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This work is concerned with the study of vibrations induced by a laser beam in the context of different 

theories of magneto thermoelasticity, coupled thermoelasticity (CTE), thermoelasticity with one 

relaxation time (L-S) and thermoelasticity without energy dissipation (G-L), of an infinitely long solid 

conducting circular cylinder. The surface of the cylinder is assumed to be traction free. The temporal 

profile of the laser beam is considered as non-Gaussian. The cylinder is considered to be made of an 

isotropic homogeneous thermoelastic material put in a uniform magnetic field in the direction of the 

axis. This produces an induced magnetic field and an induced electric field. Laplace transform 

techniques are used to derive the solution in the Laplace transform domain. The inversion process is 

carried out using a numerical method based on Fourier series expansions. The temperature, 

displacement, stresses, induced magnetic field and induced electric field are calculated numerically, and 

graphically represented. 
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Introduction 

The dynamic interactions between the thermal and 

mechanical fields in solids are important due to 

their numerous applications in the field of 

geophysics, plasma physics and related topics, 

especially in the nuclear field and high-speed 

particle accelerators. The theory of generalized 

thermoelasticity with one relaxation time was 

introduced by Lord and Shulman [1]. In this theory 

Cattaneo -Maxwell law of heat conduction 

replaces the conventional Fourier’s law. The heat 

equation associated with this theory is a hyperbolic 

one and hence it automatically eliminates the 

paradox of infinite speeds of propagation inherent 

in both the uncoupled and the coupled theories of 

thermoelasticity. For many problems involving 

steep heat gradients and when short time effects 

are sought, this theory is indispensable. Sherief 

and El-Maghraby proposed a solution to some 

crack problems related to this theory [2-3]. Sherief 

and Hamza have successfully presented the 

solution of axisymmetric problems in spherical 

regions [4] and in cylindrical regions [5]. Sherief 

and Ezzat have offered the solution in the form of 

series [6]. Sherief and Dhaliwal used asymptotic 

expansions to obtain the solution of a 1D problem 

and to find the locations of the wave fronts and the 

speed of propagation of thermoelastic waves [7]. 
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This theory was extended to deal with 

micropolarity of the medium [8], viscoelastic 

effects [9]. This subject has been studied by other 

workers [10-12]. An increasing attention is being 

devoted to the interaction between magnetic fields 

and strain in a thermoelastic solid due to its 

numerus applications. In these investigations, the 

heat equation under consideration is usually taken 

as the uncoupled or the coupled equation and not 

the generalized one. This attitude is justified in 

some situations where the solutions obtained, 

using any of these equations, differ quantitatively 

to a small extent. However, when short time 

effects are considered, the full, generalized system 

of equations has to be used, otherwise a great deal 

of accuracy is lost [1].  

 

Among the authors who considered the generalized 

magneto-thermoelastic equations are Nayfeh and 

Nemat-Nasser [13] who studied the propagation of 

plane waves in a solid under the influence of an 

electromagnetic field. These authors have obtained 

the governing equations in the general case and the 

solution for some particular cases. Sherief and 

Khader [14] studied Propagation of discontinuities 

in electromagneto generalized thermoelasticity in 

cylindrical regions and calculated the speed of 

waves. 

 

Green and Lindsay [15] developed the theory of 

generalized thermoelasticity with two relaxation 

times, based on a generalized inequality of 

thermodynamics. In this theory both the equations 

of motion and of heat conduction are hyperbolic. 

The heat conduction law is the same as Fourier’s 

law when the system has a centre of symmetry. 

Among the contributions to this theory are the 

works in [16-17]. 

 

Green and Nagdhi [18-20] have formulated a new 

model of thermoelasticity. This model predicts that 

the internal rate of production of entropy is 

identically zero, i.e., there is no dissipation of 

thermal energy. This is known as thermoelasticity 

without energy dissipation theory (GN theory). In 

the development of this theory, the thermal 

displacement gradient is considered as a 

constitutive variable, whereas in the conventional 

development of a thermoelasticity theory, the 

temperature gradient is taken as a constitutive 

variable [12]. A couple of uniqueness theorems 

have been proved [21-22], and one-dimensional 

waves in a half-space and in an unbounded body 

have been studied [23-25]. 

 

Basic equations 
Let (r, φ, z) be cylindrical polar coordinates with 

the z-axis coinciding with the axis of a solid 

infinitely long elastic circular cylinder of a 

homogenous, isotropic material of radius a having 

finite conductivity at a uniform temperature T0. 

The surface of the cylinder is assumed to be 

traction free. A constant magnetic field of strength 

H0 acts in the direction of the z-axis. This produces 

an induced magnetic field h and an induced 

electric field E. Because of the cylindrical 

symmetry of the problem, all the electro-magnetic 

quantities satisfy Maxwell’s equations. 

,
t
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where J is the electric current density. ε0 and μ0 are 

the electric and magnetic permeability's, 

respectively and B, D are the magnetic and electric 

induction vectors, respectively. 

Ohm’s law for moving media states that 
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where ζ0 is the electric conductivity and u is the 

displacement vector. This equation can be 

literalized by neglecting small quantities of the 

second order giving 


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(5) 

The basic equations represented by (CTE), (L-S) 

and (G-L) can be formulated in the following 

unified system: The equations of motion have the 

form 

 uρ 
t

γ-Fμ)u(λμ u ,iij,jii,jj 

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 T)1( 1                                                                                                   

(6) 

The equation of heat conduction has the form 
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The components of the stress tensor ζij are given 

by 
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Where λ and μ are Lamé’s modulii, T is the 

absolute temperature of the medium, and γ is a 

material constant given by γ = (3λ + 2μ) αt where αt 

is the coefficient of linear thermal expansion, T0 is 

a reference temperature assumed to be such that │( 

T-T0 ) / T0 │<<1. k is the thermal conductivity of 

the medium, cE is the specific heat at constant 

strain, τ1, τ2 are the relaxation times and Q the 

external heat flux. ρ is the density and F is the 

Lorentz force given by  

B JF     

0,)( 00  zr FFhHJF  . 

From equations (6)-(8)  

1- At 021  the equations, reduce to 

coupled thermoelasticity (CTE).  

2- At 0,0,1 21  n , the equations 

reduce to Lord-Shulman (L-S) model. 

3-  At 0,0,0 21  n , the equations 

reduce to Green-Lindsay (G-L) model. 

The applied magnetic field H0 has components 

 H0 = (0, 0, H0). 

We assume that the induced magnetic field has the 

components 

 h = (0, 0, h)  

E and J have the components 

 E = (0, E, 0)               and     J = (0, J, 0) 

Equations (1), (2) and (5) give 
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Eliminating J between equations (9) and (11), we 

obtain 
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Eliminating E between equations (10) and (12), we 

get 
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where 
2 is Laplace’s operator given by 
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. 

The displacement u has components 

 u = (u(r, t), 0, 0). 

This displacement field will produce the following 

strain components 
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The cubic dilatation e is thus given by 
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Applying the div operator to both sides of equation 

(6), the following was obtained: 
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The equation of heat conduction reduces the form 
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The equation of the stress tensor given by 
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Let the medium is heated uniformly by a laser 

pulse with non-Gaussian form temporal profile 

[18] as 

 ptt
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e
t

tL
tL




2
0)(  

Where tp is a characteristic time (measured by 

picoseconds) of the laser-pulse (the time duration 

of a laser pulse), L0 is the laser intensity which is 

defined as the total energy carried by a laser pulse 

per unit area of the laser beam. The conduction 

heat transfer in the medium can be modeled as 

one-dimensional problem with an energy source 

Q(r, t) near the surface, i.e. 
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Where δ1 is the absorption depth of heating energy 

and Ra is the surface reflectivity [10]. Note that the 

laser pulse may lie on the surface of the medium (r 

= 0) see figure 1. In this case, the energy source 

takes the form 
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Solution the problem 
Let us introduce the following non-dimension 

variables 
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The governing equations (10), (13), (16), (17) and 

(18) in non-dimensional form become (dropping 

the asterisks for convenience) 
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Figure  (1) Temporal of laser power L/L0  
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Solution in the Laplace Transform Domain 
Applying the Laplace transform with parameter s 

defined by the relation  
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to both sides of equations (19)-( 23), the following 

was obtained: 
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Eliminating h , e  from equations (25), (26), and 

(27), the following was obtained: 
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In a similar manner we can show that e,h   satisfy 

the equations 
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real parts of the characteristic equation: 
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and 
0I is the modified Bessel function of the first 

kind of order zero. 

Substituting from equations (33) and (34) into 

equations (25) and (27), the following was 

obtained: 
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From equations (24) and (39), we obtain 
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From equations (15) and (32), we get 
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From equations (32), (38), (41) and (28), we obtain 
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The induced fields E0 and h0 in the free space 

surrounding the cylinder satisfy the following 

equations: 
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where A4(s) is some parameter depending on s 

only and K0 is the modified Bessel function of the 

second kind of order zero. 

Substituting from equation (46) into equation (43), 

the following was obtained: 

)(
)(

1
4

0 sVrK
V

sA
E                                      (47) 

The boundary conditions of the problem can be 

written as: 

0),( tr ,      0),( trrr   at r = a, 

 

a r at            ,    E  E        ,       h h 00   

where a is the reduce of the cylinder. Taking the 

Laplace transform of both sides of the preceding 

equations, the following was obtained: 

0),( sa ,                                                     (48) 

0),( sarr                                                   (49) 

 at      r      ,   aE  E        ,  h  h  00  

Applying the boundary conditions, the following 

system of linear equations in the unknown 

parameters A1, A2, A3, and A4 could be obtained. 
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Solve equations (50)-(53) to find A1, A2, A3 and A4. 

 

Inversion of the Laplace Transform 
The method used to invert the Laplace transforms 

in the above equations is outlined as follows: let   

be the Laplace transform of a function f (r, t), the 

inversion formula for Laplace transforms can be 

written as [26]: 

 dssrftrf

d

d

 ),(e
i2

1
 = ),(  ts

 i +       

 i - 







, 

where d is an arbitrary real number greater than all 

the real parts of the singularities of .Taking s = d + 

i y, the above integral takes the form 

 dyiydrf
e

trf yti
td

 ),(e
2

 = ),(

      



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

 

Expanding the function h(r, t) = exp( dt) f(r, t) in a 

Fourier series in the interval [0,2L], we obtain the 

approximate formula [27] 

 

 f(r, t) = f∞ ( r, t) + ED  ,  
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L    t          , forc  + c = ½ r,tf k

k=

20)(

1

0 



      (54) 

 )/(Re / Likdfe
L

e
c Ltik

dt

k              (55) 

The discrimination error, ED, can be made 

arbitrarily small by choosing d large enough [27]. 

As the infinite series in (54) can only be summed 

up to a finite number N of terms, the approximate 

value of f(r, t) becomes 

Ltcctrf kN 2       0for  ,       +  ½ = ) , (

N

1=k

0 
(56) 

Using the above formula to evaluate f(r, t) we 

introduce a truncation error ET that must be added 

to the discrimination error to produce the total 

approximation error. 

Two methods are used to reduce the total error. 

First, the `Korrecktur` method is used to reduce the 

discrimination error. Next, the ε algorithm is used 

to reduce the truncation error and therefore to 

accelerate convergence. 

 

The Korrecktur method uses the following formula 

to evaluate the function f(r, t) 

 

f(r, t)= f∞ ( r, t) e 
2dL

 f∞ ( r, 2L+ t) + E`D  ,  

where the discrimination error   [27] 

Thus, the approximate value of f(r, t) becomes 

 

fNK(r, t) = fN(r, t)   e 
2dL

 fN`( r, 2L+t)                   (57) 

 

N` is an integer such that N` < N. 

The ε algorithm used to accelerate the convergence 

of the series (54) is described. Let N be an odd 

natural number and let 

 c  = s k

m

1=k

m    ,  

be the sequence of partial sums of (54). We define 

the ε sequence by 

 

 . . .   ,3  ,2  ,1  =  m       ,s =   ,0 = mm,m, 10 
  .  

And 

... , 3 , 2 , 1  =  m ,n  

  ,   
    

1
 +  =

mn,1m+n,
1m+, 1nm1,n+







  

It can be shown that [27] the sequence 

........,13111 ........,,........., N  

Converges to f(r, t) + ED - C0/2 faster than the 

sequence of partial sums 

 

 sm     ,    m =1,2,3, ...  . 

 

The actual procedure used to invert the Laplace 

Transforms consists of using equation (57) 

together with the ε-algorithm. The values of d and 

L are chosen according the criteria outlined in [27]. 

 

Numerical results and discussion 
We shall apply our results to the copper material. 

The material properties are  
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All field quantities: temperature, displacement, 

stress, induced magnetic field and induced electric 

field are dependent only on t, r.  The problem was 

solved for one value of time namely t = 0.1 The 

graphs for the temperature, displacement, stress, 

induced magnetic field and induced electric field 

are shown in Figs. (2-6), respectively. Dotted lines 

represent the solution for coupled thermoelasticity 

(CTE), dashed lines represent the solution for 

Green-Lindsay (G-L) model and solid lines 

represent the case Lord-Shulman (L-S) model. 

 

In the coupled thermoelasticity (CTE) we put

1,021  n  , in Green-Lindsay (G-L) model 

put 0,02.0,01.0 21  n , in Lord-Shulman 

(L-S) model put 1,02.0,0 21  n . In Fig. 

(2) the temperature distribution, it was observed 

that the curves have the same behavior for the 

three theories of thermoelasticity. There are 
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starting from out surface of the cylinder r = a, the 

heat is increasing until it constant.  

 

In Figs. (3-4) displacement distribution and stress, 

we observe all the curves start with negative values 

of z-axes, then rapidly increase to a maximal 

positive value and there after continuously 

decrease to zero value. In Fig. (5) the induced 

magnetic filed is the direction of the negative value 

of z-axes, the value of induced magnetic field is 

change between inside and out side of the cylinder. 

In Fig. (6) the value of induced electric filed is 

zero at r = 0, and it will increase inside and outside 

the cylinder until it becomes zero. 

 

 

 

 

 

 

 

 

 

 

 

Figure (3) Displacement distribution  

Figure (2) Temperature distribution  
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Figure (6) Induced electric field  

Figure (5) Induced magnetic field  

Figure (4) Stresses distribution  
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