

Autonomous Quadrotor Delivery System Modeling

and Simulation

A.M. El-Edkawy and M.A. El-Dosuky

Mansoura University, Faculty of Computers and Information, Mansoura, 35516, Dakahlia, Egypt

amr.eledkawy@mans.edu.eg, mouh_sal_010@mans.edu.eg

Abstract: A quadrotor is a rotary-wing Unmanned Aerial Vehicle (UAV) that has four rotors. The quadrotor control and

autonomy is a challenging task as the quadrotor system is considered underactuated system. The aim of this paper is to present

the specification and the implementation of an autonomous quadrotor delivery system that fuses data from camera and IMU

(Inertial Measurement Unit) to allow for high precision visual-inertial navigation. In this paper, an autonomous quadrotor

delivery system is proposed. The specification of the system is proposed. The implementation of the system introduced

SolidWorks design for the system, mathematical modelling for the pickup and delivery problem (PDP). Simulation results

using MATLB have been shown for the implementation of the model, control system and the simultaneous localization and

mapping (SLAM) using Extended Kalman Filter algorithm (EKF-SLAM) used for making the system autonomous.

Experimental results for the use of canny edge detection algorithm have been shown.

Keywords: Quadrotor; UAV; PDP; PID controller, SLAM; EKF-SLAM; Canny Edge Detection

1 Introduction
A quadrotor is a rotary-wing Unmanned Aerial

Vehicle (UAV) [1] that has four rotors. To enable a

quadrotor to navigate autonomously in outdoor

environments is highly challenging. A quadrotor is

difficult to control, since it is considered as an

underactuated system [2, 3] for it has six Degrees of

Freedom (DOF) but only four actuators.

Fusing inertial measurements and features in images

captured from camera is known as a vision-aided

inertial navigation [4, 5].

The aim of this paper is to present the specification

and the implementation of an autonomous quadrotor

delivery system that fuses data from camera and IMU

(Inertial Measurement Unit) to allow for high precision

visual-inertial navigation.

In this paper, an autonomous quadrotor delivery

system is proposed. The specification of the system is

proposed. The implementation of the system

introduced SolidWorks design for the system,

mathematical modelling for the pickup and delivery

problem (PDP) [6, 7]. Simulation results using

MATLAB have been shown for the implementation of

the model, control system and simultaneous

localization and mapping (SLAM) using Extended

Kalman Filter algorithm (EKF-SLAM) [8] used for

making the system autonomous. Experimental results

for the use of canny edge detection algorithm [9, 10]

have been shown.

Later in the paper, second section explains the

background and the previous work about the design

requirements for a delivery quadcopter, the modelling

and the control of it, how to make use of computer

vision algorithm and how to make the system

autonomous. Third section illustrates the proposed

system by providing the specification of it and drawing

a general framework explaining it then introduce the

SolidWorks model and the mathematical modeling of

PDP. Fourth section shows the simulation and results

developed using MATLAB. Fifth section concludes

the paper and introduces the future directions based on

the proposed system.

2 Previous Work
Several big firms are eager to utilize flying robots in

delivery.

Amazon: Amazon Prime Air is a conceptual drone-

based delivery system currently in development by

Amazon

(https://www.youtube.com/watch?v=Le46ERPMlWU)

.

Domino's: Domino's has tested out a prototype for a

flying drone that can deliver pizzas. The device carried

two large pepperoni pizzas and conducted a flight

(https://www.youtube.com/watch?v=-CYT4PFV_Hs).

Francesco's Pizzeria: Francesco's Pizzeria provides a

way for delivering pizza using flying robots

(https://www.youtube.com/watch?v=0if2PM6OBrI.

2.1 Design requirements
In a perfect world, the quadcopter would be equipped

for independent flight through corridors, rooms and

stairwells in any building. In the building, the

quadcopter ought to be fit for transmitting data about

the environment remotely to a remote first reaction

group. The following is the key outline necessities for

a delivery quadrotor UAV [11]:

mailto:mouh_sal_010@mans.edu.eg

1. Hover at 40-50% of maximum throttle (1.5:1-

2:1 thrust to weight ratio).

2. Life of battery is no less than 10 minutes.

3. Autonomous take off, hover, traversal and

landing.

4. Sensors for estimating relative separations

from remote objects, height and odometry.

5. Maximum width under 30" (normal width of a

gate).

6. Wireless availability.

7. Insignificant flight elevation of nearly 5-7ft,

maximum height of no less than10 feet.

8. Whole mass under 1.5kg, for a possible load of

0.5kg-1kg

9. Protection on the propellers with the end goal

that the quadcopter can survive 10 foot falls.

There are few other options to creating and developing

craft that worth considering, however everyone has its

own downsides. Most eminently, commercial UAVs

tend to have a few fundamental classes of weaknesses.

They have a tendency to be intended to convey no

extra payload other than themselves (for instance the

customer level Draganflyer, Parrot AR.Drone, Silverlit

X-UFO, and so forth.), while those that can convey

extra are restrictively costly (Microdrone MD4-200,

modern Draganflyer, AscTec), or they are too huge to

work in our objective usee case. Open

implementations, for example, the Aeroquad and

MikroKopter can, through broad modification in the

design, be near to our coveted parameters but would

not spare the designer significant effort and would

limit the long term value, adaptability and lifetime of

the platform [11].

2.1 Quadcopter modelling and control
The Quadrotor primary thought was to have a

helicopter that can deal with bigger limit and can move

in zones that were hard to reach. It comprises four

propellers (right, left, front and back,). Varying the

speeds of the engines is utilized to control the

quadrocopter in each of the three axes. As shown in

Figure 1, the left and right engines rotate

counterclockwise while the front and back propellers

rotate clockwise. This adjust the aggregate framework

torque and wipe out the aerodynamics and gyroscopic

torques in stationary flights [12].

Yaw: Changing the rpms of the sets of counter rotating

engines, the quadrocopter will yaw because of the

created moment.

Roll: Increasing and decreasing the rpms of the left

and right engines make the quadrocopter rolled

forward or backward.

Pitch: Same as roll but using front and back engines

instead of left and right.

Figure 1: Roll, Pitch and Yaw

There are many papers that discussed the modelling of

the Quadrotor [13-17]. In [17] the concluded final

result for the body frame rotational equations of

motion for the quadrotor is the following:

 ̇ [

]

[

]

where τ is the motor torque, I is the input current,

 are the roll, pitch, yaw in the body frame

respectively, are determining the position

of the quadrotor, ω is the angular velocity vector in the

body frame.

In order to do a real world simulation we must do a

quadrotor control, clarifies Proportional-Integral-

Derivative (PID) controller controls the position,

attitude and altitude of the quadrotor. The following

figure clarifies PID controller [14].

Figure 2: PID Controller

2.2 Computer Vision
Canny edge detection algorithm is a popular multi step

edge detection algorithm starting with input image

 of size pixels. It has the following steps

[9, 10].

y a w R o l l

P i t c h

1. Apply Gaussian filter to smooth the image

 in order to remove the noise

where

√
 (

)

2. Find the intensity gradients of the

smoothed image

 √
and the gradient direction

 { }
3. Threshold

 {

4. Apply non-maximum suppression to eliminate

fake response to edge detection

5. Apply double threshold to determine possible

edges

6. Apply hysteresis: Finalize edge detection by

eliminating weak edges.

2.3 Autonomous Robot
The block diagram of control unit of most autonomous

robots is shown in figure 3.

Figure 3: Control unit of autonomous robots [18]

To be autonomous, the quadrotor has to solve the

simultaneous localization and mapping (SLAM)

problem [8]. So it needs to decide its location inside a

varying map that it constructs from the environment

established on data synthesis [19] from numerous

noisy data sources [1]. Implementations exploit sonar

[20] or visual navigation [21]. The regular used filter is

Kalman Filter [22].

RaoBlackwellized particle filter (FastSLAM) and

Extended Kalman filters (EKF-SLAM) are clarified in

[8]. In stochastic mapping [23], data association is is

basically tended to utilizing a traditional procedure in

following issues known as the nearest neighbor (NN)

[24]. The development of Joint Compatibility Branch-

and-Bound data association (JCBB) [25] is is

supported by the way that the basic NN algorithm for

data association is exceptionally delicate to the sensor

mistake, expanding the likelihood of coordinating

unrelated map features [25].

3 Proposed System
3.1 Specification and Setup
PEAS (Performance measure, Environment, Actuators,

and Sensors) [26] is used to determine the

specifications of an agent. In the proposed system, the

agent is the quadrotor. Table 1 shows the PEAS

specifications of the quadcopter.

Table 1: PEAS specifications of the quadcopter

Performance Measure Reaching destination quickly

and correctly

Future Performance

Measure

Collaboration among

quadrotors as a swarm

Environment Roads, Buildings and objects

Actuators 4 rotors

Sensors Camera and Inertia

Measurement Unit (IMU)

ODESA (Observable, Deterministic, Episodic, Static,

and Agents) [26] is used to describe the environment

characteristics. Table 2 specifies the characteristics of

the environment of the quadcopter.

Table 2: ODESA specifications of the quadcopter environment

Observable Partial Observable

Deterministic Stochastic

Episodic Sequential

Static Dynamic

Agents Multi-agent

Figure 2 shows the block diagram of the system which

shows an overall view of the system

Figure 4: Proposed System Block Diagram

3.2 Modelling and Design
Figure 3 demonstrates our 3D model of the quadrotor

in SolidWorks. This model have the following

components.

Table 3: Components of the 3D model

2 Bodies

Arduino-UNO

Battery 4Ah 5s Lipo Nano-Tech Jr.

Spectrum receiver BR 60000 Kevin Barker

4 Propellers

4 Motors 1300Kv

4 Above Paws

4 Propeller Screws

4 Down Paws

4 Paws

4 Block Paws

12 Separators

Camera

IMU

Figure 5: SolidWorks Model

The model of the quadrotor is enhanced using the

quadrotor route finding problem that is a variant of a

pickup-and-delivery problem (PDP). It is expressed in

[6] as a linear program that have many constraints in

the delivery system.

3.3 PDP
The quadrotor route finding problem is a variant of a

pickup-and-delivery problem (PDP). It is expressed

here as a linear program. We will make use of the

following sets:

 is the set of all ground vehicles (base stations for

the quadcopters).

 is the set of all quadcopters.

 is the set of all items available in the request

system.

 is the set of requests that must be served.

 is the collection of all important

locations

 is the set of directed edges in the graph on

For , we will denote the distance between the

endpoints of the edge by . Sometimes, we will

refer to an edge by its ordered pair. The variables of

the linear program are:

 {
 } Binary variables with value 1 if

quadcopter h traverses edge e and 0 otherwise

 {
 } Quantity of item s carried along edge e

(integer)

 {
 }

 Quantity representing the state of the

battery of quadcopter h after traversing edge e

 {
 } Abstract quantity roughly quantifying

the number of legs remaining in the trip for

quadcopter h after traversing edge e.

 Time required for all quadcopters to

complete their routes

The objective function is then easily expressed as,

Constraints

There are a large number of constraints, so we will

present the bound constraints:

 (Eliminate self-loops)

 , where quadcopter

 starts at . (No one can fly to the starting location

of a quadcopter)

, where

quadcopter starts at with initial charge, .

(Remaining battery after the first leg is bounded by

the initial charge less the battery consumed on the

first leg)

 ()

(Remaining battery after departing a station is

bounded by a full charge, less the battery consumed

in departing the station)

 , where quadcopter

starts at and . (No quadcopter may depart

from another quadcopter’s starting location)

The remaining equality and inequality constraints are

broken up into a number of types.

 Type 0 constraints. Each quadcopter can only leave

its starting location in one direction.

 ∑

 Type 1 constraints. The quantity of each item

carried away from each quadcopter’s starting

location is equal to the quantity of that item that

particular quadcopter is currently carrying.

 ()

 ()
 where quadcopter starts at

 Type 2 constraints. No route is flown twice.

 ∑

 Type 3 constraints. Every request is serviced.

 ∑

 ∑

 of items of type in request
Here we use the convention that a delivery is a positive

number of items and a pickup is negative. Also,

corresponds to the location of request .

 Type 4 constraints. Every request is visited once.

∑ ∑

 ∑ ∑

 where is the location of request

 Type 5 constraints. Cargos must respect the

carrying capacity of the quadcopters.

 ∑

 ∑

 Type 6 constraints. A quadcopter moves to a

request if and only if it moves away.

∑

 ∑

 where is the location of request

 Type 7 constraints. A quadcopter arrives at each

station at least as many times as it leaves.

∑
 ∑

 Type 8 constraints. Battery is only consumed on

legs that are travelled.

 Type 9 constraints. The amount of battery left after

leaving a request is equal to the amount of battery

when arriving at that request less the amount of

battery consumed in leaving the request.

∑

 ∑
 ∑

where is the location of request .

 Type 10 constraints. The number of legs remaining

in a route only makes sense for edges in the route.

Here, was chosen as an upper bound for

the number of legs in a minimal route, effectively

leaving
 unbounded wherever

 is positive.

 Type 11 constraints. The number of legs remaining

after departing a node (other than a starting node) is

equal to the number of legs remaining upon arriving

at that node less the number of departures from that

node.

∑

 ∑
 ∑

where is the location of request . Although non-

obvious, this is valid even if the quadcopter visits a

node multiple times. The first arrival and last

departure have meaningful values although any

intermediate circuits may have shifted values.

 Type 12 constraints. The total time taken is at least

as long as the time taken by each quadcopter. (this

is how we fake a max() constraint)

 ∑

For the actual implementation, variables are

arranged into x blocks, corresponding to the edge

index. Within each block, the nodes are arranged in

the order, request locations, quadcopter start locations,

then ground vehicle locations. The variables are

placed in column-major order within each block. The

blocks are then arranged in order with x values first,

followed by q’s, then z’s, then t’s.

As an example, suppose we are dealing with a

single quadcopter, single request, single item, and

single ground vehicle. The request will then be at

location 1, the quadcopter at location 2, and the ground

vehicle at location 3. The variables in the linear

program will be arranged in the order,

 ,T

We can also make a number of preliminary cuts.

These are inequalities that follow from the integrality

constraints, but not from the linear constraints.

Including these cuts isn’t necessary, but they do

constrain the linear relaxation, which can reduce

solution time.

 Additional bounds. The legs departing from a

quadcopter’s starting location can be constrained

based on cargo. If the end of the leg is a delivery

and the quadcopter’s cargo does not include the

goods to be delivered, then that leg cannot be taken.

Similarly, if the end of the leg is a pickup and there

is insufficient room remaining in the quadcopter’s

capacity, the leg cannot be taken.

 Type 13 constraints. All quadcopters must move. If

a quadcopter is already at a vehicle we want it to

wait, but this can be satisfied by moving the 0

distance to the vehicle.

 ∑

4 Simulation and Results
MATLAB is used to simulate the delivery quadrotor.

4.1 Model Simulation
The quadrotor model simulation shown in figure 6.

Figure 6: Model Simulation

4.2 Simulink Models
The followings are snapshots of the Simulink models

Figure 7: Attitude control Simulink model

Figure 8: Attitude controller

Figure 9: Quadcopter control mixing overview

Figure 10: Plus configuration control mixing

Figure 11: Quadcopter dynamic block

4.3 Attitude and Position Control (AC, PC)

Results

Figure 12: Position, velocity, angle and angular velocity results for

AC

Figure 13: Motor results for AC

Figure 14: Position, velocity, angle and angular velocity results for

PC

Figure 15: Motor results for PC

4.4 Computer Vision
The quadrocopter registers pictures, navigation data

and videos and uploads them promptly to be handled

by first getting the edge using Canny edge detection

[9, 10] as shown in figure 16. Then by applying data

fusion, the system is able to navigate well by keeping

the exact distant on its way around the walls.

Figure 16: Canny edge detection

The quadrotor updates its position on a local map as

shown in the following section.

4.5 Autonomous “SLAM”

Figure 17: SLAM Map Builder

Figure 18: SLAM in progress

Figure 19: Position error and uncertainty for SLAM

Figure 20: SLAM results

5 Conclusion and future work
The aim of this paper is to present the specification

and the implementation of an autonomous quadrotor

delivery system that fuses data from camera and IMU

(Inertial Measurement Unit) to allow for high precision

visual-inertial navigation. In this paper, an autonomous

quadrotor delivery system is proposed. The

specification of the system is proposed. The

implementation of the system introduced SolidWorks

design for the system, mathematical modelling for the

pickup and delivery problem (PDP). Simulation results

using MATLAB have been shown for the

implementation of the model, control system and

simultaneous localization and mapping (SLAM) using

Extended Kalman Filter algorithm (EKF-SLAM) used

for making the system autonomous. Experimental

results for the use of canny edge detection algorithm

have been shown. Future work include using solar

energy for charging and make a collaboration among

quadrotors as a swarm.

References
[1] Lozano, Rogelio, ed. Unmanned aerial vehicles: Embedded

control. John Wiley & Sons, 2013.

[2] Hou, Hongning, et al. "A simple controller of minisize

quad-rotor vehicle." Mechatronics and Automation

(ICMA), 2010 International Conference on. IEEE, 2010.

[3] Kim, Jinhyun, Min-Sung Kang, and Sangdeok Park.

"Accurate modeling and robust hovering control for a

Quad–rotor VTOL aircraft." Journal of Intelligent and

Robotic Systems 57.1-4 (2010): 9.

[4] Mourikis, Anastasios I., et al. "Vision-aided inertial

navigation for spacecraft entry, descent, and landing."

IEEE Transactions on Robotics 25.2 (2009): 264-280.

[5] Kottas, Dimitrios G., et al. "On the consistency of vision-

aided inertial navigation." Experimental Robotics. Springer

International Publishing, 2013.

[6] Mosterman, Pieter J., et al. "A heterogeneous fleet of

vehicles for automated humanitarian missions." Computing

in Science & Engineering 16.3 (2014): 90-95.

[7] Hartman, M. M. S. M. D., K. Landis, and J. K. D. B. C.

Chang. "Quadcopter dynamic modeling and simulation."

freeware project presented at “2014 MATLAB and

Simulink Student Design Challenge”. 2015.

[8] Durrant-Whyte, Hugh, and Tim Bailey. "Simultaneous

localization and mapping: part I." IEEE robotics &

automation magazine 13.2 (2006): 99-110.

[9] Green, Bill. "Canny Edge Detection Tutorial.", (2002).

[10] Bailey, Mark Willis. Unmanned aerial vehicle path

planning and image processing for orthoimagery and

digital surface model generation. Diss. Vanderbilt

University, 2012.

[11] D’Angelo, R., and R. Levin. "Design of an Autonomous

Quad-rotor UAV for Urban Search and Rescue." Worcester

Polytechnic Institute (2011).

[12] Bouabdallah, Samir, Andre Noth, and Roland Siegwart.

"PID vs LQ control techniques applied to an indoor micro

quadrotor." Intelligent Robots and Systems, 2004.(IROS

2004). Proceedings. 2004 IEEE/RSJ International

Conference on. Vol. 3. IEEE, (2004).

[13] Bresciani, Tammaso. "Modelling, identification and control

of a quadrotor helicopter." MSc Theses, Department of

Automatic Control, Lund University (2008).

[14] Bouabdallah, Samir, Pierpaolo Murrieri, and Roland

Siegwart. "Design and control of an indoor micro

quadrotor." Robotics and Automation, 2004. Proceedings.

ICRA'04. 2004 IEEE International Conference on. Vol. 5.

IEEE, (2004).

[15] Johnson, Eric N., and Michael A. Turbe. "Modeling,

control, and flight testing of a small ducted-fan aircraft."

Journal of Guidance Control and Dynamics 29.4 (2006):

769-779.

[16] Hoffmann, Gabriel M., et al. "Quadrotor helicopter flight

dynamics and control: Theory and experiment." Proc. of

the AIAA Guidance, Navigation, and Control Conference.

Vol. 2. (2007).

[17] Gibiansky, Andrew. "Quadcopter dynamics, simulation,

and control." Andrew Gibiansky:: Math→[Code] 21

(2012).

[18] Siegwart, Roland, Illah Reza Nourbakhsh, and Davide

Scaramuzza. Introduction to autonomous mobile robots.

MIT press, (2011).

[19] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox.

Probabilistic robotics. MIT press, 2005.

[20] Crowley, James L. "World modeling and position

estimation for a mobile robot using ultrasonic ranging."

Robotics and Automation, 1989. Proceedings., 1989 IEEE

International Conference on. IEEE, 1989.

[21] Ayache, Nicholas, and Olivier D. Faugeras. "Building,

registrating, and fusing noisy visual maps." The

International Journal of Robotics Research 7.6 (1988): 45-

65.

[22] Jordan, M., "An Introduction to Probabilistic Graphical

Models", University of California, Berkeley, 2003.

[23] Cheeseman, P., R. Smith, and M. Self. "A stochastic map

for uncertain spatial relationships." 4th International

Symposium on Robotic Research. 1987.

[24] Bar-Shalom, Yaakov. Tracking and data association.

Academic Press Professional, Inc., 1987.

[25] Neira, José, and Juan D. Tardós. "Data association in

stochastic mapping using the joint compatibility test."

IEEE Transactions on robotics and automation 17.6 (2001):

890-897.

[26] Stuart Russell and Peter Norvig, "Artificial Intelligence: A

Modern Approach," Prentice-Hall, Englewood Cliffs, NJ,

2010,3rd edition.

