
An OWL-Based Ontology Structure for representing

Multimodel Process Improvement Framework

Abdel Nasser H. Zaied
Professor of Information Systems, College of Computer Science, Misr International University, Egypt

Abdelnasser.riad@miuegypt.edu.eg, nasserhr@gmail.com

Khalid A. Eldrandaly
Dean, College of Computers and Informatics, Zagazig University, Egypt

khalid_eldrandaly@zu.edu.eg, khalid_eldrandaly@yahoo.com

AlShaimaa A. Tantawy
Lecturer, Department of Information Systems, College of Computers and Informatics, Zagazig University, Egypt

AlshaimaaTantawy@zu.edu.eg, Tantawyalshaimaa@gmail.com

Abstract- Software and systems improvement requests to merge various interpretations from several improvement models

and techniques. A particular challenge is the multitude of models for requirements and quality, which can get time consuming

and error prone to trace, change, and verify. Lately, Ontologies have been used across several domains and for numerous

purposes to be applied for many applications. Besides, recent work in Artificial Intelligence is discovering the use of formal

ontologies as a way of identifying content-specific agreements for the sharing and reuse of knowledge among software entities.

Therefore, this paper describes how ontology engineering is used to construct an Ontological structure of the proposed SPI-

CMMI framework –which based on using Six sigma approach integrated with CMMI-Dev model and Quality Function

Deployment (QFD) technique- with its progressive phases, related activities, recommended tools and the CMMI-Dev 1.3

representation. The SPI-CMMI Ontology provides a shared improvement terminology, defines precise and unambiguous

semantics for the software enterprises and enables reuse of improvement phase’s knowledge; in addition it makes domain

assumptions explicit and separate domain knowledge from the operational knowledge.

Keywords: CMMI-Dev model, Multi-model environments, Ontology engineering, OWL, Six Sigma, Software Process

Improvement.

1. Introduction

The term ontology has its origin in philosophy, and

has been applied in several different behaviors. The

word "Ontology" comes from the Greek Ον (on),

which literally means entity. The core meaning

within computer science is a model for describing the

world that consists of a set of types, properties, and

relationship types. Ontology in common is the

representation of entities, ideas, and events, along

with their properties and relationships, according to a

system of categories [12]. Ontologies aim to capture

consensual information and knowledge within their

relationships in a generic and formal way, and that

they may be reused and shared across other

applications (or software programs) and by groups of

people in different locations for various purposes [1].

Contemporary ontologies share many structural

similarities, regardless of the language in which they

are expressed. Most Ontologies describe individuals

(instances), classes (concepts), attributes, relations,

function terms, restrictions, rules, events, and axioms.

Ontology languages are usually declarative

languages, generalizations of frame languages, and

based on either first-order logic or on description

logic. There are a number of such languages for the

ontologies' representation, both proprietary and

standards-based, such as; OBO, Common Algebraic

Specification Language, IDEF5, DOGMA, Web

Ontology Language (OWL), Rule Interchange

Format (RIF), SADL ...etc. [12].

The available international models, methodologies

and techniques for Software Process Improvement

(SPI) can be classified into two paradigms; the

benchmark and the analytical based process

improvement approaches. Benchmark based

approaches are prescriptive in nature, defining

requirements or advising a set of practices originating

from top performing organizations, that are adopted

by organizations aiming to improve their software

process. Analytical approaches are based on

strategies that aim first, to define business, process

and product objectives and then establish a clear

understating of the impact of process performance in

these objectives. A recent trend in SPI is the adoption

of more than one improvement model into a single

organizational environment, originating what are

denominated multi-model environments. The goal is

mailto:nasserhr@gmail.com
mailto:khalid_eldrandaly@yahoo.com
http://sadl.sourceforge.net/sadl.html

to achieve the cumulative added benefit of adopted

models [3].

With the aim of enhancing the capabilities of the SPI

models, especially the CMMI-Dev 1.3 model; [20]

adopted the improvement multi-model environment

through proposing a practical improvement

methodology which is called the proposed SPI-

CMMI framework that is based on integrating the

Six sigma approach (analytical toolkits, techniques

and methodology) and Quality Function Deployment

(QFD) technique within the CMMI-Dev v1.3 model.

The proposed systematic methodology helps the

organization to optimize and improve the existing

processes in addition to facilitating the adoption

process of the CMMI-Dev model, thus it is named

the proposed SPI-CMMI framework.

The combination significance is the mixture of their

best practices in a comprehensive improvement

strategy, that otherwise would not be possible to

obtain by a single technological approach. Therefore,

the SPI-CMMI framework fills in "what/how/why"

technologies combination which provides

theoretically what improvement processes should be

done to satisfy most of the critical stakeholders'

requirements and practically how the organization

and improvement processes can be executed

efficiently using the analytical toolkits, appropriate

techniques, and the detailed steps or action plans.

The purpose of the work presented in this article is

the development of an ontological structure of the

SPI-CMMI framework proposed in [20] for the

system and software improvement; As Ontologies

engineering are accepted in this research as means for

enabling the software organization, representing,

storage, querying and retrieval of knowledge used in

the SPI-CMMI in an organizational memory system.

They do so by defining a common understanding or

vocabulary between people and across a range of

applications. When models/standards are presented in

ontology, they gain the abilities of machine process

ability, share ability, and querying. Liao et al. [10]

presented the advantages of ontology use for process

modeling clearly. In addition, when both of process

reference models/standards and organizational

processes are represented by ontologies, they can

share the same concepts, be mapped to each other

and queried.

This paper is organized as follows. Section 2 presents

briefly the SPI-CMMI framework. In Section 3, the

related Literature Survey is displayed. The structure

of SPI-CMMI ontology is introduced in details in

Section 4. Finally, some conclusions and future work

are drawn in Section 5.

3 The SPI-CMMI Framework

The proposed SPI-CMMI framework will show how

to use Six Sigma methodology, toolkits, metrics and

QFD to meet CMMI-DEV v1.3 guidelines, to

incrementally improve the maturity of the software

development organization. It targets all companies

that develop software and seeking to make

improvements within their current software

development process using CMMI. The SPI-CMMI

framework contains ten phases illustrated briefly as

the following:

Phase-1: Improvement Project Initiation using Six

Sigma tools and metrics to evaluate the organization

current state, through determining the capabilities,

strengths, and weaknesses to specify where the

organization should start the improvement process.

Phase-2: Performance Management and Success

Metrics Derivation

It is very important for any process improvement

effort to determine which measures should be

specified in order to show improvement progress and

benefits. An important methodology for deriving

success metrics is the Goal-Question-Metric (GQM)

approach and the Dashboard document to track and

record the metrics.

Phase-3: Requirements Collection and

Prioritization Collecting the requirements from all

the stakeholders, developing a method based on QFD

and the priority assessment technique for the

integration and prioritization of requirements from

multiple perspectives; Customer, Business,

Management, Quality …etc.

Phase-4: CMMI Process Areas Prioritization

For each of the process categories in the CMMI

continuous representation (or for each maturity level

in the CMMI staged representation), the set of

requirements with adjusted priorities are related to

the specific PAs. The specific PAs are prioritized

based on those process requirements. Thus, the PAs

that achieve higher overall satisfaction of process

requirements get higher importance.

Phase-5: CMMI-Dev Specific Goal Prioritization

For each prioritized process area, the set of

requirements with adjusted priorities are related to

the specific goals. The specific goals are prioritized

based on those process requirements. Thus, the

specific goals that achieve higher overall satisfaction

of process requirements get higher importance.

Phase-6: Specific Practices Prioritization involves

the prioritization of Specific Practices within all PAs

of a specific maturity level (Staged CMMI) or within

all PAs of a specific process category (Continuous

CMMI). The prioritization is carried out on the basis

of the deliverables from Phase 5. According to

CMMI specifications, all these Specific Practices

have to be performed to reach that particular maturity

level.

Phase-7: Action Plans Derivation and

Prioritization, a set of actions is derived from the

prioritized practices. The priorities of actions reflect

the priorities of process requirements. By executing

the actions with the highest priorities, the highest

satisfaction level of process requirements can be

achieved.

Phase-8: Action Plans and Practices

Implementation. Using the appropriate Six sigma

tools, methods, techniques and suggested metrics in

applying the prioritized practices and action plans for

each process area, in order to ensure much more

successful implementation of the organization’s

CMMI specific goals and practices in accurate and

fast manner.

Phase-9: CMMI Capability Levels Interpretation.
Process capability deals with the how well defined

and managed the process is. Generic goals and

practices are those activities that ensure that the

process improvements identified will be effective

over the long term. They should be implemented to

all of the process areas within the CMMI. This phase

includes suggested activities and steps within the six

sigma methodology (DMAIC).

Phase-10: Capability Levels Activities

Implementation. Using the appropriate Six sigma

tools, methods, techniques and suggested metrics in

applying the suggested activities and steps for each

capability level, in order to ensure much more

successful implementation of the organization’s

CMMI generic goals and practices in precise and

managed manner.

Figure 1 summarizes the main progressive steps

suggested to be applied within the SPI-CMMI

framework in the software enterprise.

3. Literature Survey

There are only limited studies on CMMI ontology in

the literature, illustrated in the succeeding pieces.

Liao et al. 2005 produced an OWL-based ontology

for generic Software Process (SPO) and attempted to

ensure that it covered the requirements of both

CMMI and ISO/IEC 15504. His study indicated that

an organization’s process model could be represented

by using SPO and that a web-based process

assessment tool that used SPO has been under

development [10].

Soydan, and Kokar 2006 provided a short
description of Ontology for CMMI-SW. The

ontology was coded in a formal language, OWL.
Some test cases were used to assess the ontology
validity by means of an OWL reasoner to derive the
results [18]. Only staged representation was analyzed
whereas in this research, it is designed to meet the
requirements of both staged and continuous
representations.

Rungratri and Usanavasin 2008 proposed a

framework called ''CMMI v1.2 based Gap Analysis

Assistant Framework (CMMI-GAAF)'' to perform

automatic gap analysis with respect to CMMI. Also,

Project Assets Ontology (PAO) was created based on

CMMI ontology developed in [18] to merge CMMI

process areas and project assets [16].

Ferchichi et al. 2008 applied ontology to the

integration of ISO 9001:2000 and CMMI to generate

a multi-vues quality ontology allowing a double

certification relative to these two standards. This

work was especially carried out only within a

software engineering company (Sylis) [2].

Lee et al. 2008 proposed an ontology-based

intelligent estimation agent, including a CMMI-based

project planning ontology and a fuzzy cost estimation

mechanism, for the total project cost estimation.

Based on the information stored in the CMMI-based

project planning ontology predefined by domain

experts, the fuzzy cost estimation mechanism inferred

the total project cost and then stored the related

results to the project estimation repository [9].

Sharifloo, et al. 2008 introduced an ontology system

to represent the CMMI-ACQ v1.2 domain

knowledge. This ontology has been developed based

on Suggested Upper Merged Ontology (SUMO)

using SOU-KIF languages [17].

Lee et al. 2008 presented an ontology-based

intelligent decision support agent (OIDSA) to apply

to project monitoring and control of CMMI. The

OIDSA was composed of a natural language

processing agent, a fuzzy inference agent, and a

performance decision support agent. The OIDSA

could be work for only project monitoring and

control of CMMI [8].

Lee and Wang 2009 presented fan ontology-based

computational intelligent mutli-agent for CMMI

assessment. The system comprised a natural language

processing agent, an ontological reasoning agent, and

a summary agent to summarize the evaluation

reports. It was built based on process and product

quality assurance process area of CMMI [7].

Figure 1: The illustration of the SPI-CMMI phases and steps.

Phase1
Improvement

Project
Initiation

Phase2:
Success Metrics

Derivation

Phase3:
Requirements
Collection and
Prioritization

Phase4:
CMMI-DEV

Process
Areas

Prioritization

Phase5:
CMMI-DEV

Specific
Goals

Prioritization

Phase6:
CMMI-DEV

Specific
Practices

Prioritization

Phase7:
Action Plans
Derivation/

Prioritization

Phase9:
CMMI-DEV

Capability

Levels

Interpretation

Phase8:
Action Plans/

Specific

Practices
Implementation

Phase10:

Capability Levels

Activities and

Generic Practices

Implementation

Need to
improvement

Process
Capability

Six Sigma tools
and techniques

Six Sigma tools
and techniques

Improvement
Measures

QFD Technique

Six Sigma tools
and techniques

Requirements
from various
perspectives

Requirements

Priorities

QFD Technique

Six Sigma tools
and techniques

CMMI-DEV
Process Areas

Process Areas

Priorities

CMMI Maturity
Levels

(Staged Representation)

CMMI-DEV
Specific Goals

QFD Technique

Six Sigma tools
and techniques

0

CMMI-DEV
Specific Practices

Specific Goals

Priorities

QFD Technique

Six Sigma tools
and techniques

Specific Practices
Priorities

QFD Technique

Six Sigma tools
and techniques

Suggested
Activities

Action Plans

Priorities

Six Sigma tools
and techniques

CMMI Capability Levels
(Continuous Representation)
Generic goals and practices

Six Sigma
Methodology

(DMAIC)

Suggested
Activities

Suggested
Actions/plans

Six Sigma tools
and techniques

Pardo et al. 2012 presented ontology for the

harmonization of multiple models. It was supported

by a web tool and; had been applied for the

harmonization of COBIT 4.1, Basel II, VAL IT,

RISK IT, ISO 27002 and ITIL [13].

 Soydan, and Kokar 2012 presented a formalization

of CMMI-Dev model. The formalization was

expressed in OWL. This formalization aimed to be

consistent with CMMI-Dev and to be operational,

i.e., to allow for an automatic determination of a

development process maturity level based upon data

about the practices within a given organization. For

the formalization validity, a number of test cases for

the scenario of automatic determination of the

maturity level were developed [19].

Gazel et al. 2012 developed an ontology-based SPA

tool to support data collection phase of process

assessment and to track conformance of software

processes to CMMI as the process reference model.

Ontology-based CMMI Mapping and Querying Tool

(OCMQT) was developed as a plug-in to an open-

source process management tool, namely EPF

Composer which, was a realization of the process

engineering meta-model SPEM [4].

Mejia et al. (2016) presented an ontological

framework based on a multi-model approach, which

facilitates and supports the SPI for small and medium

companies for a life cycle process improvement.

They presented a case study to show the performance

of the framework [11].

4 The Structure of SPI-CMMI Ontology

4.1 OWL Ontology Language

The OWL ontology language from the World Wide

Web Consortium (W3C), with the Protégé editor is

selected for constructing the SPI-CMMI Ontology

according to the following reasons [6]:

 OWL language makes it possible to describe

concepts and provides new facilities. It has a

richer set of operators - e.g. intersection, union

and negation. It is based on a different logical

model which makes it possible for concepts to be

defined as well as described. Complex concepts

can therefore be built up in definitions out of

simpler concepts.

 Furthermore, the logical model allows the use of

a reasoner which can check whether or not all of
the statements and definitions in the ontology are

mutually consistent and can also recognize which

concepts fit under which definitions.

Subsequently, for the construction of the SPI-

CMMI ontology; the Protégé v3.5 (Build 663) is

selected as an ontology editor and knowledge-

base framework. Protégé is developed at the

Stanford Center for Biomedical Informatics

Research (BMIR) at the Stanford University

School of Medicine. The Protégé editor provides

the successive facilities [15]:

 Protégé is a free, open-source platform that

provides a growing user community with a suite

of tools to construct domain models and

knowledge-based applications with ontologies.

 Protégé can be customized to provide domain-

friendly support for creating knowledge models

and entering data that is because the Protégé

platform supports modeling ontologies via a web

client or a desktop client.

 Protégé implements a rich set of knowledge-

modeling structures and actions that support the

creation, visualization, and manipulation of

ontologies in various representation formats.

 Protégé ontologies can be developed in a variety

of formats including OWL, RDF(S), and XML

Schema.

 Protégé is based on Java, is extensible, and

provides a plug-and-play environment that makes

it a flexible base for rapid prototyping and

application development.

 Protégé is supported by a strong community of

developers and academic, government and

corporate users, who are using Protégé for

knowledge solutions in areas as diverse as

biomedicine, intelligence gathering, and

corporate modeling.

The Protégé platform supports two main ways of

modeling ontologies [4]:

 The Protégé-Frames editor enables users to

build and populate ontologies that are frame-

based, in accordance with the Open Knowledge

Base Connectivity protocol (OKBC). In this

model, ontology consists of a set of classes

organized in a hierarchy to represent a domain's

salient concepts, a set of slots associated to

classes to describe their relationships, and a set

of instances of those classes - individual

exemplars of the concepts that hold specific

values for their properties.

 The Protégé-OWL editor enables users to build

ontologies for the Semantic Web, in particular in

the W3C's Web Ontology Language (OWL).

"OWL ontology may include descriptions of

classes, properties and their instances. Given

such ontology, the OWL formal semantics

specifies how to derive its logical consequences.

The Ontology representation of the proposed SPI-

CMMI framework is constructed briefly according to

the subsequent steps:

 First, the proposed SPI-CMMI framework is

initially formalized as ontology that captures

the main concepts and properties of the SPI-

CMMI framework, according to the

interpretation of the ontology perception that is

used in knowledge representation. It is called

the SPI-CMMI Ontology.

 This ontology is then used to represent the ten

phases with their suggested activities of the

SPI-CMMI framework, QFD technique and the

six sigma approach with the full formalization

of the CMMI-Dev v1.3 model with its two

representations staged and continuous.

 In the next step, a generic OWL reasoner, the

built-in reasoners in protégé, Pellet1.5.2

reasoner [14], is used to verify the consistency

checking of the representation, concept

satisfiability, classification, and realization.

4.2 Naming Conventions in OWL Ontology

The naming style followed in constructing the SPI-

CMMI ontology is capitalization of class names; for

example; Phase_One, Success_Metrics, Maturity_

Levels, and ProcessArea_ML4, and object properties

names with low-case letters. For the Object

Properties (Relations connects between classes) in

SPI-CMMI ontology, the recommended style of

using an action verb as a prefix to the property; such

as executed_By, consists_Of, implemented_By, and

has_Precedence. Figure 2 illustrates the detailed

formalization of the SPI-CMMI ontology structure.

In OWL ontology, everything is a subclass of

owl:Thing. So the SPI-CMMI Framework class is

defined as subclasses of owl:Thing, and has 13

subclasses belongs to it: Phase One, Phase Two,

Phase Three, Phase Four, Phase Five, Phase Six,

Phase Seven, Phase Eight, Phase Nine, Phase Ten,

CMMI-DEV_1.3 Model, Six Sigma Tools, QFD

Technique.

implemented_By

implemented_By

consists_Of

satisfied_By

reached_By

Process Area

Generic Practices

Phase Steps

Specific Goal

Specific Practices

Generic Goal

Maturity Level Capability Level

QFD
Technique

Six Sigma Approach

consists_Of

represented_By

implemented_By

satisfied_By

satisfied_By

represented_By

consists_Of consists_Of

SPI-CMMI

Phases CMMI-Dev

Staged
Representation

Continuous
Representation

consists_Of consists_Of

implemented_By

represented_By

Techniques

DMAIC

Methodolog

y

represented_By

consists_Of

Figure 2: The detailed formalization of the SPI-CMMI ontology structure

Table 1: Object Properties in the SPI-CMMI Ontology

Each subclass has its own subclasses; for instance,

Six Sigma Tools class has three subclasses:

Methodologies, Techniques, and Graphical Methods,

and so on. Figure 3 provides an instant of the class

hierarchy of the SPI-CMMI ontology using Protégé

editor v3.5 (Build 663).

Figure 3: The Class Hierarchy of SPI-CMMI Ontology

Here is a code sample as an example of the class

definitions for the CMMI-Dev 1.3 Model class:

<owl:Class rdf:ID="CMMI-DEV1.3_Model">

 <rdfs:subClassOf rdf:resource="#SPI-

CMMI_Framework"/>

 <rdfs:comment rdf:datatype="&xsd;string"
 >CMMI-DEV v1.3 consists of best practices

that address development activities
applied to products and services. It
addresses practices that cover the
Product & # 8217; s lifecycle from
conception through delivery and

 maintenance.</rdfs:comment>
 <rdfs:label rdf:datatype="&xsd;string"

 >CMMI-DEV1.3_Model</rdfs:label>

 </owl:Class>

There are two main kinds of properties (relations) in

OWL Ontology: Object Properties and Data type

Properties.

 The first category is the Object Properties

(relations connect between classes) which link

an individual to another class or individual, e.g.

consists_Of - executed_By - has_Precedence -

implemented_By.

 The second category of properties in OWL

Ontology is the Data type Properties that link an

individual to a precise value. As an illustration,

the following is the OWL-Datatype Property

Definition for phase_description.

For the SPI-CMMI ontology representation using

Protégé editor, Table 1 provides a brief explanation

of object properties in the SPI-CMMI ontology.

As the CMMI-Dev model is considered the main

class (object) in the SPI-CMMI ontology structure,

Figure 4 revealed an extract of the instances of the

CMMI-Dev representation using Protégé.

Name Concepts Descriptions

contain

Staged Representation →

Maturity Levels

Continuous Representation

→ Capability Levels

Return capability/
maturity levels
that exist in
continuous
/staged.

consists_Of
Maturity Level →Process

Area

Reflects all the
PAs that require
for achieving
level.

executed_By Generic Practices →

DMAIC Activities

Returns DMAIC
phases/ activities
that execute the
capability levels.

guarante_By
Process Area → Suggested

Metrics

Represent the

suggested metrics

for each PA.

has_

Precedence

SPI Phases with each other

CMMI Maturity Levels

CMMI Capability Levels

Reflects all
previous phases
that require to be
satisfied first.

Implemented

_By

Assessment Steps → Six
Sigma Tools
Success Metrics →Six
Sigma Tools
SPI Phases → Sigma Tools
SPI Phases →QFD
Specific Practices → Six
Sigma Tools

Represents
recommended
tools, suggested
activities and
techniques for
implementing the
SPI phase, CMMI
level, and PA.

reached_By

Generic Goals→ Generic

Practices
SpecificGoals→Specific

Practices

Reflects the
specific practices
needed to reach
the specific goals.

represented_By

CMMI-DEV 1.3 Model →

Staged Representation

CMMI-DEV 1.3 Model →

Continuous Representation

Reflects the

continuous and

staged in CMMI

model.

import java.util.*;

/**

 * Generated by Protege (http://protege.stanford.edu).

 * Source Class: SixSigma_Tools

 *

 * @version generated on Thu Aug 17 12:44:58 EEST 2017

 */

public interface SixSigma_Tools extends

SPI_CMMI_Framework {

 // Slot tool_Description

 Collection<String> getTool_Description();

 boolean hasTool_Description();

 void addTool_Description(String newTool_Description);

 void removeTool_Description(String oldTool_Description);

 void setTool_Description(Collection<String>

newTool_Description);

 // Slot tool_Name

 String getTool_Name();

 boolean hasTool_Name();

 void setTool_Name(String newTool_Name);

 void delete();

}

As stated previously, Protégé is based on Java; the

following code sample gives an example of Java code

generated by Protégé editor for the class of the six

sigma tools in the SPI-CMMI ontology structure.

4.3 Design Criteria for SPI-CMMI ontology

Five main objective criteria for designing ontologies

were established by Gruber [5] to guide and evaluate

the ontologies designs whose specific intention is

knowledge sharing. A brief summarize of how the

SPI-CMMI ontology has taken them into

consideration will be given in the following

illustration. The five criteria are:

 Clarity: Ontology should use objective

definitions that are as complete as possible. The

complete definitions of the SPI-CMMI ontology

are documented with natural language.

 Coherence: Inferences in ontology should be

consistent with the definitions. The defining

axioms should be logically consistent. This

research is focused on representation, retrieval,

and query rather than reasoning, while reasoning

within the SPI domain might be a possibility.

Because reasoning is not the intent of this

research, no deliberate inferences were made in

the design of the SPI-CMMI ontology.

However, logical relationships can be implied by

the structure and definitions of ontology. To

check consistency, the SPI-CMMI ontology is

tested by reasoning software as part of the later

implementation process.

Figure 4: The CMMI-Dev Representation in SPI-CMMI Ontology using Protégé editor

 Extendibility: Ontology should be designed to

anticipate the uses of the shared vocabulary. It

should offer a conceptual foundation for a range

of anticipated tasks. The SPI-CMMI ontology

can be easily extended and specialized for each

organization, through adding new phases,

activities or tools when needed without having

to revise the existing definitions.

 Minimal Encoding Bias: The representation

format or language for the ontology should not

introduce constraints that are caused by the

language and not the ontology. This was actually

achieved with the SPI-CMMI ontology by

explicitly designing the ontology structure

before the choice of a particular knowledge

representation was made. Only then were the

available encodings considered.

 Minimal Ontological Commitment: Ontology

should make the least number of assertions

regarding the domain being modeled that will

still enable knowledge transfer. This was the

philosophy in choosing the knowledge attributes

for the representation of the SPI-CMMI

ontology.

4.4 The SPI-CMMI Ontology Reasoners

Although the SPI-CMMI ontology was designed

according to Gruber’s guidelines and criteria, there is

an empirical check that can be performed on the SPI-

CMMI ontology. One of the benefits of the OWL

based ontologies is that they can be processed by a

reasoner for consistency, species, and inferences.

Consistency checking ensures that no class is defined

such that it cannot have a logical instance. Species

validation determines the sub-language of OWL that

is being employed by the ontology. Several reasoners

are available for OWL, including Hermit, FaCT, and

Pellet.

Because of its seamless integration with Protégé,

Pellet reasoner [13] was chosen as the tool for

consistency checking, classification and.

After running the SPI-CMMI ontology through Pellet

1.5.2 reasoner, it was determined that there were no

inconsistencies as described below in Figure 5.

Also, Figure 6 shows the classification of the SPI-

CMMI Ontology using the Pellet 1.5.2 reasoner.

The inferred OWL sub-language for the SPI-CMMI

ontology representation is OWL-DL. The computing

inferred types of the SPI-CMMI ontology is

presented below in Figure 7.

Figure 5: Classification of the SPI-CMMI Ontology

Figure 6: Classification of the SPI-CMMI Ontology

Figure 7: Computing inferred types of the SPI-CMMI

Ontology

4.5 Benefits of the SPI-CMMI Ontology

The ontology construction for the SPI-CMMI

framework enables improvement semantic and

knowledge capture, sharing and retrieval through

establishing a common conceptualization. Aligning it

with various SPI processes makes relevant

knowledge capture and retrieval more probable

because it will happen relative to a particular

improvement phase. Using a standard representation

language to implement this SPI-CMMI ontology can

ease implementation of the proposed SPI-CMMI

framework in the software development enterprises

and make it adaptable to future uses and changes.

Developing the SPI-CMMI ontology is similar to

defining a set of software improvement data and their

relationships in a rigorous structure for other

improvement applications or programs to use. As,

Problem-solving methods, domain-independent

applications, and software agents use ontologies and

knowledge bases built from ontologies as data.

The SPI-CMMI ontology provides the following

benefits:

 Assist the software enterprises adopt CMMI

with detailed steps and clear relations.

 The SPI-CMMI ontology defines a common

vocabulary for researchers who need to share

information in the SPI domain. It includes

machine-interpretable definitions of basic

concepts in SPA, SPI, CMMI, Six Sigma tools

and relationships among them.

 The software enterprises can use the SPI-CMMI

ontology throughout improvement knowledge

practice, retrieval and query.

 The SPI-CMMI ontology enables sharing

common understanding of the structure of SPI

information among people or different software

agents.

 It enables reuse of improvement phase’s

knowledge; in addition it makes domain

assumptions explicit and separate domain

knowledge from the operational knowledge.

 The SPI-CMMI ontology provides a complete

structure and analysis of the knowledge

represented in the SPI-CMMI framework with

its suggested phases, related detailed steps,

activities, toolsets and recommended techniques.

 It could be cheaper, faster and easier to be

learned, trained, and used; also, it decreases the

probable mistakes and confusion.

 It offers a clear understanding of the

relationships between the SPI phases, numerous

Six Sigma tools, CMMI practices, goals and

process areas in an organization.

 Moreover, any modification in the improvement

phases/activities or CMMI-Dev model could be

relatively easily applied, and a new version

could be made available to the users in a

moderately short time.

5. Conclusion and Future Work

The main purpose of this implementation in this paper is

the construction of the ontological structure for the

proposed SPI-CMMI framework with the OWL

Ontology language using the protégé editor. The SPI-

CMMI Ontology can support the requirements

engineering and SPI processes through providing an

interrelated model for software-intensive systems,

their environment, and improvement processes

supporting elicitation, representation, and analysis of

the interdependencies among various improvement

models and domain levels. For future work the SPI-

CMMI Ontology can be expanded in order to add

more functions, or to be integrated with other

corresponding ontologies.

References
[1] Corcho, O., Fernández-López, M., and Gómez-

Pérez, A., ''Methodologies, tools and languages
for building ontologies. Where is their meeting
point?'', Data & Knowledge Engineering, vol.
46, pp. 41–64, 2003.

[2] Ferchichi, A.; Bigand, M.; and Lef`ebvre, H.,
''An Ontology for Quality Standards
Integration in Software Collaborative
Projects'', Proceedings of MDISIS, vol. 430,
pp. 17-30, 2008.

[3] Ferreira, A. L., ''Methodological approaches

for software process improvement in multi-

model environments'', Ph.D. thesis, engineering

school, Minho's university, 2016.
[4] Gazel, S., Sezer, E. and Tarhan, A., ''An

Ontology Based Infrastructure to Support
CMMI Based Software Process Assessment'',
Gazi University, Journal of Science, vol. 25(1),
pp. 155-164, 2012.

[5] Gruber, T.R., ''Toward Principles for the Design

of Ontologies for Knowledge Sharing'',
International Journal of Human-Computer
Studies, vol. 43(5-6), pp. 907-928, 1995.

[6] Horridge, M., A Practical Guide to Building
OWL Ontologies using Protégé 4 and CO-
ODE Tools, ed. 1.3, The University of
Manchester, 2011. Available at
[http://130.88.198.11/tutorials/protegeowltutori
al/]

[7] Lee, C.-S.; and Wang, M.-H., ''Ontology-based

computational intelligent multi-agent and its

application to CMMI assessment'', Appl.

Intell., vol. 30, pp. 203–219, DOI

10.1007/s10489-007-0071-1, 2009.

[8] Lee, C.-S.; Wang, M.-H.; and Chen, J.-J.,

''Ontology-based intelligent decision support

agent for CMMI project monitoring and

control'', International Journal of Approximate

Reasoning, vol. 48, pp. 62–76, 2008.

[9] Lee, C.-S.; Wang, M.-H.; Yan, Z.; Lo, C.;

Chuang, H.; and Lin, Y., ''Intelligent

estimation agent based on CMMI ontology for

project planning, Systems, Man and

Cybernetics'', SMC 2008. IEEE International

Conference, 12-15 Oct., pp. 228–233, 978-1-

4244-2384-2, Singapore, 2008.

[10] Liao, L., Qu, Y., and Leung, H., ''Software

Process Ontology and Its Application''. In

ISWC, Workshop on Semantic Web Enabled

Software Engineering, 2005.

[11] Mejia, J.; Muñoz, E.; and Muñoz, M.,

"Reinforcing the applicability of multi-model

environments for software process

improvement using knowledge management",

Science of Computer Programming vol. 121,

pp. 3–15, 2016.

[12] Ontology Available at

http://en.wikipedia.org/wiki/Ontology_(inform

ation_science) [last Access 17/8/2017]
[13] Pardo, C.; Pino, F. J.; García, F.; Piattini, M.;

and Baldassarre, M. T., ''An ontology for the
harmonization of multiple standards and
models'', Computer Standards and Interfaces,
vol. 34, pp. 48–59, 2012.

[14] Pellet Available at [http://pellet.owldl.com/]

(Last Access 22/2/2014)

[15] Protégé Available at http://protege.stanford.edu

(Last Access 17/8/2017)
[16] Rungratri, S., and Usanavasin, S., ''Project

Assets Ontology (PAO) to Support Gap
Analysis for Organization Process
Improvement Based on CMMI'', Making
Globally Distributed Software Development a
Success Story, Springer, Berlin/Heidelberg,
May, pp. 76-87, 2008.

[17] Sharifloo, A. A.; Motazedi, Y.; Shamsfard, M.;
and Dehkharghani, R., ''An Ontology for
CMMI-ACQ Model, Information and
Communication Technologies: From Theory to
Applications'', IEEE, ICTTA. 3

rd
 International

Conference, 7-11 April, p.p. 1–6, 978-1-4244-
1752-0, Damascus, 2008.

[18] Soydan, G. H., and Kokar, M. M., ―An OWL
Ontology for Representing the CMMI-SW
Model,‖ The 2nd International Workshop on
Semantic Web Enabled Software Engineering,
Athens, 6 November 2006.

[19] Soydan, G. H., and Kokar, M. M., "A Partial
Formalization of the CMMI-DEV—A
Capability Maturity Model for Development",
Journal of Software Engineering and
Applications, Vol 5, pp. 777-788, 2012.

[20] Zaied, A.N.H., El-Drandaly, K.A., and

Tantawy, A.-S.A.: "A proposed Framework for

Software Process Improvement: Extending

CMMI-DEV model Using Six Sigma and

Quality Function Deployment Techniques",

Kafrelsheikh Journal of Information Sciences,

1, (1), pp. 21-32, 2018.

Bibliography

Prof. Abdel Nasser H. Zaied is a

Professor of Information Systems,

College of Computer Science, Misr

International University, Egypt. He

previously worked as a Dean,

College of Computers and

Informatics, Zagazig University, Egypt; as a Former

Adviser to the Minister of Higher Education for Private

and National Universities; as a Professor of

Industrial Engineering, Zagazig University Egypt;

as an Assistant Professor of Technology

Management, Arabian Gulf University, Bahrain;

and as Visiting Professor at Oakland University,

USA. He supervised 19 PhD theses and 57 MSc.

theses, and examined 60 MSc & 23 PhD theses.

He published 66 research papers in International

and Regional Journals and 27 research papers in

International and National conferences. His areas

of research are: Systems Analysis and Design;

Information Security; Quality Management

Systems, Project Management and Electronic

applications.

Prof. Khalid A. El-Drandaly is

a Professor of Information

Systems, Dean, College of

Computers and Informatics,

CIO and Director of the

Communication and

Information Technology Center,

Zagazig University, Egypt. He is a certified GIS

professional (GISP). He received his Ph.D. degree

in Systems Engineering (GIS). His research

interests include GIS, Expert Systems, SDSS,

MCDM, and Intelligent Techniques in Decision

Making. He is a member of the Egyptian

Engineers Syndicate, Texas A&M International

Faculty Network, ESEA, GIS Certification

Institute, International Society for Environmental

Information Science, and ACM. He serves as a

member in Review Committee of IAJIT, IJGIS,

IJOPCM, ASOC, ACIT, JEI, FCT and AJSE.

Al-Shaimaa A. Tantawy is aa assistant professor

of Information Systems, IS Department, College

of Computers and Informatics, Zagazig

University, Egypt. Her research interests include;

Information System, System analysis and Design,

Software Engineering, Software Quality

Assurance, Software Process Improvement, and

Ontology.

http://en.wikipedia.org/wiki/Ontology_(information_science)
http://en.wikipedia.org/wiki/Ontology_(information_science)
http://pellet.owldl.com/
http://protege.stanford.edu/

