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The novel coronavirus SARS‐CoV‐2 (COVID‐19), 
a strain of severe acute respiratory syndrome‐
related coronavirus (SARSr-CoV), was first identified 
in December 2019 in Wuhan, the capital city of 
Hubei, China[1].Transmission dynamics of COVID‐19 
depends chiefly on the respiratory droplets and 
the direct contact with infected subjects (carrier 
or diseased)[2]. What prompted WHO to consider 
COVID‐19 a serious infectious agent is the high 
infectivity and speedy development into a 
pandemic. Additionally is its potentiality to cause 
severe pneumonia and acute respiratory distress 
syndrome (ARDS), a matter that may progress 
into multi‐organ dysfunction, and death in a few 
days to weeks in vulnerable subjects[3‐5]. However, 
it is worth mentioning that it has a lower fatality 
ratio if compared with the two related epidemics; 
SARS‐CoV‐1 and Middle East respiratory syndrome 
(MERS)‐CoV[6]. The COVID‐19 condition progressed 
internationally to influence deeply the economies of 
different countries. The closure of borders and the 
shutdown policy of all nonessential activities was 
followed in China, Italy, and South Korea while other 
countries like Iran minimized the working hours[7]. 
Moreover, in a trial to minimize false negative 
results, even with quantitative PCR methods, prompt 
scientific research with a large budget settled for 
alternative serological diagnosis[8]. A second wave is 
present now a days in some countries with different 
protective measures worldwide[9].

Theoretical data about COVID‐19 from previous 
outbreaks of other coronaviruses suggested a solid 
collaborative role for type I interferon (IFN1), tumour 
necrosis factor-α (TNF-α), and other cytokines 
in the viral immune response[10] as illustrated in 
figure (1). As a consequence, pulmonary histological 
changes include bilateral diffuse alveolar damage; 
cellular fibromyxoid exudates; desquamation 
of pneumocytes; hyaline membrane formation 
signifying ARDS; and interstitial infiltrates of 

mononuclear inflammatory cells mainly lymphocytes 
in both lungs[11]. Moreover, it has extensive effects on 
all organs causing inflammation, vasoconstriction, 
hypercoagulability, and oedema. Deep venous 
thrombosis, embolism formation and disseminated 
intravascular coagulation as well as ischemic stroke 
and myocardial infarction were reported[12].

It is worth mentioning that the epidemic of 
COVID‐19 came in accordance with some anti‐
parasitic elimination programs. For instance, in 
China, there has been counter measurements against 
emerging malaria infections[13]. Also, in Egypt, there 
were vast efforts to remodel the epidemic figure of 
hepatitis‐C virus[14,15], besides the continual efforts 
to eliminate schistosomiasis[16,17]. Moreover, the 
endemicity of parasitic infections in millions of 
people in the old world was referred to in several 
parasitological and tropical surveillance studies and 
now populations are facing such a pandemic[18,19]. 

With this concern in mind, we tried to relate 
the infectious problem of COVID‐19 differently and 
to determine if there might be any hidden benefits 
from the endemicity of the parasitic infections and/
or vectors in some countries on this virus infection. 
For instance, could the immune‐modulatory status 
in helminthic infections alleviate COVID‐19? What 
about cross‐reactivity? Can it accelerate herd 
immunity? Could COVID‐19 simulate some parasitic 
infections in the route of infection and, what about 
the efficacy of the anti-parasitic therapeutic regimens 
in this pandemic? All these questions we tried to 
broach and discuss in this review.

Can co-helminthic infections suppress immunity 
against COVID-19? 

Some parasites have the capacity to modulate 
the immune system to assure their longevity inside 
their hosts[20,21]. This process is chiefly observed 
in helminths across the three taxonomic categories 
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ABSTRACT
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(nematodes, cestodes, and trematodes)[22‐26]. The 
elicited type‐2 responses suppress T helper‐1 (Th1) 
cells. Also, the expanded populations of Th2 cells and 
alternatively activated macrophages direct the cytokine 
profiles towards IL-4, IL-5, IL-9, and IL-13. Helminths 
secrete immunomodulatory proteins that skew the 
production of IL-10 in addition to the extension of the 
regulatory T (Treg) cell and the regulatory B cells, and 
thus more inhibition occurs to type‐1 responses[27‐29]. 
Moreover, helminth‐induced alterations of the gut 
microbiome also have systemic immunomodulatory 
effects[30] as illustrated in figure (2).

In these regards, prior studies demonstrated the 
possible therapeutic effects of helminthic infections 
in some autoimmune and allergic reactions[31,32], 

and recently scientists questioned the possibility 
of helminthic co‐infection to modulate the severity 
of COVID‐19[33]. Interestingly, in 2018 a study 
demonstrated that IL-4 response during helminth 
infections can increase antigen-specific CD8+ T cell 
effector responses in the lung that enhances control of 
viral infection[34]. Similarly, previous studies on animal 
models demonstrated the role of parasites against viral 
infections ‘parasites against virus phenomenon’[35]. 
Trichinella spiralis and Nematospiroides dubius (N. 
dubius) were able to lessen the immune‐pathological 
changes caused by influenza A virus. Pulmonary 
viral titres were less in N. dubius co‐infection, and 
Heligmosomoides polygyrus infections attenuated 
pulmonary diseases after respiratory syncytial virus 
infection[36‐38]. Protozoal infections were also observed 

Fig. 1. COVID‐19 alveolar damage. (a) COVID‐19 gets attached to type‐II pneumocytes to start cycles of intracytoplasmic replications. 
Dendritic cells recognize viral particles via pattern recognition receptors (PRR); hence in response it secretes interleukin (IL)-17 
cytokines, IL-1, TNF-α, and IFN-1 to mediate fever and to promote dendritic cell differentiation, and leukocyte recruitment; (b) 
neutrophil induced oxidative damage; (c) alveolar collapse. Illustrated by E. Elsaftawy.
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to modulate the severity of viral infections. Concurrent 
infection with G. lamblia reduces the severity of 
diarrheal episodes in rotaviruses[39], in addition to the 
protective effect speculated between Plasmodium spp. 
and Chikungunya virus[40,41]. In this context, may passive 
immunization of COVID‐19 patients with serum from 
subjects with prior parasitic infections improve their 
clinical outcomes?

It is to be noted that COVID‐19 (SARS‐CoV2) and 
other CoVs like HCoV‐229E, HCoV‐OC43, and MERS are 
characterized by being neurotropic[42‐45]. In this concept, 
could COVID‐19 invasion of the CNS be augmented 
by neurotropic protozoa? And to what extent can the 
pathology associated with these parasitic infections 
facilitate the invasion of the virus? Still a matter of 
research. 

The CoVs can perform neuronal retrograde invasion 
to the CNS via the peripheral olfactory neuronal 
receptors, the trigeminal nerve in the nasal cavity, and 
sensory fibers of the vagus nerve in the brain stem[46‐48]. 
However, COVID‐19 requires angiotensin‐converting 
enzyme‐2 receptors to invade the host cells. Therefore, 
the process of cerebral invasion by the virus appeared 
to be dependable on the sufficiency of this receptor 
in the CNS[49‐51]. Herein, can we speculate that the 
co-existence of some unicellular eukaryotes, like N. 
fowleri[52] that possesses a similar route of infection, 
may encourage the invasion of the virus? Infectivity 
of N. fowleri trophozoites occurs through mucosal 
attachment in the nasal cavity, followed by locomotion 
along the olfactory nerve, then through the cribriform 
plate, to reach finally the olfactory bulbs within the 
CNS. The pathology related to N. fowleri is attributed to 
several factors: the significant innate immune response 
elicited upon residence of the parasite in the olfactory 
bulbs including macrophages and neutrophils; the 
food cups on the trophozoite surface that enable the 
parasite to ingest bacteria, fungi, and human tissue 
besides causing tissue destruction; and the release of 
cytolytic enzymes, e.g. acid hydrolases, phospholipases, 
neuraminidases, and phospholipolytic enzymes that 
destruct nerve cells[53‐57]. Could these pathogeneses 
facilitate invasion of the virus?

The CoVs were also found to invade CNS via the 
hematogenous route to pass through the blood‐

brain barrier (BBB) by mechanisms that involve the 
transcytosis across brain microvascular endothelial 
cells; the direct infection of the endothelial (in 
BBB) or epithelial cells (in blood‐CSF barrier); or 
intracellularly in a hidden manner by leukocytes[58]. 
Similarly, primary amoebic meningoencephalitis 
caused by Acanthamoeba spp. starts with the lower 
respiratory tract, then it crosses BBB and develops 
into encephalitis via a multifactorial process that 
includes parasite determinants in the form of adhesins, 
proteases, phospholipases; or host immune responses 
such as IL-α, IL-β, TNF-α, IFN-γ, and host cell apoptosis. 
Accordingly, this enhances the permeability of brain 
endothelial cells and disrupts BBB integrity[59‐61]. 

Can the anti-parasitic therapeutic regimens be 
effective in this pandemic?

Surprisingly, the routine anti‐viral treatment 
achieved little success in COVID‐19. Moreover, the 
pathological scenario in SARS CoV2 Corona virus 
appeared to simulate some parasites. For instance, 
similar to malaria, the virus targets the heme group 
(porphyry) in the RBCs releasing iron and depriving 
the body of oxygen with a dramatic increase in the 
cytokines[62]. In this instance, can we consider SARS 
CoV2 Corona virus to possess similar pharmaceutical 
targets to malaria infection? 
• Anti-malarial agents: The suggested impact of 

Hydroxychloroquine/chloroquine (HCQ/CQ), as 
regards to clinical settings, indicates that HCQ SARS-
CoV2 infection seems to protect against haemoglobin 
invasion simulating its action in malaria infection. It 
was observed that CQ interferes with the intracellular 
availability of free iron by raising the lysosomal pH and 
hinders the recycling of the ferritin receptors and thus 
depresses ferritin and iron uptake by hepatocytes, and 
iron remains bound to transferrin[63‐66]. In addition, 
CQ derivatives are supposed to interfere with T-cell 
activation via hindering the major histocompatibility 
complex (MHC) class-II-antigen presentation and 
intracellular calcium signalling[67]. On the other hand, 
HCQ has deep anti-inflammatory effects that alleviate 
the cytokine storm characteristic for COVID‐19[68,69]. 
Figure (3) illustrates the theoretical action of HCQ/CQ 
in COVID‐19.

• Ivermectin: The FDA has approved the use of 
Ivermectin for inhibition of SARS‐CoV‐2 replication 
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Fig. 3. The theoretical mode of action of HCQ/CQ compounds in 
COVID‐19 (1) Hampering viral invasion to the heme group; (2) 
Inhibition of iron (Fe) uptake by the hepatocytes; (3) In the dendritic 
cells, they inhibit the signalling pathway of the toll‐like receptors 
(TLR), raise the lysosomal pH, inhibit proteolysis, hinder chemotaxis, 
antigen processing, and assembly of MHC-α and -β chains of MHCs; 
(4) In the T cells, they inhibit toll cell receptors (TCRs)‐mediated 
intracellular calcium mobilization and suppress anti‐TCRs‐induced 
up-regulation of CD69 expression mandatory for T regulatory cell 
activation; (5) Inhibit TLR-mediated B cell functions, and (6) Exert 
immunomodulatory effect on the cytokine storm. Illustrated by E. 
Elsaftawy.
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by ~5000‐fold reduction at 48 h in vitro in cell 
culture. Ivermectin is adventitious for being widely 
available and included in the WHO model list of 
essential medications[70]. In addition, Patri and 
Fabbrocini[71] recently inquired if HCQ and ivermectin 
can be used as a synergistic combination for COVID‐19 
chemoprophylaxis and/or treatment? In response, Bray 
et al.[72] warned against using ivermectin in COVID‐19 
due to paucity of information regarding side effects.

• Can anti-Leishmania therapeutics be useful? 
T lymphocytes are assumed necessary for viral 
inactivation. However, it has been noticed that COVID‐19 
induces lymphopenia instead of lymphocytosis[73] 
simulating visceral leishmaniasis[74]. Accordingly, could 
anti‐leishmanial therapies re‐establish the lymphocytic 
count? Prior studies revealed the positive impact of 
antimony on CD4+ counts[75‐77].

• Could patients’ deworming programs add to 
the protection  against COVID-19?: One study 
demonstrated that anti‐helminthic therapy was 
associated with increases in CD4 counts and 
haemoglobin in addition to reduction in the viral load 
of HIV. However, its role in increasing the protection 
against COVID‐19 is still not evaluated[78]. 

Could cross reactivity of COVID-19 with endemic 
parasites share in the herd immunity against the new 
virus? 

Once herd immunity has been established and the 
ability of the disease to spread is hindered, the disease 
can ultimately be eliminated. Immune individuals act as 
buffers between susceptible and infected subjects[79,80]. 
However, immunity must be developed through previous 
infections. Consequently, we wonder if there might be 
cross‐reactivity between endemic parasitic infections and 
COVID-19. To which extent is the non-hygiene hypothesis 
beneficial in this regard, we do not know. However, 
previously researchers determined that exposure to a 
wide scale of germ antigens influences the building up of 
the immune system[81,82]. 

What is the role of arthropods in COVID-19 
transmission?
• Blood-sucking arthropods like mosquitoes as 

biological vectors in COVID-19: This may be 
considered if mosquitoes prove to be successful vectors 
in transmitting single stranded‐RNA spherical viruses 
of the families Flaviviridae[83]. One report from Latin 
America inquired if mosquitoes (Aedes aegypti) can be 
a ticking time bomb to transmit COVID‐19 especially 
since this geographical area suffered from the outbreak 
of ZIKA arboviral infection in the past few years. 
Moreover, the endemic dengue virus in Latin America 
transmittable by Ae. aegypti is difficult to distinguish 
from COVID‐19 clinically and laboratorically[84‐86]. In 
fact, some authors inquired about the possibility to 
analyse various insecticidal interventions to guard 
against mosquito bites and thus hinder the possible 

disease transmission[87]. Poinar[88] suggested Culex 
tarsalis as a potential vector of COVID‐19, since it is 
now a chief vector of West Nile virus, Western Equine 
encephalitis virus, and Saint Louis encephalitis virus 
in humans[88]. Although later the WHO declared that 
COVID‐19 cannot be transmitted by mosquitoes and 
a recent experimental study proved failure of the 
virus to replicate in some widely distributed species 
of the mosquitoes, Ae. aegypti, Ae. albopictus and 
Culex quinquefasciatus[89], however, the continuous 
mutation and changes in the structure of the virus 
may alter the interaction between the virus and 
different type of vectors. Therefore, more research is 
now mandatory to answer this question.

Another interesting point is the interactions between 
vectors and viruses which are still not well known. As 
noticed, the replication of flaviviruses and togaviruses 
in both insect and vertebrate hosts may accelerate the 
evolution into strains of varying virulence and host 
specificities[90]. Example of this evolution has been 
documented with the West Nile virus that is transmitted 
by Culex pipiens mosquito[91]. This raises the question 
whether mutations are possible with COVID‐19 upon 
interaction with different vectors.

• Musca domestica and cockroaches for mechanical 
transmission of COVID-19: It was speculated that 
coronaviruses may be secreted in fecal material and 
different body secretions (respiratory secretions, 
saliva, and even semen)[92‐94]. It is worth mentioning 
that M. domestica and cockroaches were proved 
capable of mechanical transmission of other 
coronaviruses. Accordingly, low hygiene level and 
prevalence of M. domestica and cockroaches in the 
environment are strongly suggestive of widening 
transmission[95,96]. 

Could parasitic infections increase morbidity in 
COVID-19?

As regards the health reports of rural communities 
in the USA, co‐infection with Ancylostoma duodenale 
may increase the severity of COVID‐19 as it induces iron 
deficiency anaemia and reduces iron stores (ferritin) 
dramatically[97], and thus adds to the disease caused by 
the iron release due to SARS‐CoV2. On the other hand, 
co‐infection with malaria could lead to worsening the 
outcome of disease caused by either of pathogens as 
both can induce a cytokine storm and coagulation 
state[98]. 

Are bats a common reservoir host for COVID-19[99,100] 
and parasitic infections?

Prior studies in China demonstrated the high 
anti‐Toxoplasma antibody titres in bats. Accordingly, 
bats were suggested as novel and threatful hosts 
for T. gondii[101‐103]. Moreover, in vitro studies 
speculated that T. gondii reactivates replication of 
HIV (monotropic strain) via the induction of cytokine 
secretion by macrophages[104]. It is worth mentioning 
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that ganciclovir which was initially integrated in the 
routine therapeutic regimen of COVID‐19 can induce 
reactivation of Toxoplasma pneumonia[105‐107]. 

Could parasites be infected with COVID-19 
(endosymbiosis)? 

Recent studies showed that the genome of 
Acanthamoeba spp. is fertilized with DNA fragments 
of nucleocytoplasmic large DNA viruses[108]. Since 
Acanthamoeba infection can start as a lower 
respiratory tract infection, it is worth asking about the 
possibility of infection of this protozoon with SARS CoV 
2, the single‐stranded RNA virus? Interestingly, many 
other protozoan parasites as Naegleria gruberi[109], 
E. histolytica[110], C. parvum[111], T. vaginalis[112], 
G. lamblia[113], Eimeria stiedai[114], Leishmania 
guyanensis[115] and Plasmodium spp.[116] were shown to 
be infected with double‐stranded RNA viruses. These 
viruses, despite being incapable of causing direct 
infections in vertebrates, their genomes are sensed 
by the innate immunity of the host causing various 
inflammatory sequels[117].

Conclusion: Endemicity of parasitic diseases, available 
anti‐parasitic therapeutics, role of arthropods as well 
as reservoir hosts, and possibility of endosymbiosis 
may possess an obscure role in COVID‐19 by either 
protection or morbidity increase. Close epidemiological 
studies are still required in this field.
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