: The summarized graph HS = (VS,ES). 

1. P = Construction Disjoint Paths(H)   // Algorithm 1 

2. Construct |P| virtual vertices for HS (i.e. |VS| = |P|) 

such that ∀ pm  ∈ P we have vS(pm) ∈ VS and vS(pm) 

= f(pm) 

3. for i = 1 to |VS| 

4.    for j = i + 1 to |VS| 

5.       if f−1(vS(pi)) = pi and f−1(vS(pj)) = pj   are joinable  

6.           Construct the edge eS = (vS(pj) , vS(pj))  

where eS ∈ ES 

7.            Label eS with the pair (k, l), where k is 

theindex of the resulted structure when  

joining pi and pj  and l is the index of the 

used combination. 

8. return HS 

 

5. EXPERIMENTAL EVALUATION 

This section shows the results of experiments on 

four real datasets. We compare the performance of 

DJ_Paths against Slugger algorithm [9]. The code of 

Slugger was downloaded from 

https://github.com/KyuhanLee/slugger. We used 

Slugger for comparison since it outperforms the four 

algorithms in [15, 16, 1, 7]. 

      DJ_Paths is implemented in standard C++ with 

STL library support and compiled with GNU GCC. 

Experiments were run on laptop with Intel i3 2.4 GHz 

and 8G memory running Linux. In next section, we 

demonstrates the datasets. 

 

5.1. Datasets 

Experimental evaluation are performed on a set of 

real datasets as follows. We used four real datasets as 

follows. 
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-AIDS: https://wiki.nci.nih.gov/display/NCIDTPdata 

-Chemical: https://pubchem.ncbi.nlm.nih.gov/ 

-Protein: https://fki.tic.heia-fr.ch/databases/iam-graph-

database 

-Enzymes: https://networkrepository.com/networks.php  
 

   For the first three datasets, we select from each 

dataset five graphs, namely G1, G2, G3, G4, and G5 

where the average number of vertices in these datasets 

is 153, 124, and 80 respectively and the average 

number of edges in these datasets is 155.2, 126.4, and 

100 respectively. For the fourth dataset, we select 

three graphs, namely G1, G2, and G3 where the average 

number of vertices in this dataset is 103.33 and the 

average number of edges in this dataset is 128.66. 

 

5.2. Performance of DJ_Paths Against Slugger 

The proposed method, DJ_Paths is evaluated 

according to the following criteria: 

 

1. Compression Ratio: To measure how well the 

graph is summarized using DJ_Paths. 

2. Total Response Time:  To measure the efficiency 

of DJ_Paths. 

3. Memory Usage:  To show the memory 

consumption of DJ_Paths. 

5.2.1. Compression Ratio 

Figure 7 shows the compression ratio of the two 

methods (DJ_Paths and Slugger) on the four real 

datasets. Recall, the larger compression ratio is the 

better summarization we have. DJ_Paths shows a 

better compression ratio in all datasets. It achieves up 

to 2× better compression than Slugger. 

5.2.2. Total Response Time (MSec) 

Figure 8 shows the total response time (MSec) of 

the two algorithms (DJ_Paths and Slugger) on the four 

real datasets. DJ_Paths has the best execution time on 

the most datasets. It outperforms Slugger by more 

than one order of magnitude. For example, with G1 in 

Enzymes dataset,  DJ_Paths takes only 41 MSec while 

Slugger takes 476 MSec.  Except G2 and G3 in AIDS 

dataset, Slugger outperforms DJ_Paths by 

approximately two factors. For example, with G3 in 

AIDS dataset,  DJ_Paths takes 651 MSec while 

Slugger takes 383 MSec. Also, at G3 and G5 in 

Chemical dataset, Slugger outperforms DJ_Paths by 

approximately 1.5 factors. 

5.2.3. Memory Usage (MB) 

Figure 9 shows the memory consumption in MB 

of the two algorithms (DJ_Paths and Slugger) on the 

four datasets. This figure plots the peak of the 

memory consumption during execution (the 

memusage command in Linux was used for measure). 

At all four real datasets, we can note that Slugger 

generally has more than 8× higher memory 

consumption than DJ_Paths. In other words, DJ_Paths 

has the best memory consumption on all datasets. For 

example, with G1 in Enzymes dataset, the memory 

consumption of DJ_Paths is 2.14 MB while the 

memory consumption of Slugger is 17.22 MB. 

6. CONCLUSIONS 

In this paper, we focus on the graph 

summarization task. Here, we propose a new 

algorithm for graph summarization called DJ_Paths. 

DJ_Paths is edge grouping-based method. It replaces 

the set of disjoint paths with size two in the given  

graph by a set of virtual nodes. In other words, our 

summary graph contains a set of virtual nodes and a 

set of virtual edges that represent the connections 

among virtual nodes. Note that, this summary 

conserves all characteristics of the original graph. 

Experimental results show that DJ_Paths has the best 

performance compared the state-of-the-art method 

(Slugger) in terms of compression ratio, total response 

time, and memory usage. As future work, we plan to 

adapt DJ_Paths method for subgraph search problem 

and similarity search problem.  
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Figure 7.  Compression Ratio 

 

 

 

 

 

 

 

 

 

Figure 8.  Total Response Time (MSec) 
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Figure 9.  Memory Usage (MB) 
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