# Quality Evaluation of Yoghurt Collected From the Local Market in Some Governorates of Egypt

Olfat M.R. Khater<sup>1</sup>, A.M. Gaafar<sup>2</sup>, A.S. El-Sisi<sup>2</sup> and Dalia A. Hafez<sup>3</sup>

Faculty of Home Economics, Minufiya University.
 Food Technology Research Institute, Agricultural Research Center, Giza.
 Faculty of Education, Suez Canal University.

# Abstract

The present study was carried out to evaluate quality of yoghurt collected from the local market in Cairo, Giza, Gharbia and Minufiya governorates and to compare it with the manufactured yoghurt using Bifidobacteria bifidum (B. bifidum) added to normal starter. Physicochemical, microbiological and organoleptic properties of all yoghurt samples were determined during 12 days storage period in a refrigerator. The results showed that yoghurt collected from Cairo and Giza markets contained less content of total solids and fat than that collected from Gharbia and Minufiya markets as compared to the manufactured yoghurt using B. bifidum. Microbiological examination revealed that the total viable bacterial count was less in yoghurt collected from Cairo and Giza markets than that collected from Gharbia and Minufiya markets. The coliform, mold and yeast count was nil or ignorable in all yoghurt samples till 6 days of storage, then these microorganisms were detected on the 9<sup>th</sup> and the 12<sup>th</sup> day of storage period. Organoleptic properties showed that the yoghurt collected from Gharbia and Minufiya markets. The manufactured yoghurt collected from Gairo and Giza markets has higher sensory scores and more acceptable than that collected from Gharbia and Minufiya markets. The manufactured yoghurt using B. bifidum has the best quality and high degree of acceptability by consumers.

Key words: Yoghurt - Quality evaluation - Chemical properties –Microbiological properties - Organoleptic properties- Bifidobacteria bifidum

# Introduction

Yoghurt is one of the most popular and oldest fermented milk products which result from fermentation of lactic acid of milk. It is very healthy and nutritious dairy product that commonly consumed in Egypt by all ages, especially in the fasting month of Ramadan. It had been proved that yoghurt has a value for controlling the growth of gastrointestinal bacteria and curing intestinal diseases such as constipation, diarrhea and bacillary dysentery (*Shahani and Chandan, 1974*). Yoghurt is being enjoyed everywhere in the world for its beneficial properties. It is easily digestible

and has a high nutritional value (*Hewitt and Bancroft, 1985 and Cakmakaci et al., 1993*) and therapeutic benefits (*Blanc, 1986 and Gilliland, 1991*). The effects of yoghurt include reducing the risk of cancer, improving the immune response, lowering the high blood cholesterol and helping the body to assimilate protein, calcium and iron (*Perdigeon et al., 1998 and Marona and Perdigeon, 2004*).

Bifidobacteria are gram-positive anaerobic bacteria commonly found in the intestinal tract of human and other mammals. Many Bifidobacteria containing dairy products have been developed due to their reported health promoting effects. These organisms are used to increase the beneficial properties of fermented milk, infant formulas, cheese and ice cream (*Davidson et al., 2000; McBrearty et al., 2001 and Saaveda et al., 2004)*. From the strains used in the industry of dairy products is Bifidobacteria bifidum which is particularly suitable due to its technological properties such as tolerance to oxygen and ability to grow in milk-based media (*Meile et al., 1997 and Janer et al., 2004*).

The quality of yoghurt in Egyptian local markets varies from shop to shop as there is no common standard for its processing. However, the general public becomes more conscious about the quality of yoghurt. Poor quality or adulterated milk, unhygienic practices associated with the involved manufacture process and the use of "wild-type" of starter culture give rise to poor quality yoghurt having only 6 - 12 hours shelf-life. Moreover, the vending alfresco and loose packed or unpacked yoghurt increase the chance of its contamination and hence deteriorate its keeping quality (*Aziz, 1985*).

The purpose of this study was to evaluate the quality of yoghurt samples collected from the local market in some Egyptian governorates and to compare it with the manufactured yoghurt using B. bifidum during 12 days storage in a refrigerator.

# Material and Methods

The present study was conducted at Dairy Science Department, Food Technology Research Institute, Agricultural Research Center, Giza.

## Manufacture of yoghurt:

Fresh cow's milk was obtained from the herd of Tokh Tanbisha Farm, Faculty of Agriculture, Minufiya University. Milk was heated to 85oC for 20 minutes, then inoculated with the starter (Bifidobacteria bifidum: normal starter at a ratio of 2:1). The inoculated batch was packed in plastic cups, cooled and incubated at 40 °C for 3.0 to 3.5 hours for coagulation. The produced yoghurt was stored in a refrigerator at  $6 \pm 1$  °C for 12 days and sampled for analysis on the same day of manufacturing (day 0) and three, six, nine and twelve days of storage period.

### **Collection of samples:**

Yoghurt samples were randomly collected from the local market of Cairo, Giza, Gharbia and Minufiya governorates under hygienic conditions at the same day of manufacture. Twenty samples were collected from each governorate and the samples of each governorate were separately pooled, kept directly in a refrigerator at  $6 \pm 1$  °C for 12 days and used for different analyses on days zero, three, six, nine and twelve days of storage period.

#### **Physicochemical analysis**

Total solids, pH values and titratable acidity were determined according to the methods described in *AOAC (1995)*. Fat content was estimated by Gerber method as described by *Pearson (1976)*. Total volatile fatty acids were determined by the method of *Kosikowski (1984)* and diacetyl methyl carbinol was determined according to *Lees and Jago (1969)*.

#### **Microbiological Analysis:-**

For total bacterial counts, the standard methods for examination of dairy products were followed according to *Marth (1978)*. Coliform, yeasts and molds were counted according to the methods described by *APHA (1992)*. Lactic acid bacilli were counted according to *Tharmaraji and Shah (2003)*.

## **Organoleptic Evaluation:**

Ten well trained panelists from the staff members of Dairy Science Department, Food Technology Research Institute, Agricultural Research Center were selected on the basis of training and experience for the sensory evaluation. They evaluated 20 gm of the collected and manufactured yoghurt using a quality rating score card for evaluation of flavor (60 points), body and texture (30 points) and color and appearance (10 points) as described by **Nelson and Trout** (1980).

#### **Statistical Analysis:**

The obtained data were statistically analyzed using student "t" test according to Steel and Torrie (1980).

# **Results and Discussion**

Data in Table (1) showed that pH values of the collected yoghurt from the local markets and that manufactured using B. bifidum gradually decreased, while the titratable acidity gradually increased during 12 days storage period. This may be due to fermentation of lactose as a result of an increase in the bacterial activity with subsequent increased lactic acid production as explained by *Hofi et al. (1979)*.

The results in Table (2) revealed that the content of total solids in both the collected and manufactured yoghurt decreased during the storage period. This may be attributed to addition of some stabilizers during processing of yoghurt which decrease the total solid content during storage period (*Tamime and Deeth, 1980*). However, the total solids content was high (16.88%) in the manufactured yoghurt using B. bifidum compared to that collected from Cairo (15.30%), Giza (15.20%), Gharbia (15.70%) and Minufiya (15.85%) markets at zero time of storage( day of manufacturing ). The fat content of the collected and manufactured yoghurt slightly decreased during 12 days storage period. This result may be due to fat hydrolysis and liberation of free fatty acids from fat. Moreover, the contents of total solids and fat were in agreement with those reported by *Abd El-Salam et al. (1996*) who attributed the decrease in the content of total solids and fat to the hydrolysis of protein and fat, respectively, by the heat stable bacterial enzymes.

There was a slight increase in the total volatile fatty acids in the collected and manufactured yoghurt during 12 days storage period as shown in Table (3). This result may be due to the increased bacterial activity causing lipolysis via heat stable bacterial enzymes leading to an increase in the total volatile fatty acids. The content of diacetyl methyl carbinol in the manufactured yoghurt was higher than that of the collected yoghurt from the local markets (Table 3). However, the content of diacetyl methyl carbinol in both collected and manufactured yoghurt increased up to the 6<sup>th</sup> day of storage and then decreased till the end of storage period (12 days).

Results given in Table (4) show the total bacterial count and lactic acid bacilli in yoghurt samples. At zero time of storage, the counts of total bacteria and lactic acid bacilli were higher in the yoghurt collected from Minufiya and Gharbia markets than that collected from Cairo and Giza markets, while the manufactured yoghurt using B. bifidum contained the least bacterial count. Moreover, the bacterial count increased during the storage period up to the 6<sup>th</sup> day, then decreased till the 12<sup>th</sup> day of storage period. These findings could be attributed to the use of low quality milk or unhygienic measures practiced during manufacturing of the yoghurt collected from the local markets as compared to the manufactured yoghurt using B. bifidum in the laboratory.

Concerning coliform bacterial count in yoghurt samples, the results in Table (5) revealed that the manufactured yoghurt using B. bifidum was devoid of these bacteria. The yoghurt collected from Minufiya markets contained up to 4.0 CFU/ml x 10<sup>3</sup> at the 12 <sup>th</sup> day of storage, while that collected from Cairo, Giza and Gharbia markets contained 3, 2.8 and 3.8 CFU/ml x 10<sup>3</sup> at the end of storage period (12 days), respectively. The presence of coliform bacteria in the collected yoghurt samples is an indication of poor quality product and unsanitary conditions during processing that lead to contamination of the product. As shown in Table (5), the yeasts and moulds were not detected in all yoghurt samples up to the 6<sup>th</sup> day of storage, while these organisms were detected at the 9<sup>th</sup> and the 12<sup>th</sup> day of storage period.

The microbiological study clearly indicated the superiority of the manufactured yoghurt using, B. bifidum than the collected yoghurt from the local markets in all Egyptian governorates. However, the yoghurt collected from Cairo and Giza markets has lesser contamination than that collected from Gharbia and Minufiya markets.

Results given in Table (6) revealed that the overall sensory evaluation scores were high (91 %) in the manufactured yoghurt using B. bifidum after 12 days of storage. The yoghurt collected from Minufiya (64%) and Gharbia (70%) markets has lower organoleptic properties as compared to that collected from Cairo (80%) and Giza (78%) markets after the same period of storage.

It could be concluded that the quality and microbiological properties of yoghurt collected from the local markets in Cairo and Giza are better than that collected from Gharbia and Minufiya markets. The manufactured yoghurt using B. bifidum has the best quality and high degree of acceptability. It is very necessary to protect yoghurt from contamination during and after its processing and great attention should be taken for the quality of milk used for the manufacture of yoghurt.

|              |      |        | pН        |        |     | Titratable acidity    |      |      |      |      |  |
|--------------|------|--------|-----------|--------|-----|-----------------------|------|------|------|------|--|
| Collection   |      | Storag | je period | (days) |     | Storage period (days) |      |      |      |      |  |
| sites        | Zero | 3      | 6         | 9      | 12  | Zero                  | 3    | 6    | 9    | 12   |  |
| Cairo        | 4.6  | 4.3    | 4.2       | 4.1    | 3.9 | 1.04                  | 1.20 | 1.25 | 1.27 | 1.28 |  |
| Giza         | 4.6  | 4.4    | 4.3       | 4.1    | 4.0 | 1.10                  | 1.24 | 1.30 | 1.32 | 1.33 |  |
| Gharbia      | 4.5  | 4.2    | 4.1       | 4.0    | 3.8 | 1.12                  | 1.25 | 1.32 | 1.34 | 1.34 |  |
| Minufiya     | 4.5  | 4.1    | 4.1       | 3.9    | 3.7 | 1.14                  | 1.27 | 1.36 | 1.37 | 1.39 |  |
| Manufactured | 4.8  | 4.5    | 4.3       | 4.2    | 4.1 | 0.98                  | 1.18 | 1.21 | 1.25 | 1.26 |  |
| yoghurt      |      |        |           |        |     |                       |      |      |      |      |  |
|              |      |        |           |        |     |                       |      |      |      |      |  |

| Table | (1): | pН | and   | titratable | acidity   | for   | the | collected | yoghurt | samples | (20gm | each) | and | yoghurt |
|-------|------|----|-------|------------|-----------|-------|-----|-----------|---------|---------|-------|-------|-----|---------|
|       |      | m  | anufa | actured us | sing B. I | oifid | um. |           |         |         |       |       |     |         |

 Table (2): Total solids and fat contents for the collected yoghurt sample (20gm each) and yoghurt manufactured using B. bifidum.

|              | Total solids content (%) Fat content (%) |       |             |                       |       |      |     |     |     |     |
|--------------|------------------------------------------|-------|-------------|-----------------------|-------|------|-----|-----|-----|-----|
| Collection   |                                          | Sto   | rage period | Storage period (days) |       |      |     |     |     |     |
| sites        | Zero                                     | 3     | 6           | 9                     | 12    | Zero | 3   | 6   | 9   | 12  |
| Cairo        | 15.30                                    | 15.25 | 14.80       | 14.28                 | 14.09 | 3.4  | 3.4 | 3.3 | 3.1 | 3.0 |
| Giza         | 15.20                                    | 15.20 | 14.85       | 14.31                 | 14.00 | 3.4  | 3.4 | 3.3 | 3.1 | 3.1 |
| Gharbia      | 15.70                                    | 15.51 | 15.44       | 15.00                 | 14.88 | 3.8  | 3.7 | 3.6 | 3.2 | 3.1 |
| Minufiya     | 15.85                                    | 15.65 | 15.50       | 15.20                 | 14.92 | 3.9  | 3.8 | 3.7 | 3.3 | 3.2 |
| Manufactured | 16.88                                    | 16.60 | 16.45       | 16.00                 | 15.84 | 4.8  | 4.8 | 4.7 | 4.5 | 4.5 |
| yoghurt      |                                          |       |             |                       |       |      |     |     |     |     |

Table (3):Total volatile acids and diacetyl methyl carbinol for the collected yoghurt samples (20gmeach) and yoghurt manufactured using B. bifidum.

| Collection              |      | Total vo<br>(ml 0.1<br>Storage | latile fatty<br>Na <sup>+</sup> OH/ <sup>.</sup><br>e period ( | y acids<br>100 g)<br>(days) |     |       | Diacetyl methyl carbinol<br>(µg/100 ml)<br>Storage period (days) |       |       |       |
|-------------------------|------|--------------------------------|----------------------------------------------------------------|-----------------------------|-----|-------|------------------------------------------------------------------|-------|-------|-------|
|                         | Zero | 3                              | 6                                                              | 9                           | 12  | Zero  | 3                                                                | 6     | 9     | 12    |
| Cairo                   | 6.4  | 7.3                            | 8.5                                                            | 8.6                         | 8.6 | 13.10 | 19.00                                                            | 20.90 | 14.70 | 11.60 |
| Giza                    | 6.4  | 7.2                            | 8.5                                                            | 8.5                         | 8.7 | 13.00 | 18.80                                                            | 20.20 | 14.50 | 11.50 |
| Gharbia                 | 6.4  | 7.3                            | 8.4                                                            | 8.5                         | 8.6 | 12.00 | 16.70                                                            | 18.00 | 13.60 | 11.20 |
| Minufiya                | 6.5  | 7.4                            | 8.6                                                            | 8.7                         | 8.9 | 12.70 | 16.90                                                            | 18.60 | 13.80 | 11.30 |
| Manufactured<br>yoghurt | 6.4  | 7.4                            | 8.6                                                            | 8.9                         | 9.1 | 14.20 | 20.20                                                            | 25.70 | 22.20 | 19.80 |

Table (4): Total bacterial and lactic acid bacilli count of yoghurt samples (20 gm each) and yoghurtmanufactured using B. bifidum. (n=3 samples)

|                              |                  | Total bacte      | rial count (Cl   | FU/ml x 10 <sup>7</sup> ) |                  | Lactic acid bacilli count (CFU/mlx10 <sup>7</sup> ) |                  |                  |                   |                  |  |  |  |  |
|------------------------------|------------------|------------------|------------------|---------------------------|------------------|-----------------------------------------------------|------------------|------------------|-------------------|------------------|--|--|--|--|
| Collection                   |                  | Storage          |                  |                           |                  |                                                     | Storage          |                  |                   |                  |  |  |  |  |
| sites                        |                  | period (days)    |                  |                           |                  |                                                     | period (days)    |                  |                   |                  |  |  |  |  |
|                              | Zero             | 3                | 6                | 9                         | 12               | Zero                                                | 3                | 6                | 9                 | 12               |  |  |  |  |
| Cairo                        | 70.50 ±          | 150.00 ±         | 220.00 ±         | 165.00 ±                  | 60.00 ±          | 42.00 ±                                             | 105.00 ±         | 165.00 ±         | 118.50 ±          | 69.00 ±          |  |  |  |  |
|                              | 3.3 <sup>b</sup> | 3.6 <sup>b</sup> | 5.6 <sup>b</sup> | 6.4 <sup>b</sup>          | 3.2 ⁵            | 3.6 ⁵                                               | 2.8 <sup>5</sup> | 4.5 <sup>b</sup> | 11.8 <sup>b</sup> | 2.5 <sup>b</sup> |  |  |  |  |
| Giza                         | 79.00±           | 155.00 ±         | 240.00 ±         | 170.00 ±                  | 62.00 ±          | 45.00 ±                                             | 110.00 ±         | 170.00±          | 130.00±           | 72.50±           |  |  |  |  |
|                              | 2.8 <sup>⊾</sup> | 3.9 °            | 4.5 <sup>b</sup> | .12.6 ⁵                   | 9.3 °            | 2.4 <sup>b</sup>                                    | 2.4 <sup>b</sup> | 4.6 <sup>b</sup> | 7.8 "             | 3.3 *            |  |  |  |  |
| Gharbia                      | 85.50 ±          | 160.00 ±         | 260.00 ±         | 180.50 ±                  | 70.00 ±          | 49.50 ±                                             | 112.00 ±         | 172.50 ±         | 135.00 ±          | 75.00 ±          |  |  |  |  |
|                              | 6.2 <sup>∎</sup> | 4.5 *            | 6.6 *            | 8.5 °                     | 6.4 <sup>a</sup> | 5.6 *                                               | 6.3 "            | 6.6 °            | 7.8 "             | 3.6 <sup>°</sup> |  |  |  |  |
| Minufiya                     | 90.00 ±          | 171.50 ±         | 266.00 ±         | 190.00 ±                  | 76.00 ±          | 55.00 ±                                             | 120.00 ±         | 180.50 ±         | 138.00 ±          | 82.50 ±          |  |  |  |  |
|                              | 3.2 °            | 8.0 °            | 6.5 <sup>*</sup> | 7.6 °                     | 3.4 *            | 8.5 "                                               | 3.6 °            | 2.5 *            | 3.6 *             | 1.6 *            |  |  |  |  |
| Manu-<br>factured<br>yoghurt | 35.00 ±<br>1.7 ° | 56.00 ±<br>5.5 ° | 71.50 ±<br>2.8 ° | 40.00 ±<br>1.3 °          | 30.00 ±<br>3.6 ° | 31.00 ±<br>5.2 °                                    | 34.50 ±<br>4.8 ° | 40.00 ±<br>2.3 ° | 30.50 ±<br>1,8 °  | 23.00 ±<br>2.6 ° |  |  |  |  |

Means with different letters (a, b or c) in the same column are significantly different at P < 0.05, while means with similar letters (a & a or b & b) are non significant.

 Table (5):Coliform bacteria, yeast and mold counts of the collected yoghurt samples (20 gm each) and yoghurt manufactured using B. bifidum.

|                      |      | Colifo | irm bacteria               | il count                            |      | Yeast and mold count                                |    |    |      |        |  |
|----------------------|------|--------|----------------------------|-------------------------------------|------|-----------------------------------------------------|----|----|------|--------|--|
| Collection           |      | Stor   | (Cfu/m! x 10<br>age period | ) <sup>3</sup> )<br>(day <b>s</b> ) |      | (Cſu/ml x10 <sup>2</sup> )<br>Storage period (days) |    |    |      |        |  |
|                      | Zero | 3      | 6                          | 9                                   | 12   | Zero                                                | 3  | 6  | 9    | 12     |  |
| Cairo                | ND   | ND     | ND                         | 1.20                                | 3.00 | ND                                                  | ND | ND | 60.0 | 118.0  |  |
| Giza                 | ND   | ND     | ND                         | 1.30                                | 2.80 | ND                                                  | ND | ND | 65.5 | 120.8  |  |
| Gharbla              | ND   | ND     | ND                         | 2.60                                | 3.80 | ND                                                  | ND | ND | 72.5 | 129.7  |  |
| Minufiya             | ND   | ND     | ND                         | 2.50                                | 4.00 | ND                                                  | ND | ND | 80.9 | 140.60 |  |
| Manufactured yoghurt | ND   | ND     | ND                         | ND                                  | ND   | ND                                                  | ND | ND | 20.5 | 52.6   |  |

ND = Not detected.

| Evaluation scores | Flavor      | Body & texture | Color & appearance | Total |
|-------------------|-------------|----------------|--------------------|-------|
|                   | (60 points) | (30 points)    | (10 points)        | (%)   |
| Collection sites  |             |                |                    |       |
| Cairo             |             |                |                    |       |
| After 3 days      | 53          | 25             | 9                  | 87    |
| After 6 days      | 52          | 22             | 8                  | 82    |
| After 12 days     | 50          | 22             | 8                  | 80    |
| Giza              |             |                |                    |       |
| After 3 days      | 50          | 24             | 9                  | 83    |
| After 6 days      | 50          | 23             | 8                  | 81    |
| After 12 days     | 49          | 23             | 7                  | 78    |
| Gharbia           |             |                |                    |       |
| After 3 days      | 47          | 22             | 7                  | 76    |
| After 6 days      | 46          | 20             | 7                  | 73    |
| After 12 days     | 45          | 19             | 6                  | 70    |
| Minufiya          |             |                |                    |       |
| After 3 days      | 42          | 20             | 6                  | 68    |
| After 6 days      | 40          | 19             | 6                  | 65    |
| After 12 days     | 40          | 19             | 5                  | 64    |
| Manufactured      |             |                |                    |       |
| Yoghurt           |             |                |                    |       |
| After 3 days      | 58          | 28             | 9                  | 95    |
| After 6 days      | 58          | 27             | 9                  | 94    |
| After 12 days     | 57          | 26             | . 8                | 91    |
|                   |             |                |                    |       |

 Table (6):Organoleptic evaluation scores of the collected yoghurt samples (20 gm each) and yoghurt manufactured using B.bifidum.

## References

Abd El-Salam, M.H.A.; El Etriby, H.M. and Shahein, N.M. (1996): Influence of some stabilizers on some chemical and physical properties of yoghurt . Egypt. J. Dairy Sci., 24, 25.

APHA (American Public Health Association), (1992):

Compendium of Methods for the Microbiological Examination of Foods. 3<sup>rd</sup> Edition, Washington DC, Page 300 – 344.

## AOAC (1995):

Official Methods of Analysis of the Association of Official Analytical Chemists, 15<sup>th</sup> Ed., Virginia 22201, Arlington USA.

## Aziz, T. (1985):

Thermal processing of yoghurt to improve its keeping quality. Ind. J. Nutri. Dietet. 22: 80 - 87.

## Blanc, B. (1986):

The nutritional value of Yoghurt Int. J. Immunotherapy. II: 25 - 32.

**Cakmakaci**, S.; Caglar, A. and Turkoglu, H. (1993): Importance of yoghurt in human nutrition. Standard, 32: 29 – 38.

Davidson, R.H.; Dunan, S.E.; Hackney, C.R.; Eigel, W.N. and *Boling, J.W. (2000):* Probiotic culture survival and implications in fermented frozen yoghurt characteristics. J. Dairy Sci., 83: 666 - 673.

## Gilliland, S.E. (1991):

Properties of Yoghurt in "Therapeutic Properties of Fermented Milk" by Robinson, R.K. page 65, Elsevier Applied Science, London.

## Hewitt, D. and Bancroft, H.J. (1985):

Nutritional value of yoghurt. J. Dairy Sci., 52: 197 - 207

# Hofi, A.A.; El-Din, H.F. and El-Shbiny, S. (1979):

The chemical composition of market yoghurt. Egypt. J. Dairy Sci., 6, 25–31.

Janer, C.; Rohr, L.M.; Pelaez, C.; Laloi, M., Cleusix, V.; Requena, T. and Meile, L. (2004): Caseino-macropeptide and whey protein concentrate enhance Bifido bacterium lactis growth in milk. Food Chem., 86: 263 26

#### Kosikowski, F.V. (1984):

Cheese and Fermented Milk Food, 2<sup>nd</sup> Ed., Bottomland, NY, USA.

### Lees, G.J. and Jago, G.R. (1969):

Methods for the estimation of acetaldehyde in cultured dairy products. Aust. J. Dairy Techno., 24, 181 – 183.

Marona, D. and Perdigeon, G. (2004):

Yoghurt feeding inhibits promotion and progress of cancer. Med. Sci. Monit., 10: 96-104.

### Marth, E.H. (1978):

Standard Methods of Examinations of Dairy Products. 14<sup>th</sup> Edition, American Public Health Association (APHA), Washington DC, USA.

- McBrearty, S.; Ross, R.P.; Fitzgerald, G.F.; Collins, J.K.; Wallace, J.M. and Stanton, C. (2001): Influence of two commercially available Bifidobacteria cultures on cheddar cheese quality. Int. Dairy J., 11: 599 – 610.
- Meile, L., Ludwig, W., Rueger, U., Gut, A., Kaufmann, P.; Dasen, G.; Wenger, S. and Teuber, M. (1997): Bifido bacterium lactis a moderately oxygen tolerant species isolated from fermented milk. Syst. Appl. Microbiol., 20: 57 – 64.

## Nelson, J.A. and Trout, G.M. (1980):

Judging of dairy products. 4<sup>th</sup> Ed., INC, Westport, Academic press, page 345-367.

## Pearson, D. (1976):

Chemical Analysis of Foods. Churchill Livingstone, Edinburgh, London, page 108.

- **Perdigeon,** G.; Valdez, J. and Rachid, M. (1998): Antitumer activity of yoghurt. A study of possible immune response. J. Dairy S., 65: 129-139.
- Saaveda, J.M.; Abi-Hanna, A.; Moore, N. and Yolken, R.H. (2004): Long term consumption of infant formulas containing live Probiotic bacteria: Tolerance and safety. Am. J. Clin. Nutri., 79: 261-267.

Shahani, K.M. and Chanden, R.C. (1974):

Effect of bacteria in the dahi (Yoghurt). J. Dairy Sci., 32; 685 - 689.

Steel, R.G.D. and Torrie, J.H. (1980):

Principles and Procedures of Statistics, McGraw Hill Book Co. Inc., NY, USA.

Tamime, A.Y. and Deeth, H.C. (1980):

Yoghurt: Technology and Biochemistry. J. Food, Protect., 43, 939.

Tharmaraji, N. and Shah, N.P. (2003):

Selective enumeration of Lactobacillus bulgaricum, Streptococcus thermophilus, Bifidobacteria and propinobacteria. Dairy Sci., 86, 2288-2298.

تقييم جودة الزبادي المجمع من السوق المحلي في بعض محافظات مصر الفت محمد رشاد خاطر<sup>(۱)</sup> ، أحمد محمد جعقر<sup>(۲)</sup> ، أحمد صابر السيسي<sup>(۲)</sup> و داليا أمين حافظ <sup>(۳)</sup>

# الملخص العربى

اجريت هذه الدراسة بهدف تقييم جودة الزبادي الذي تم تجميعه من السوق المحلي فى محافظات القاهرة ، الجيزة ، الغريبة و والمنوفية ومقارنته بالزبادي المصنع باستخدام بكتيريا البيفدو (Bifidobacteria bifidum). وتم تعيين الخواص الفيزيائية ، الكيميائية ، الميكروبية والحسية لعينات الزيادي أثناء الحفظ لفترة ١٢ يوم في الثلاجة . وأظهرت النتائج أن الزبادي الذي تم تجميعه من أسواق القاهرة والجيزة يحتوي على نسبة أقل من المواد الصلبة الكلية والدهن عن الزيادي المجمع من أسواق الغريبة والمنوفية مقارنة بالزيادي المصنع باستخدام بكتيريا البيفدو . وأظهر الفحص الميكروبي أن العد الكلي للبكتيريا كان أقل في الزبادي الموع من أسواق القاهرة والجيزة يحتوي على نسبة أقل من المواد الصلبة الكلية والدهن عن الزيادي المجمع من أسواق الغريبة والمنوفية أسواق القاهرة والجيزة عن المجمع من أسواق الغربية والمنوفية . وكانت كل عينات الزيادي المجمع من الأسواق خالية من بكتيريا أسواق القاهرة والجيزة عن المجمع من أسواق الغربية والمنوفية . وكانت كل عينات الزيادي المجمعة من الأسواق خالية من بكتيريا الكولي فورم والفطريات والخمائر حتى اليوم السادس من الحفظ ، بينما احتوت على هذه الميكروبات بنسبة قالية في اليوم عشر من الحفظ . وكان تقيرم الخواص الحسية للزبادي المجمع من أسواق الغربية والمتوفية . وكانت كل عينات الزبادي المجمعة من الأسواق خالية من بكتيريا أسواق القاهرة والجيزة عن المجمع من أسواق الغربية والمنوفية ، وكانت كل عينات الزبادي المجمعة من الأسواق خالية من أسواق القرام والفطريات والخمائر حتى اليوم السادس من الحفظ ، بينما احتوت على هذه الميكروبات بنسبة قابلة في اليوم التاسع والثاني عشر من الحفظ . وكان تقيرم الخواص الحسية للزبادي المجمع من أسواق القاهرة والجيزة أعلى جودة وأكثر قبولا من الزبادي المجمع من أسواق الغربية والمنوفية ، وكان الزبادي المصنع باستخدام بكتيريا البودي هو الأعلى في الجودة ودرجة القبول عن الزبادي المجمع من كل الأسواق .