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Abstract - Medications are a particular kind of chemicals that are considered essential for toxicity screening in contrast to 

those substances that contribute to the environment. In the development and production phases, toxicity is still the reason 

for a great number of candidate failures for new medicines. In-vivo work on the pharmaceutical industry, the in-vitro and 

animal trends of incompetence for correctly forecasting certain human toxicity, and the lack of accurate, high-thrown in 

vitro testing was obstructive in calculating toxicity. the development of computational toxicology structures has been 

encouraged by developing numerous "omics" techniques that have grown into several scientific areas, including genomics, 

proteomics, metabolomics, and transcriptomics. Computational toxicology is highly interdisciplinary. Researchers in the 

field have backgrounds and training in toxicology, biochemistry, chemistry, environmental sciences, mathematics, statistics, 

medicine, engineering, biology, computer science, and many other disciplines. This paper offers a historical perspective 

and current status for the computational approaches used at the assessment of toxicity. It presents examples of the expert 

systems, machine-learning approaches and web-based toxicity predictors. 
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1. Introduction 

    There are over 80,000 chemicals in common use 

worldwide, and hundreds of new chemicals and 

chemical mixtures are introduced into commerce each 

year. Because chemical safety has traditionally been 

assessed using expensive and time-consuming animal-

based toxicity tests, only a small fraction of these 

chemicals has been adequately assessed for potential 

risk. 

    Potential methodologies to conventional toxicity 

testing are critical for environmental and pharmaceutical 

products, so that toxicity potential can be estimated and 

research priority is given the limited resources available. 

Another such method is robot toxicology. 

    Computational Toxicology is described by the U.S. 

Environmental Protection Agency (EPA) as " the use of 

Software and mathematical models to forecast negative 

impacts and to better understand the person or several 

processes through which a chemical cause harmful 

effect." 

    In a broader context, computational toxicology is an 

emerging multidisciplinary field that combines 

knowledge of toxicity mechanisms with appropriate 

biological and chemical information to allow the  

 

 

 

 

 

  

design, development, and testing of multi-scale machine-

based learning methods that are used to gain knowledge 

in the pathways through which a chemical causes 

damage. In-vivo toxicology also seeks to use high-

information content data, advanced biostatistical 

approaches, and computational complexity to analyze 

these data to handle and identify patterns and associations 

in large biological and chemical data sets. 

    Some of the main areas of application of computational 

toxicology are hazard and danger prioritization of 

chemicals, discovery of useful mechanical knowledge in 

tailoring testing programs for each chemical, health 

screening of food additives and food contact substances, 

aid of more advanced aggregate and cumulative risk 

assessment methods, calculation of risk assessment, 

pharmaceutical lead choice in drug development, 

pharmaceutical contaminant safety testing and 

certification, and drug metabolite safety screening. 

    Computational toxicology is highly interdisciplinary. 

Researchers in the field have backgrounds and training in 

toxicology, biochemistry, chemistry, environmental 

sciences, mathematics, statistics, medicine, engineering, 

biology, computer science, and many other disciplines. 
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2. Computational Toxicology 
 

In order to identify the relevance of both chemical 

composition and toxicological end punctures, computer 

toxicology is a comparatively novel area of applicable 

science that integrates fundamental principles from 

biology, chemistry, and informatics. In addition, these 

interactions can be used to estimate the toxicity of 

unproven substances. In the middle of the 19th and 

early 20th centuries, crucial scientific breakthroughs 

were explained by the creation of a physical foundation 

for molecular structure and the association of chemicals 

with biological systems.     

     As early as 1858 Borodin, a Russian chemist and 

composer [1], while referring to compounds and their 

properties quoted, ―their toxicological properties and 

chemical makeup are closely related.‖ However, it is 

the codification of the then-known elements into the 

Periodic Table in the late 1880s by Julius Lothar Meyer 

and Dmitriy Mendeleev [2] that can rightly be regarded 

as the beginning of similarity-based clustering of 

chemical elements. This grouping formed the basis for 

predictive chemistry and found use not only for 

predicting the reactive properties of the elements but 

also laid the groundwork for understanding, and 

ultimately for being able to predict, more complex 

physicochemical properties of combinations of 

elements. 

      This work quickly followed the discovery of 

statistical relationships amongst toxicity and basic 

physiochemically belongings for minor groups of 

particles. In the year 1863 Cros, for instance, discovered 

that the paralysis characteristics of a series of cauterized 

strychnine are based on the nature of a quaternation 

Group [3], Cros found, for example, an inverse 

relationship between mammaliany liquor poisonousness 

and water problems [4]. In his research [5] he noted a 

correlation between the poisonousness of aquatic 

solubility and unassuming biological complexes, and 

advanced they found independently in their research [6] 

that the tranquillizer activity of numerous mixtures 

remained grounded on their oil-water panel constant. 

     The development by Gilbrt Newton Leweis [7] at the 

turn of the 20th century of the conduction principle of 

chemical bond formation and of transmitter hypothesis 

based on Langley's ground breaking work [8] 

established physical association theoretical constructs 

amongst xenobiotics and biological macromolecules. 

Valence hypothesis developed the idea that selective 

physicochemical ligand transmitter interactions can 

only lead to a specific genetic reaction with specific 

toxicants or drug compounds (or with functional groups 

of these compounds). 

 

 

 

 

     A great deal of experimental work quickly revealed 

the majority of the pharmaceutical products and 

toxicants in a receptor-mediate manner for exploit and 

offered a balanced source intended for the connection 

between structure and function. Hammet provided a 

linear and free energy equation established in the 1930s 

[9] with his groundbreaking exertion arranged the 

quantifications of consequence of substituent on estery 

hydrolysisal as the thermodynamic basis for parametric 

operations that explain the interaction of the structure 

with the behavior, this includes an analysis of unique 

possessions fashionable rapports of molecular structure 

descriptive parameters. Taft's use of steric and 

hydrophilicity identifiers decadently confirms not only 

the significance of free linear energy links [10], but also 

the theory of quantitative structure-activeness 

relationships "effect", the term "effect" for any 

physicochemical, pharmacological or toxicological 

components theory of quantity-activity relationships. 

    During the process, digital computers were becoming 

more available and efficient. Scholarly innovators [11] 

using the principles of linear free energy related 

approaches to use the data of toxicity that are then 

accessible, started exploring the responsibilities of 

various methods and identifiers of chemical 

composition. The birth of the science of computational 

toxicology was marked by this convergence of statistical 

analysis, chemical toxicology, and computer technology. 

    Continued advances in sophisticated computational 

and statistical algorithms today give toxicologists access 

to a host of new approaches and tools to help them 

perform and manage structure activity relationship 

analyses for toxicologically important endpoints. The 

principal differences among the various computational 

methods arise from the way a molecule is quantified in 

terms of descriptors and how the relationship between 

these chemical descriptors and the toxicological 

endpoint of interest is established. For example, 

chemical structure descriptors range from measured or 

computed physical properties, such as logP (the 

logarithm of the n-octanol-water partition coefficient), 

number of Hbond donors, and molecular weight, to all 

possible continuous pieces or ―fragments‖ of molecules, 

to descriptors that represent the electronic configurations 

or surface maps of the whole or localized portions of the 

molecule. 

     Similarly, an in-silico toxicology solution can be a 

generic expert model or a machine learning system with 

an algorithm that tests empirically the presence of a 

statistically significant correlation between an important 

toxicological outcome and one or more descriptors. Brief 

historical records are given in the following sections for 

each of these major strategies. 

 

 



 

 

2.1 Methods of In Silico Modeling  

       

Various chemical toxicity calculation software 

approaches have been developed. Because either they 

support the historical origins of toxicology at a lifespan 

or because they reflect the actual toxicity prediction 

mechanism, the tools we discuss here are chosen. 

Possible strategies for using the approach, statistical 

description, strength and weakness evaluation, 

guidelines on how and when the system is to be used, 

and are provided in each solution (if applicable). 

Therefore, for consistency purposes, we retain as 

common formulas and graphical interpretations of 

structures as appropriate. 

 

 Rule-based Models and Structural Alerts  

      Structural alerts [12] are chemical structures that 

demonstrate or are associated with toxicity. Structural 

alerts may take the form only of a single atom or several 

linked atoms. A confluence of structural alerts may 

make a contribution more than a single structural alert 

to toxicity. Structural alerts are being used often in rules 

determined in the form ' if A is B then T, ' which A is a 

structural alert, B is the valuation of the structural alert, 

and T is the toxicity prediction with the assigned level 

of certainty. 

      Structural alerts are easily interpreted and 

implemented [13]. They are useful in the design of 

drugs to determine how drugs should be altered in order 

to decrease their toxicity. The use of the Toxicity 

Predicting Model enables the detection of the model of 

possible metabolites. Furthermore, there are a number 

of limitations to structural alerts. Structural alerts only 

use quantitative characteristics (e.g. chemical 

components are either available or missing) or 

subjective endpoints (e.g. carcinogenic and non-

carcinogenic). Structural alerts don't provide 

perspective into the toxicity of biological pathways and 

may not be enough to predict toxicity. Toxicity may 

decrease or increase depending on the absence or 

presence of other chemical properties at the same time. 

The set of structural alerts and guidelines may be 

insufficient, leading to a significant number of false 

negatives in predictions (i.e. toxic chemicals expected 

as non-toxic). 

      The last section is especially important. How to 

view the performance of structural alerts frameworks 

should be understood. This does not mean non-toxicity 

if a chemical does not include structural warnings or 

does not comply with any toxicity laws [14]. That's 

particularly the case for human-based rules that 

typically involve structural alerts or rules indicating 

toxicity but do not include structural alerts or rules 

indicating non-toxicity. Therefore, when designing 

these models, it is necessary to ensure that the list of 

structural alerts and rules are extensive and updated as 

more observational data  

 

 

become accessible. Moreover, the list of structural alerts 

and rules, their comprehensiveness and predictive power 

should be balanced. When structural alerts and 

guidelines are varying, they can be extended to a vast 

amount of chemicals, but this may raise false positives 

(i.e., expected as dangerous non-toxic chemicals). 

Read-Across, Trend Analysis, and Chemical Category  

     A chemical category [15] is a class of chemicals with 

different or identical properties and toxicity effects. The 

OECD Guidance on Classification of Chemicals lists 

many classification approaches, including chemical 

identification and structure, physicochemical and ADME 

properties, chemical / biological interactions and action 

mechanism. The OECD recommendations define 

structural similarities as the point of reference for 

grouping, but it is also disputed for missing a ' 

scientifically provable rationale ' for grouping and may 

be used when particulates or other components in the 

chemical structure do not affect toxicity.  

       Read-across is a technique for predicting a 

chemical's unknown toxicity using similar chemicals 

(known as chemical analogs) from the same chemical 

category [15]. Statistical analysis is a method of 

predicting a chemical's toxicity by analyzing trends in 

toxicity (increasing, decreasing, or constant) of the 

chemicals tested. A specific example of statistical 

analysis showed an increase in acute aquatic exposure as 

the length of the carbon chain increases. Fig.1 gives a 

description of the various parameters to be addressed 

when constructing a read-across system. 

 

 
  

Fig.1. Different properties of read-across models [16] 

 

     There have been two methods to develop a read-

across approach [17]: analog approach (known as one-

tone), using one or a few analogs, and a class approach 

(known as many-to-one) which incorporates multiple 



analogs. Since two analogs may have different toxicity 

profiles, the analog methodology may be prone to  

 

 

 

outliers. Using multiple category approach analogs are 

helpful in identifying patterns within a category and 

may increase confidence in predictions of toxicity. 

Classification strategy demands the creation of a 

boundary classification to decide whether a chemical 

belongs to the class and the introduction of a system for 

' combining estimates ' of analogs with different toxicity 

profiling. 

 

TOPKAT 

    The very commonly utilized approaches of 

evaluating a chemical's possible carcinogenicity are: 

chronic bioassays for carcinogenicity including rodents; 

genotoxicity studies in mammalian cells, microbes, or 

intact mammals; and applying the theories of structure-

activity relationships to forecast carcinogenicity on the 

basis of observed chemical testing results with a similar 

concept. Human experts [18] or computers can carry out 

structure activity relationship analysis.  

      Computer-based approaches fall into two basic 

categories: those which seek to understand human 

expert reasoning processes [19] and others that conduct 

statistical equivalences in the database of the system 

between the characteristics of the chemical of interest 

and those of known carcinogens and noncarcinogens 

[20]. One of these latter types of widely used systems is 

TOPKAT (Toxicity Prediction by Komputer Assisted 

Technology). The utility of the TOPKAT 

carcinogenicity unit was measured by evaluating the 

ability of the program to predict the effects of the 

National Toxicology Program's rodent carcinogenicity 

bioassays. 

     Following a successful method with a number for 

endpoints of toxicity in 1987, HDi introduced 

TOPKAT, Komputer Assisted Technology's first 

QSAR-based toxicity predictor application currently 

being sold by Accelrys, Inc. This latest version, 

TOPKAT 6.2, provides high detail electromagnetics, 

geometry, and configuration identifiers rather than a 

pre-defined substructures kit, that require the 

measurement of 16 specific toxicity endpoints for pre-

packaged comprehensive QSARs and the learning 

databases that have been extracted from QSARs. 

 

2.2 Expert Systems 

 

    Simply stated, expert systems are computer 

applications that carry out a degree of logical reasoning 

similar to those of human beings, making them ideal 

systems for making subject-matter expertise available to 

non-experts Relying on mathematical and logic 

techniques, an expert system is comprised of two main 

components: (1) a Knowledge Base (KB); and (2) an 

Inference Engine (IE) [21]. 

 

 

     Later maintains the knowledge of the subject in the 

form of a number of regulations — formalized facts 

derived from true experience — and later, by logically 

combining the rules caused by feedback, makes 

acceptable deductions. Active, and widely used in many 

fields, expert systems are artificial intelligence systems, 

including clinical diagnostics, credit permits, genetic 

engineering, airline scheduling, analytical chemistry, 

chemical structures, computer toxicology etc. [22]. 

     

    As a computer-discernible set of often mostly nested 

IF-THEN structures, construction poisonousness 

relations known besides reliable by skilled toxicologists 

are contained in a digital toxicology expert network. The 

expert model analyzes its composition when asked to 

determine the toxicity of a substance and makes 

correlations with the existing KB of rules. For analytical 

deductive evaluation of possible toxicity, the laws 

caused by the composition of the compound are gathered 

and introduced to the IE. 

      

    The need for expert systems in the diverse field of 

toxicology in the pharmaceutical industry is long 

overdue as the toxicology expertise is not sufficient to 

satisfy the demand — definitely not, where and when 

appropriate, in regulatory authorities or in drug research 

teams. In the scope of the study of compound toxicity 

rates, a framework for statistical toxicology specialists in 

these organizations will provide a range of toxicological 

expertise. 

     The competence and knowledge of the research 

community provides the KB with the guidelines in a 

statistical toxicology framework. As stated, even though 

the mid-1800s methodological associations are 

recognized among toxicological and chemical 

composition. Further systematic comparisons between 

physicochemical and toxicological properties provide 

validated KB learning inputs to an expert framework 

along with the proven carcinogenicity consequences of 

congeneric substances in small ligands, such as benz [c] 

acridine methyl variants, which are typical of greater 

carcinogenicity than benz acridine methyl derivatives 

[23]. 

    

    For more medical and epidemiologic evidence on 

toxicity, toxicologists are looking for clear 

interrelationships between toxic effects and molecular 

structures and/or properties. There are three major 

toxicology specialist programs available on the market, 

namely HazardExpert [24], Oncologic [25], and DEREK 

[26]. 



 

 

 

 

 

HazardExpert 

     HazardExpert is CompuDrug Chemistry Ltd.'s first 

computer-based toxicity forecasting expert system [27] 

established in 1985. HazardExpert predicts a variety of 

toxicity endpoints from carcinogenic, irritable, immune-

toxic, neurotoxic, teratogenic, and mutagenic. 

HazardExpert's KB includes Toxic Fragments 

Knowledge Base from the literature on structure-

toxicity interactions and documents from the U.S. EPA 

reports. Based on the impact of these fragments on 

biological systems, the predictive principles in 

HazardExpert combine expert intuition and fuzzy logic.  

 

OncoLogic 

    LogiChem, Inc. created this consulting program 

under a cooperation agreement between the Pollution 

Prevention and Toxics Office of the U.S. EPA [28]. 

Carcinogencity is OncoLogic's primary toxicity target 

being predicted. Its instruction corrupt is structural 

alerts whereas the carcinogenicity technique is well 

understood in humans and animals. The ability of 

OncoLogic to predict the carcinogencity of both organic 

compounds and polymers, metals and fibers represents 

an important benefit. From the USA OncoLogic rights 

have been covered by EPA, it can be commonly used in 

the future. 

 

DEREK 

    Schering Agrochemical Corporation, the premier 

founder of the expert system DEREK, donated the 

system to its regular non-profit provider, Lhasaa 

Imperfect [29]. Considering a compound's chemical 

structure, DEREK expects a range of toxicological 

risks, including genotoxicity, carcinogenicity, skin 

resistance and discomfort, based on the respective 

knowledge base built from the shared experience of 

scientists from more than 20 member organizations. 

    The KB is usually driven by various combinations of 

structurally toxic guidelines or systemic ' alerts ' due to 

differences in compound count as well as in the 

interpretation and the comprehension of analytical 

results. There are, for example, 96 guidelines on 

genotoxicity evaluation yet only 47 for cancer 

prediction [30]. Rather than 70 mutagenic laws are also 

in place, but chromosome abomination is significantly 

lower. The laws are typically drawn from structures of 

organic chemistry identified by the toxic reaction found 

in a variety of associated substances. 

     DEREK is a rules-based model that evaluates the 

potential toxicity of a chemical structure in a subjective 

way only. One of the nine statistical classes are applied 

to each prediction: Sure, Probable, Plausible, Equivocal, 

Doubted, Improbable, Invalid, Possible, and 

Contradicted. Wherever appropriate, with specific 

literature links, the statement is further supported.  

 

 

A number of independent data sets tested its 

performance. 

 

2.3 Machine-Learning Approaches 

 

     So far, several in-silico approaches to the analysis of 

drug safety have been developed that can commonly be 

classified into three groups: quantitative correlation, 

qualitative grouping, and read-across. In assessing drug 

safety - as a beginning- we only demand to know that a 

product is, rather than its exact toxicity level, poisonous 

and highly toxic or moderately harmful. A measurable 

construction poisonousness association model may be 

developed for a small proportion of chemical analogs to 

estimate accurate toxicity values. Read-across is indeed 

an attainable technique to overcome these toxicity 

endpoints with experimental toxicity values from similar 

structures. Such systems have high accuracies, especially 

in local chemical spaces, and can sometimes substitute 

assays for similar endpoints in vitro or in-vivo. 

Structural alerts can actually be obtained from templates 

as a guide to a drug with adverse organs effects [31], 

which can be used in structural alteration to minimize 

the risk from chemists.  

      Random forest, Support vector machine, k-nearest 

neighbor, and boost tree are basic methods of machine 

learning commonly used in classification and regression 

models. Support vector machine, also known in 

particular as Support Vector Classifier or Support Vector 

Regression, is known for its high predictive reliability 

and lower overfitting risk [32]. The support vector 

machine 's basic idea is to build a hyperplane with the 

maximum distance to the nearest learning data points 

(support vectors) in a high-dimensional space. Random 

forest and boost tree come from the tree of choice [33].  

 

     Random forest could be seen as picking up most 

decision trees that use and merge a random subset of 

features through a voting system. Like Random forest, 

where each tree is equal, boost tree varies each tree's 

weight dynamically according to the mean prediction 

error. K-nearest neighbor is one of the simplest [34] 

algorithms. The principle of k-nearest neighbor is that 

there are different biological properties in materials with 

similar structures. A result of the k-nearest neighbor is 

defined by the votes of its neighbors ' groups. 

     

    Very often the combination of these algorithms is 

applied to improve the performance of prediction 

approaches. A combined technique has been developed 



by means of a reproduction neural network procedure to 

accumulate the probability of final grouping conclusion, 

showing that the collective approaches are greater 

toward "single" methods [35].  

     

     Recently, in overcoming such problems as computer 

vision and speech recognition, deep learning has been 

applied [36]. One of the profound learning techniques is 

the multilayer neural network. Unlike the common 

artificial neural network, which has only three layers 

along with the input layer, hidden layer, and output 

layer, the multilayer neural network comprehends 

additional than individual concealed coating and is, 

therefore, more competent with complex mechanisms 

fashionable great toxicologically information. It can 

perform better than the artificial neural network and 

above-mentioned classical machine learning approaches 

when the training set is large [37].   

      Additional multifaceted network has extra 

weightiness for matching plus considerable 

supplementary undoubtedly to overfit. Recently, graph-

convolutional networks [38] and enduring remembrance 

structures [39] were created to remove topographies 

since atomic particles and show better efficiency in 

managing thousands or more of compounds [40]. 

DeepChemi is an open-source, high-quality toolchain 

that makes it easier to use DL on the discovery of 

medicines and other areas. 

 

3. Conclusions 
 

    Clearly, all computational toxicology approaches 

need to benefit from experimental data. Of our 

perspective, computational toxicology's most definite 

objective is not to remove the development and the use 

of standard, research lab-based biomarker strategies. On 

the contrary, the processes meant to be mutually 

complementary. Extension of the toxicological methods 

of experiments could be used to justify developing and 

assessing the safety of certain compounds, which may 

reduce the cost and production time of drug 

development in the pharmaceutical industry. 

     In addition, their prudent use by regulatory agencies 

to aid more rapid decision making, to be more effective 

in hazard assessment, and to assist in managing the 

environmental and human health effects of chemicals 

can be leveraged to great advantage in making sound 

rational choices regarding society‘s use of particular 

chemical entities, both now and in the future. 
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