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The mAssIve application of nanoparticles in many sectors including medicine, agriculture 
and industry caused their inevitable release into different environmental compartments 

particularly groundwater and soil. The fate and behavior of these nanoparticles in soil and 
groundwater and their effects on soil biosystem remain largely unaddressed. Nano-selenium 
(se-NPs) has intensive applications nowadays in different agroecosystems, but several studies, 
which highlight this behavior in plants and soils were carried out in individual case studies. In 
this concern, the interaction of nano-selenium with different nano-nutrients in soils and their 
uptake by cultivated plants still need urgent investigations. Based on the interaction is a common 
feature in the nature, there are still many unanswered questions regarding the interaction of se-
NPs with other nano-nutrients in soil for example: are these reactions synergistic or antagonistic? 
What are the factors controlling the bioavailability of nano-se in soil in presence of other nano-
nutrients? What is the expected role of stressful plants in orientation of this interaction among 
nano-nutrients? 
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Introduction                                                                      

Plants can grow under different conditions 
including natural and stressful ones, but the 
productivity of cultivated plants definitely will be 
decreased due these stressors. several studies have 
been published on the understanding response of 

these stressful plants. These studies have increased 
our knowledge in understanding the plethora 
of biochemical, physiological, morphological, 
cellular and molecular responses under stressful 
plants (saini et al. 2021). These stressors may 
include the abiotic stresses like salinity, drought, 
flooding, pollution, and heat stress; the biotic stress, 
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which result from the pathogens (Lassalle 2021). 
Under stressful conditions, many mechanisms 
or approaches take part to mitigate plant stress 
via endogenous agents such as phytohormones 
including cytokinin, gibberellin, ethylene, 
abscisic acid, brassinosteroids, salicylic acid and 
jasmonates (saini et al. 2021) and/or exogenous 
factors like applied se/nano-se (shalaby et al. 
2021), si/nano-si (Akhtar et al. 2021), nano-TiO2 
(Ogunkunle et al. 2020; shah et al. 2021), nano-
ZnO (Ahmed et al. 2021a), nano-CuO (Jośko et 
al. 2021), nano-iron/relatives (Zhang et al. 2021), 
and nano-organic fertilizer (Ahanger et al. 2021). 
As common studies, several investigations on 
individual nanoparticles on stressful plants have 
been published, but few studies were reported on 
combined nanoparticles (e.g., Ahmed et al. 2021a; 
Jośko et al. 2021; Badawy et al. 2021). 

Nano-selenium (i.e., nano-se or se-NPs) has 
unique properties like high bioavailability, low 
toxicity, high biological activity, high particle 
dispersion, and large surface area (Kumar and 
Prasad 2021). Thus, these nano-particles are 
widely in many sectors like medicine, e.g., 
drug delivery systems, medical diagnostics, 
antimicrobial agent, an antioxidant, anticancer 
agent, dietary supplement, and antidiabetic 
agent (Li and Xu 2020; he et al. 2021). In the 
agricultural sector, nano-Se has many beneficial 
effects on plant growth especially as nano-
fertilizer (Gudkov et al. 2020), plant anti-stress 
(Shalaby et al. 2021), and nano-biofortification 
(el-Ramady et al. 2020, 2021a, b).

Therefore, this mini-review is an attempt to 
provide insight on the following themes (i) the 
distinguished role of nano-se for decreasing plant 
stress, (ii) what is the fate and behavior of nano-
nutrients in soils, and (iii) what is the expected 
interaction among nano-se and other nano-
nutrients? This is a call from the eBss editorial-
board for more publications concerning this 
interaction among nano-nutrients in soil.

Nano-Se for stressful plants 
A stress could be defined as “the consequence 

of adverse effects of an external factor called 
stressor – or stress factor – on plant functions 
growth, and development”. Cultivated crops face 
great challenges especially under environmental 
stresses, which decrease their productivity 
(Lassalle 2021). environmental stressors include 
both abiotic stress (i.e., physical or chemical 
factors like salinity, drought, flooding, pollution) 
and biotic stress, which resulted from organisms 

like plants, pathogens, insects (Othman et al. 2014; 
Lassalle 2021). Crop productivity has become 
limited under stressful conditions, which result 
from both the natural and anthropogenic origins 
(Lassalle et al. 2020). many amendments have 
been used to mitigate biotic and abiotic stresses 
on cultivated plants particularly nanoparticles, 
e.g., Ag-NPs (Alabdallah and hasan 2021), nano-
TiO2 (Ogunkunle et al. 2020) or nano-nutrients 
like nano-se (seliem et al. 2020; Qi et al. 2021), 
nano-silica (Lian et al. 2021), nano-CuO (Cota-
Ruiz et al. 2020; Noman et al. 2020), nano-mgO 
(Ghassemi-Golezani et al. 2021), and nano-iron 
(moradbeygi et al. 2020; sreelakshmi et al. 2021). 

Concerning nano-se and its role to support 
the stressful plants, many studies confirmed 
this role, which is represented in the following 
investigations:

1- enhancing peanuts plants (Arachis hypogaea 
L.) due to exogenous foliar application of 
nano-se by activating antioxidant system 
under deficiency of nutrients in sandy soils 
(hussein et al. 2019a).

2- Promoting the yield of pomegranate (Punica 
granatum L.) and its quality under arid zone 
(Zahedi et al. 2019b). 

3- Alleviating Cd-toxicity in rice (Oryza sativa L.), 
moldavian balm (Dracocephalum moldavica 
L.), and oilseed rape (Brassica napus L.) by 
modulating photosynthesis parameters and 
activities of antioxidant enzymes (hussain 
et al. 2020; Azimi et al. 2021; Qi et al. 2021; 
Wang et al. 2021a).

4- mitigating chilling stress on sugarcane 
(Saccharum officinarum L.) photosynthesis 
(elsheery et al. 2020).

5- Protecting lettuce plants (Lactuca sativa L.) 
and strawberry (Fragaria × ananassa Duch) 
from salinity stress (Zahedi et al. 2019a; 
soleymanzadeh et al. 2020).

6- Reducing the negative impacts of heat stress 
on Chrysanthemum morifolium Ramat by 
enhancing antioxidant enzyme activities 
particularly peroxidase and catalase at 150 mg 
nano-se L-1; decreasing electrolyte leakage 
and polyphenol oxidase at 200 mg nano-se L-1 
(seliem et al. 2020).

7- Boosting the growth of cucumber (Cucumis 
sativus L.) and its productivity under soil 
salinity under heat stress by regulating the 
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osmotic balance and controlling stomatal 
opening through the high K+ content in 
cucumber leaves, which might support 
stressful cultivated plants (shalaby et al. 
2021). 

8- Alleviating the salinity stress on bitter melon 
(momordica charantia) plants by increasing 
proline, K+ and relative water content, 
the activity of antioxidant enzymes, and 
decreasing content of oxidants mDA and 
h2O2 (sheikhalipour et al. 2021).

9- enhancing the quantity and quality of grains 
of wheat (Triticum aestivum L.) by 5–40%, 
under drought and heat stress as well as 
enhancing their tolerance to wheat crown and 
root rot diseases (el-saadony et al. 2021a). 

many studies reported about the protective 
role of nanoparticles against many plant pathogens 
(i.e., bacteria, fungi, actinomycetes and nematode) 
like Ag-NPs (Gogoi et al. 2020; Javed et al. 
2020; Paul and Roychoudhury 2021), siO2-NPs 
(Parveen and siddiqui 2021), CuO-NPs (Ahmad 
et al. 2020; mehta et al. 2020; sathiyabama et al. 
2020), La2O3-NPs (Adeel et al. 2021b), ZnO-NPs 
(sharma et al. 2020; Khan and siddiqui 2021), 
and carbon-based nanomaterials (Adeel et al. 
2021a). On the other hand, few studies caried out 
on the role of nano-se in supporting the cultivated 
plants under biotic stress like el-saadony et al. 
(2021a), who investigated the wheat crown and 
root rot diseases induced by Fusarium spp. (i.e., 

Fusarium culmorum; Fusarium graminearum). 
some studies also were reported on using of se-
NPs in controlling tomato leaf blight caused by 
Alternaria alternata under greenhouse conditions 
(el-Gazzar and Ismail 2020), and against tomato 
late blight disease (Joshi et al. 2021). more 
studies on stressful plants under biotic stress are 
needed including different phyto-diseases (e.g., 
leaf and root wilt, stem and leaf bright, leaf spot, 
stem canker, and soft rot). some experiments 
were carried out in the Lab on nano-se including 
Alternaria solani (early blight) in tomato and 
potato (Fig. 1), Rhizoctonia solani (Fig. 2), and 
Trichoderma (Figs. 3 and 4). 

Nano-nutrients in soils
Day by day, huge amounts of applied 

nanomaterials and/or nanoparticles are being used 
in different agroecosystems. The environmental 
content of nano-materials was predicted in 
soils to be within the ranged of 10-7 to 102 mg 
kg−1, and in landfills is thought to be about 10-3 
to 103 mg kg−1 (Adeel et al. 2021b). several 
transformations could happen once nanoparticles 
release into soil, which may include adsorption, 
dissolution, sulphidation, aggregation and redox 
reactions (Jośko et al. 2021). This release and 
dynamics of NPs in soil may depend mainly 
on characterization of NPs and soil, and may 
include soil ph, clay content, soil organic matter, 
cation exchange capacity and the rhizosphere 
characterization (Gao et al. 2017, 2019; Jośko et 
al. 2020). The fate and behavior of nano-nutrients 

Fig. 1: Effect of nano-selenium on Alternaria solani (Early blight) in tomato and potato was investigated on PDA 
media using 0, 25, and 50 mg l-1 nano-Se. These Petri dishes were infected by Alternaria solani and after 9 
days from complete the growth in control petri dish, the reduction (inhibition rete) was calculated to be 25 
and 75% for the 25 and 50 mg l-1 nano-Se, respectively 
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Fig. 2: Effect of nano-selenium on Rhizoctonia solani (as root rot or damping off or stem rot) was investigated 
on PDA media using 0, 50, 100 and 200 mg l-1 nano-Se. These Petri dishes were infected by Rhizoctonia 
solani and after 4 days from complete the growth in control petri dish, the reduction (inhibition rete) was 
calculated to be 50, 50 and 75% for the 50, 100 and 200 mg l-1 nano-Se, respectively

Fig. 3: Effect of nano-Se on Trichoderma spp. was very strange, where it was noticed that nano-Se changed the 
way of growing Trichoderma in the media and changed its behavior without inhibiting its growth. This 
may explain the reason of increasing the effectiveness of Trichoderma, but this needs further study for 
confirming

Fig. 4: Effect of nano-Se on the growth of Trichoderma spp. After 30 days from nano-Se treatment, Trichoderma 
changed the way of growing in the media, but changed its behavior without inhibiting its growth. This may 
help in increasing the effectiveness of Trichoderma.
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or NPs in soil could be followed through three 
stations (i) nano-nutrients-soil interactions, (ii) 
nano-nutrients-rhizosphere interaction and (iii) 
nano-nutrients-plant interaction. Concerning the 
first station, soil environment can control the 
mobility of NPs, bioavailability and their toxicity 
in soil, which determine fate and sorption of 
nano-nutrients and subsequent impact on plants 
(Gao et al. 2018). Regarding nanoparticle-
rhizosphere interaction, it is controlling by soil 
type (sandy, clayey, loamy) and time of exposure 
to NPs. In rhizosphere, different metabolites 
secreted (exudates) by plants and soil organisms 
and these exudates can modulate the fate of 
nano-nutrients (Gao et al. 2018). These root 
exudates are abundant mixtures in rhizosphere 
that control the behavior of NPs including 
organic acids, amino acids, sugars, and phenolics 
as low-molecular weight compounds and high-
molecular weight compounds like mucilage 
(Gao et al. 2018; Wang et al. 2020). The third 
station (nano-nutrients-plant interaction), the 
phytotoxicity of nano-nutrients is governed by 
three factors including (1) plant type, species, 
and its growth stage, (2) nano-nutrients including 
size of NPs, concentration, and its aggregation 
and (3) growth media or experimental conditions 
including time, temperature, and method of 
exposure (Ahmed et al. 2021b).

some distinguished attempts were already 
achieved on the fate and behavior of nano-
nutrients or nanoparticles in soils and in some 
cases under cultivated plants, which could present 
in the following section: 

1- The behavior of NPs and their bioavailability 
in soil under driven factors by rhizosphere 
processes, which include root exudates, the 
activities of soil microbes and earthworm, 
signal transduction as well as nano-nutrients 
absorption and their transport (Wang et al. 
2020c). 

2- many kinds of nanoparticles have been discussed 
in the soil-plant environment including the 
interactions, assessing of their applications, 
fate and toxicity (shrivastava et al. 2019; 
Rajput et al. 2020; Ameen et al. 2021; Rizwan 
et al. 2021) like iron oxide-NPs (Kamran et al. 
2020), copper-based NPs (Bakshi and Kumar 
2021), silver-NPs (Courtois et al. 2021), TiO2-
NPs (Chavan et al. 2020), CeO2-NPs (Prakash 
et al. 2021), gold-NPs (malejko et al. 2021), 
and nano-silica (Lian et al. 2021). 

3- The expected interaction of nanoparticles with 
soil were reported by Ogunkunle et al. (2021). 
They discussed different NPs-sources and 
their transport into the soil with focus on NPs-
characterization including their shape, surface 
chemistry, size, and water solubility, which 
may control the fate of NPs in soil and their 
various processes. 

4- The release and behavior of nanoparticles in 
soils may follow one of the three following 
pathways for the interaction of NPs and soil 
components like (i) soil enzymes (de Oca-
vásquez et al. 2020; mishra et al. 2021), (ii) 
soil properties particularly soil organic matter 
(simonin et al. 2021), and (iii) soil macro-/
microbial communities (Ameen et al. 2021; 
Macůrkova et al. 2021). 

Concerning the efficacy of Se-NPs in soil, 
there are many multipurpose action and additional 
problems involved in the soil application of se-
NPs, which is related to content of soil organic 
matter (sOm) and its stimulation by the humic 
substance (hs) supplied simultaneously with se 
and other nanoparticles. With respect that hs, se-
NPs, and sOm functioning in the soil are linked to 
the degradation of organic matter, which is mainly 
controlled by soil microbial activities and linked 
to the soil fertility (Gudkov et al. 2020). The 
proper se-NPs functioning in soil is controlling 
by soil tillage, ploughing and other soil cultivation 
procedures, which may be linked to formation of 
soil aggregates system. soil moisture content also 
is an important factor controlling the functions of 
Se-NPs, HS, poly-microbial biofilms and the plant 
growth. The high soil water content (flooding) 
may cause a problem in leaching the nanoparticles 
and other soil matters (Gudkov et al. 2020). The 
profile distribution of natural NPs in paddy soils 
may affect by long-term rice cultivation (huang 
et al. 2021).

some published studies focused on responses 
of different cultivated crops to many different 
nanoparticles like applied NPs of Al2O3, CuO, 
TiO2, ZnO to cucumber plants cultivated 
on sandy-clay-loam field soil (Ahmed et al. 
2021c). many metal-oxide NPs are transformed 
by environmental factors such as CuO-NPs, 
which could be degraded into copper sulfate 
hydroxides and then release Cu2+ that increases 
the bioavailability of Cu in soil and its bio-
uptake by cultivated plants (servin et al. 2017). 
Concerning the uptake of nano-se, cultivated 
plants can take up the Se-NPs, which can influx 
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into roots as a “passive diffusion process” and the 
uptake rate of nano-se (chemical and biological 
forms) is lower than for the selenite form (hu 
et al. 2018). The chemical nano-se could easily 
uptake by plant roots more than the biological 
one especially when the nanoparticles are below 
50 nm in size. Few nanoparticles indicate that se 
could be transported from plant roots into shoots, 
and then they will rapidly assimilate into selenite 
and organic forms in roots and shoots. The uptake 
of Bio-se-NPs could be inhibited by aquaporins 
inhibiter in a higher rate compared to chemical 
se-NPs in 93.4 and 92.5%, respectively (hu et 
al. 2018). In general, the uptake rate of selenite 
and selenate was approximately equal, and both 
exhibited higher uptake rate than nano-se, which 
was estimated, in case of selenite, by 2.5-fold 
higher than nano-se (hu et al. 2018). Concerning 
the transformation of nano-se in roots, it is found 
that selenite was rapidly assimilated in wheat 
roots into organic forms (e.g., semet), whereas 
the nano-se appeared stable in the solution and 
did not oxidize to selenite (hu et al. 2018). The 
uptake of Se-NPs rice roots was confirmed; then 
they can transport successfully into the aerial 
parts and the dominant se-species was semet 
under different se-NPs treatment (Wang et al. 
2020b). selenium is characterized by its ability to 
be lost via volatilization into the atmosphere such 
as h2se, Dmse, DmDse, Dmses, and DmseO2, 
where Se-species “DMSe” is the main dominant 
volatile se species (Ye et al. 2021). The great 
role of microorganisms in se is to biosynthesize 
the nano-se  (11 – 700 nm in diameter), whereas 
the biosynthesized organic form by fungi ranges 
from 17 to 150 nm (Wang et al. 2022). Red 
elemental nano-se spheres in water may produce 
h2se and h2seO3 in small amount according to 
the following equation 3se + 3h2O ↔ 2H2se + 
h2seO3. Afterwards, h2se and h2seO3 may react 
together and precipitate forming crystals when the 
solution (el-Ramady et al. 2015).

Nano-Se and its interaction with other nano-
nutrients

several studies have been published about 
the individual impacts of nanoparticles of 
different nutrients on cultivated crops like nano-
se (shalaby et al. 2021), nano-silica (mathur 
and Roy 2020; Lian et al. 2021), nano-Cuo (Li 
et al. 2021), nano-Fe2O3 (Zhang et al. 2021), and 
nano-ZnO (Keerthana et al. 2021), but few studies 
focused on the combined impact of two or more 
nano-nutrients (Table 1). The co-existence of 
different engineered nano-nutrients in the agro-

environment is an emerging issue remaining 
poorly investigated (Jośko et al. 2021). Table 2 
presents some published studies to be compared 
nano-se and its interaction with some other nano-
nutrients.

many of these nano-nutrients applied to 
mitigate the plant stressful conditions like 
drought (Zahedi et al. 2020), heavy metals stress 
(hussain et al. 2020; Wang et al. 2020a), and 
soil salinity (Badawy et al. 2021). Concerning 
the heavy metals pollution, foliar application of 
the combined nano-se and nano-si has shown 
success in decreasing the accumulation of Cd 
and Pb metals in rice grains, hence improved 
the rice grain quality and Se-biofortification 
(hussain et al. 2020). some mixtures of nano-
nutrients like nano-ZnO and nano-CuO caused a 
reduction in the inhibition of root elongation of 
cress, cucumber, flax, and wheat comparing with 
single exposure to these particles (Jośko et al. 
2017). On the other hand, some studies reported 
the opposite trend like a higher reduction in 
spinach biomass irrigated with mixtures of nano-
CuO and nano-ZnO than individual treatments 
(singh and Kumar 2020). The bioactivity of these 
nano-nutrients may be attributed to nature of 
these nano-nutrients (García-Gomez et al. 2017). 
In other study, the mixtures of nano-CuO and 
nano-La2O3 decreased the accumulation of Cu 
in zucchini plant tissues than single exposure to 
its NPs (Pagano et al. 2017). so, several studies 
demonstrated the changes in the nutritional profile 
of many plants exposed to different-NPs (Cota-
Ruiz et al. 2020; sharifan et al. 2020). Therefore, 
an urgent question arises then about how the 
mineral composition of plants will be affected 
by co-existing these nano-nutrients (Jośko et al. 
2021).

Combined application of nano-se and nano-
siO2 at both 50 and 100 mg L−1 improved the yield 
and fruit quality of strawberry plants compared 
to the control which was grown under normal 
and drought stress conditions, which included 
normal irrigation at 100% Field Capacity (FC), 
moderate stress at 60% FC, and severe stress at 
25% FC. The highest dose of applied nano-se 
and nano-siO2 (100 mg L−1) preserved more of 
their photosynthetic pigments compared with 
other treated plants and presented higher levels of 
key osmolytes such as carbohydrate and proline. 
Applied nano-se/siO2 improved strawberry 
fruit quality and nutritional value (total phenolic 
compounds, anthocyanin, vitamin C and 
antioxidant activity) under drought stress (Zahedi 
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TABlE 1: The most important nano-nutrients already used in crop production and some details concerning 
cultivated crop, and some individual and combined published studies

Nano-nutrient alone or and its 
coexistence nano-nutrient

Cultivated crop and its scientific name References

Some published studies on individual nano-nutrients 
Nano-Se Cucumber (Cucumis sativus L.) shalaby et al. (2021)

Chicory (Cichorium intybus L.) Abedi et al. (2021)
Wheat (Triticum aestivum L.) el-saadony et al. (2021a)
Lemon balm (Melissa officinalis L.) Ghasemian et al. (2021)
Common bean (Phaseolus vulgaris) Rady et al. (2021)
Rice (Oryza sativa L) Wang et al. (2020b)
Groundnut (Arachis hypogaea L.) hussein et al. (2019a, b)
Tomato (Solanum lycopersicum L.) Neysanian et al. (2020)
Tomato (Solanum lycopersicum L.) morales-espinoza et al. (2019)

Nano-Cu or Cuo Rape (Brassica napus L.) Li et al. (2021)
Alfalfa (Medicago sativa L.) Cota-Ruiz et al. (2020)
maize (Zea mays L.) Pu et al. (2019)
Bell pepper (Capsicum annuum) Rawat et al. (2019)

Nano-Fe and relatives Rice (Oryza sativa L.) Zhang et al. (2021)
Fever nut (Caesalpinia bonducella) Khalid et al. (2021)
Foxtail millet (Setaria italica) sreelakshmi et al. (2021)

nZvI Rice (Oryza sativa L.) Guha et al. (2020)
sweet basil (Ocimum basilicum L.) Tavallali et al. (2020)

Nano-MgO Fever nut (Caesalpinia bonducella) Khalid et al. (2021)
Cowpea (Vigna unguiculata L.) Tauseef et al. (2021)

Nano-Si or silica Wheat (Triticum aestivum L.) Akhtar et al. (2021). 
Rice (Oryza sativa L.) Banerjee et al. (2021)
Common bean (Phaseolus vulgaris) el-saadony et al. (2021b)
Lemon balm (Melissa officinalis L.) hatami et al. (2021)
maize (Zea mays L.) Kumaraswamy et al. (2021)
Lettuce (Lactuca sativa L.) Lian et al. (2021)

Nano-Zn or ZnO Okra (Abelmoschus esculentus L.) Keerthana et al. (2021)
Wheat (Triticum aestivum L.) Rai-Kalal et al. (2021)
Onion (Allium cepa L.) Debnath et al. (2020)
Rice (Oryza sativa L.) Chutipaijit et al. (2018)

Some published studies on combined nano-nutrients
Nano-CuO and nano-ZnO maize (Zea mays L.) Ahmed et al. (2021a)
nano-CuO and nano-ZnO Barley (Hordeum vulgare L.) Jośko et al. (2021)
Nano-se and nano-ZnO Lemon balm (Melissa officinalis L.) Babajani et al. (2019)
Nano-se and Nano-si Rice (Oryza sativa L.) Badawy et al. (2021)
Nano-se and nano-copper Tomato (Solanum lycopersicum L.) hernández-hernández et al. (2019)
Nano-se and nano-copper Tomato (Solanum lycopersicum L.) Quiterio-Gutiérrez et al. (2019)
Nano-se and Nano-si Rice (Oryza sativa L.) hussain et al. (2020)
Nano-se and Nano-silica strawberry (Fragaria×ananassa Duch.) Zahedi et al. (2020)

Note: nZVI: nano-scale zero valent iron
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TABlE 2: Some published case studies of the interaction of nano-Se and other nano-nutrients applied for cultivated 
plants

Cultivated plant and 
its scientific name

Nano-Se and its 
applied dose

Applied nano-nutrient 
and its details

Purpose of the study Reference

Rice (Oryza sativa L.) Chemical nano-se 
(12.26 nm) at 5, 
10 and 20 mg L−1

Nano-silica (18.04 nm) at 
5, 10 and 20 mg L−1

Foliar applied of both 
NPs regarded the 
accumulation of Cd and 
Pb in rice grains

hussain et 
al. (2020)

Rice (Oryza sativa L.) se-NPs at 4, 6, 
and 12 mg L-1 (75 
nm)

si-NPs at 15, 22, and 44 
mg L-1 (6 and 7 nm)

Foliar applied si and 
se-NPs reduced Cd and 
Pb translocation to rice 
grains; mitigate oxidative 
damage

Wang et al. 
(2020a)

strawberry 
(Fragaria×ananassa 
Duch.)

Chemical se-NPs 
(10-45 nm) in 
combined with 
nano-silica

spraying siO2-NPs (20-
30 nm), siO2, se, and 
nano-se/siO2 at 50, 100 
mg l−1

Both nano-se and nano-
silica supported cultivated 
strawberry under drought 
stress

Zahedi et al. 
(2020)

Lemon balm (Melissa 
officinalis)

Chemical nano-se 
at 10, and 50 mg 
l−1 (10-45 nm)

Nano-ZnO (10–30 nm) at 
100, and 300 mg l−1

Possible impacts of both 
nano-nutrients on growth, 
toxicity, and antioxidants 
in plants

Babajani et 
al. (2019)

Tomato (Solanum 
lycopersicum L.)

Chemical se-NPs 
at 1, 10, 20 mg L−1 

(2-20 nm)

Cu NPs at 10, 50, 250 mg 
L−1 (42 nm)

Combined nano-nutrients 
increased yield and fruit 
quality of tomato

hernández-
hernández 

et al. (2019)
Tomato (Solanum 
lycopersicum L.)

Chemical se-NPs 
at 10 and 20 mg 
L−1 (2–20 nm)

Cu-NPs at 10 and 50 mg 
L−1 (50 nm)

Applied nanoparticles 
increasing antioxidant 
capacity under early 
blight disease stress

Quiterio-
Gutiérrez et 
al. (2019)

et al. 2020).

On the other hand, the diverse aspects of the 
interplay between different-NPs and cultivated 
plants are very important for discussing this 
interplay (hu and Xianyu 2021). Therefore, 
several questions could be asked concerning the 
combined application of nano-nutrients and the 
expected interaction like: what will be happened 
when the nano-nutrients apply as binary mixtures? 
Is this mixture of anno-nutrients synergistic or 
antagonistic for plant growth? To what extent we 
can expect the interactions of combined exposure 
of nano-nutrients, which may include adsorption 
and/or competition between ionic and particulate 
metals as well as with biomolecules? 

Conclusions                                                                  

The rising wide-scale uses of se-NPs for 
different applications in agriculture, industry, 
and environmental issues would undoubtedly 
lead to their dissemination in the agroecosystems 
(mainly groundwater and soil). Based on the 

environmental impacts of se-NPs are speedily 
progressing in individual cases, some major 
understanding is needed on se-NPs mechanism 
of their interactions with other nano-nutrients in 
different soil components and their subsequent 
impacts on plants and microorganisms. several 
nanoparticles already were investigated for their 
fate, behavior and impacts on the soil-plant 
system, but the combined and multi-impacts 
nano-nutrients still need further investigations. 
These multi-interaction cases in soil might 
influence by the functioning of the soil nutrient 
cycles, soil microbial activity, different reactions 
in the rhizosphere, plant exudates, and soil 
properties. Concerning the bio-transformation of 
se-NPs or their chemical complexes in soil, this 
important area still needs future investigations. 
The phytotoxicity of se-NPs and its uptake might 
vary in different plant species and the structure 
of exposure media. several open questions are 
still needed to be investigated such as what is 
the expected mechanism of nano-nutrients and 
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their role in rhizosphere and their interactions in 
influencing Se-NPs plant uptake and translocation? 
What are the expected and different pathways of 
nano-se interactions with other nano-nutrients in 
soil based on their individual properties? 
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