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Introduction                                                                                     

This work is devoted to study the masses spectra 
of some heavy charmonium states (Fig. 1). The 
quantum numbers and basic properties of most 
of the states in the charmoniumfamily can be 
described as a simple picture of a nonrelativistic 
quark-antiquark pair c . There are several 
theoretical ways to calculate charmonium 
spectra; one of these methods is the Fourier Grid 
Hamiltonian (FGH) method. The heavy  meson  
is  said  to be a charmonium if it is built up of 
charm quark (c) and anticharm quark ( ).

Experimentally, the heavy meson properties 
are used for clearing up of static and dynamic 
quark properties. Heavy meson spectroscopy is 
studied experimentally according to the particle 
data group (PDG)[1] as a comparable platform 
to the effective theoretical models. Over the 
years, there are so many articles studied the 
charmonium spectroscopy [1-10]. One of the 
most successful models used is the nonrelativistic 
model. Applying this model allows us to perform 
the calculation of the spectra based on the 
nonrelativistic Schrödinger equation, in which 
the effective potential of quark interaction U(r) 

is selected phenomenologically. Before the 
charmonium (c ) discovery, it was suggested 
that  if a  heavy charm  quark is  existent, a (c

) mesonstate should be found according to the 
nonrelativistic model. It is a difficult task to give 
good quantitative description to the charmonium 
or bottomonium spectrum based on the QED 
theory (although it gave a good description 
of charmonium and bottomonium in the first 
approximation of Balmer spectrum in QED), so 
it is advised to use the interplay of perturbative 
and nonperturbative aspects of QCD [11].

Phenomenologically, the system of quark-
antiquark can be studied successfully via some 
specific models that produce theoretical results 
comparable to the experimental values.

The motivation of this work is to investigate 
the reliability of the FGH method to the extracted 
masses spectra of charmonium systems in the 
framework of the nonrelativistic quark model. A 
detailed description of the main formalism to the 
FGH method [12,13] is reviewed. A brief Survey 
of the framework used in the current analysis is 
outlined. Results and discussions are provided.

FOURIER Grid Hamiltonian method in the frame work of the nonrelativistic model is a way 
to study the charmonium states (c ) based on microscopic effective quark interactions. 

The newly resulting spectrum doesn’t need any renormalization to fit the experimental 
and recent published theoretical spectra.Furthermore, theoretical calculations are in good 
agreements with existing experimental data.
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Theoretical Models and Model Calculations    
Three-Dimensional FGH Method
In this subsection, the main features of the 

FGH method are reviewed. It correlates between 
the potential energy at N grid points and the 
kinetic energy in the momentum space via 
forward and reverse Fourier transforms between 
the coordinate and the momentum space [14,15]. 
The N × N symmetric matrix H, obtained by 
discretization, has elements in the form of 
cosine sums. The task of calculating the bound 
state eigenvalue and eigenfunctions is thereby 
transformed to the task of finding eigenvalues 
and eigenvectors of the matrix H. The eigenvalue 
equation for a stationary state is given by

[ ]T V E+ ψ = ψ
 

     (1)

where,T


is the kinetic energy which depends 
only on the square of the relative momentum 
P between the particles, V is a local interaction 
which depends on the relative distance, and E 
is the eigenenergy of the stationary state. This 
equation is a nonrelativistic Schrodinger equation 
if

                                  (2)

where, m
1
 and m

2
 are the masses of the particles 

and µ is the reduced mass of the system in 
configuration space, Eq. (1) can be written as

]    (3)

In this concern, we only consider the case of a 
local central potential

( ) )V V r′ ′= ( −


δr r r r with r = r (4)

It is then useful to decompose the wave 
function into its central and orbital parts

                                   
where                       (5)

To compute the nonlocal representation of 
the kinetic energy operator, we introduce the 
basis states { λνK }, which are eigenstates 
of the operator P2. They are characterized by 
good orbital quantum numbers ( νλ, ), obey the 
relation

2 2( ) ( )T P k T k kλν = λν


    (6)

and satisfy the orthogonality relation

   (7)

The representation of these states in the 
configuration space is given by

2(2 / ) ( ) ( )r k k j kr Y rλ λνλν = π 
(8)

where the function ( )lj kr is the spherical Bessel 

Fig.1. Charmonium spectra.

/r r= r( ) Y ( )l lmR r r= ψr
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function. Using the completeness relation of basis 
states { k λν } and Eq. (7), we can find

By introducing the regularized function
, Eq. (3) can be written as in 

ref. [10]

  

This equation is considered as the basis of 
the three-dimensional Fourier grid Hamiltonian 
method.

Discretization
The continuous variable  r  will be replaced 

by a grid of discrete values ir
  

defined by

  With   =0,1,2,………………,N (11) 

where ∆ is the uniform spacing between the 

grid points. Regularity at the origin imposes

. For bound states, we have

. Consequently, we choose 

to set . This last condition 

is not necessary, but it does not spoil the accuracy 

of solutions. The normalization condition of the 

radial wave functioncan be written as

                                (12)

The discretization of this integral on the grid 
is given by

1
2

1

[ ( )] 1
N

l i
i

u r
−

=

∆ =∑                 (13)

The grid spacing ∆ in the configuration 
space determines the grid spacing k∆   in the 
momentum space. The maximum value of r  
considered to be Nr N= ∆ , the wave function 
works on a sphere of diameter 2 Nr

 
in the 

configuration space. This length determines the 
longest wavelength maxλ

 
and, therefore, the 

smallest frequency k∆   which appears in the k
-space is

max(2 / ) ( / )k N∆ = π λ = π ∆  (14)

Now, we have a grid in configuration space 
and a corresponding grid in momentum space as

    (9)

    
(10)

( / )sk s k s N= ∆ = π ∆

with   0,1, ,s =  N   (15)

For
  

( )i iV V r= , the discretization procedure 
replaces the continuous Eq. (10) by an eigenvalue 
matrix problem

1

1

N
n n

ij j n j
j

H e
−

=

=∑ φ φ
 

for  1,2, , 1i N= −  (16)

where,

2 3 2 2

1

(2 / ) (( / ) )

( / ) ( / )

N

ij
s

l l i ij

H N j S T s N

j s N j sj N V
=

= π π ∆

π π +

∑i

i δ
  

                                                                  (17)

The (N-1) eigenvalue enat Eq. (16) 
corresponds approximately to the first (N-1)
eigenvalues of Eq. (10). In case of potential 
possesses continuum spectrum, only eigenvalues 
below the dissociation energy are considered. 
Other eigenvalues which forma discrete spectrum 
of positive energies, are spurious and correspond 
to standing wave solutions satisfying
at and . The eigenvector
produces approximately the values of the radial 
part fornth solution of Eq. (10) at the grid points.

Brief survey of the potential model
The standard practice of describing 

charmoniumis adopted via the nonrelativistic 
kinematics by using the FGH method. The 
nonrelativistic (NR) potential [16-25] is the best 
way to study the heavy meson spectra because of 
the smallness of the relativistic effects. However, 
it is suitable to insert the spin-orbit and spin-
spin interaction to the potential. The spin-orbit 
interaction and tensor interaction are considered 
in the vacuum suggestion inside the heavy 
meson. It is recommended to add the tensor and 
spin-orbit terms into the considered potential to 
reflect the complete vision of the vacuumidea, 
the potential then can be given as Ref. [16]

2 2

0 0
(2 / ) ( ) ( ) ( )

( ) ( ) V( ) ( ) ( )

l

l l l l

dr r u r dk k T k

kr kr r E r

∞ ∞
′ ′ ′π

′ + =
∫ ∫r

j j r u u
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2 22 3

2 3

3

( ) (4 / 3 )

(32 / 9 )( / ) .

( ( 1) / 2 ) (1 / )[(( / )

( / 2 )) ] ( / )T

s

r
s c c c

s

s s

V r r br

m e S S
r

b r r

−σ

= − α + +

πα σ π

+ + + α

− + α


l l r

L.S

µ 2
cm

 

                                                                 (18)

where, the spin-orbit operator is diagonal ina 
, ,J L S basis, with the matrix elements

. [ ( 1) ( 1) ( 1)] / 2L S J J L L S S= + − + + +


 (19)

The tensor operator T
s
 has non-vanishing 

diagonal matrix elements only at L >0 spin-triplet 
states, which are

/ (6(2 3)), 1

1 / 6, J L

( 1) / (6(2 -1)), = -1
s

L
T

− + = +
= =
−

L J L

L + L J L

 (20)

Now, the potential model will be applied to 
get the spectra of charmonium (c ) bound states 
with wave functions determined by the radial 
Schrödinger equation. The spectroscopic results 
of the charmonium and open charm systems are 
presented and discussed on the next section.

Numerical Results and Discussion                          

Over the developing era of particle physics, 
charmonium spectroscopy has played an 
important role in understanding the quark-
antiquark interaction in the framework of quantum 
chromodynamics (QCD) in particle physics. The 
charmonium system provides a perfect platform 
for studying the strong force to improve the 
reliability of calculation for the charmonium 
spectroscopy. In this context, we restrict the mass 
region of charmonium spectrum to be below 
4.5GeV. The charmonium parameters were 
obtained by fitting the potential model in Eq. (20) 

to the known charmonium spectrum. The resulted 

values are 

, , b= 1.1446 (GeV)2 and σ= 
1.1412 (GeV). These parameters are readjusted 
to reproduce the overall experimental results of 
the charmonium particles. The masses of S, P 
and D-wave states are tabulated in Table 1 and 
are in good agreement with experimental data 
as well as other theoretical model predictions 
[26]. These results are satisfactorily reflecting 
their experimental data. The mass spectra of 
charmoniummes ons are also shown graphically 
in Fig. (2), (3)  and  (4). The obtained results reflect 
well the experimental measurements, especially 
for ground states. One can see obviously both the 
mass trajectories exhibit good behaviors and they 
are roughly consistent with each other. However, 
any increase on the mass will led to decrease on 
the mass shift and vice versa.

Conclusion                                                                         

In this work, the charmonium spectra 
predicted in the mass region below 4.5 GeV, 
for S, P and D-wave levels are studied. The 
FGH method is employed in the framework of 
the nonrelativistic quark model. Based on the 
obtained results, one can observe that the FGH 
method produces the charmonium states in high 
accuracy up to the level which can be compared 
to experimental results, as listed in Table 1 and 
shown in Fig. (2), (3) and (4). The considered 
method will be helpful to clarify the nature of 
the newly discovered mesons. Due to the lack of 
experimental spectra for charmonium, as light 
deviation on theoretical results is found. New 
measurements are recommended to measure 
charmonium spectra to provide more precise 
data for the future tests of different charmonium 
states. Furthermore, data at wide ranges of mass 
regions and energy levels of charmed mesons are 
also required in order to perform a systematic 
study.
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TABLE 1. Chamonium spectrain units of GeV. Calculated masses are listed in the third column in comparison to 
the results of Ref. [26] listed in the fourth column andexperimentalmasses listed in the fifth column.

Experimental masses 
in GeV [1]

Ref.
[26]

Theoretical masses 
in GeV    StateName

2.983± 0.5

3.637± 1.2

2.981

3.625

3.0303

3.6511

11S
0

21S
0

….

…..

4.032

4.368

4.037

4.4662

31S
0

41S
0

3.096± 0.006

3.686± 0.025

3.089

3.672

3.0922

3.6686

     13S
1

23S
1

4.039± 0.001

4.421±0.004

4.060

4.386

4.0693

4.4059

     33S
1

     43S
1

3.510±0.05

….

3.505

3.923

3.5825

4.062

13P
1         

23P
1         

3.556±0.07

….

3.556

3.970

3.5909

4.0725

13P
2          

23P
2         

3.525±0.11

….

3.524

3.941

3.5907

4.0712

11P
1            

21P
1           

….

…..

3.800

4.156

4.0247

4.1507

13D
2            

23D
2           

….

…..

3.806

4.164

4.0168

4.1451

13D
3            

23D
3           

Fig. 2. The trajectories of our theoretical masses, other theoretical masses 
ref. [26] and experimental masses varying with the S-wave levels.
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Fig. 3. The trajectories of our theoretical masses, other theoretical 
masses ref. [26] and experimental masses varying with the 
P-wave levels.

Fig. 4. The trajectories ofour theoretical massesand theoretical masses 
ref. [26] varying with the D-wave levels.
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