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ABSTRACT 

Background: Curcumin is an important natural compound that has been extensively studied for its multifunctional 

pharmacological activities. Different nanotechnological techniques have been applied for improving its poor solubility and 

bioavailability. Objectives: This research aimed to study the effect of formulation variables on the entrapment efficiency 

of curcumin-loaded niosomes (curcusomes) made by a thin-film hydration technique. Methods: Curcumin-loaded noisome 

were prepared using the thin-film hydration technique using Span 40 and 60 as surfactants, in addition to bile salts and 

cholesterol. The surfactant and cholesterol were added to curcumin in different ratios, with/without the addition of 10% of 

bile salts. Results: Eighteen formulae were obtained from the addition of bile salts and spans. Results showed that increased 

surfactant concentration and low cholesterol ratio enhanced the %EE of formulae. Conclusion: The formulation of 

curcumin-loaded niosomes with the thin-film hydration method where span 40 or span 60 are used as surfactant enhances 

the %EE of curcusomes which in turn improves the poor solubility and bioavailability of curcumin. The addition of bile 

salts enhanced the %EE which will be investigated furtherly for more in vitro and in vivo studies. 
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INTRODUCTION 
 

For drug administration, oral delivery is the 

most convenient route, especially for chronic illness, 

with high patient compliance, ease of administration, 

cost-effectiveness, and other benefits 1. Although high 

oral bioavailability is highly desirable, many important 

drugs in the clinic suffer from poor oral bioavailability 

and highly variable exposure. This can be due to various 

factors, including low solubility, limited permeability, 

first-pass metabolism, and drug efflux 2. To reach the 

bloodstream, a drug should first dissolve in the 

gastrointestinal (GI) fluid. Thus, dissolution may be the 

rate-limiting step in oral administration of poorly water-

soluble drugs 3, resulting in erratic absorption and low 

oral bioavailability. Intestinal and hepatic first-pass 

metabolism can also restrict oral bioavailability to a 

significant extent 4. In the efforts to enhance oral 

bioavailability, various approaches have been employed, 

such as solid dispersions 5, salt forms 6, nanosizing, and 

micronization 7. In the last two decades, there has been 

increased interest in studying colloidal particulate 
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carriers such as liposomes, niosomes, and micelles, as 

well as polymeric and lipidic nanoparticles. The 

Curcumin (C21H20O6) is a natural yellow compound 

typically found in Curcuma longa L. that is regarded as 

a natural polyphenolic antioxidant presented in many 

kinds of herbs 8. Curcumin has been exhibited multiple 

therapeutic relevance including anticancer, anti-

inflammatory, antioxidant, antimicrobial, antirheumatic, 

and hepatoprotective activities 9–13. Its anticancer, anti-

inflammatory, antiangiogenic, antineoplastic, and chemo 

sensitizing effects make it a potent candidate in the 

treatment for multiple types of cancer 14,15.  

In spite of the well-received pharmacological properties, 

the therapeutic application of curcumin has been 

impeded by its shortcomings such as low aqueous 

solubility at acidic and physiological pH and its 

degradability in alkaline conditions 8,16,17. In addition, 

poor absorption and rapid metabolism of curcumin 

severely limit its bioavailability 17. For this purpose, 

researchers have been exploring methods for the 

effective delivery of curcumin with novel formulations 

including liposomes 18,19, micelles 20,21, conjugates 22, 

nanoparticles 23, and nano globules24. These have shown 

distinct advantages over conventional dosage forms in 

oral drug delivery 25. In addition to enhanced solubility 

and dissolution rates, these carriers provide a powerful 

means to avoid first-pass metabolism through 

stimulation of lymphatic transport, leading to improved 

bioavailability 26,27. Niosomes are nonionic surfactant 

vesicles with a bilayer structure, which have been used 

to deliver various drug elements including 

chemotherapeutic agents, genes, hormones, antigens, 

and peptides 28,29. Niosomes share some similarities with 

liposomes but are composed of nonionic surfactants such 

as Span 80, Span 60, Span 40, Span 20, Tween 80, and 

Pluronic 188 instead of phospholipids used in 

liposomes30,31. Typically, niosomes are produced from 

two main components: nonionic surfactants and 

additives 32. While nonionic surfactants serve as the 

vesicular layer, the additives such as cholesterol act to 

enhance the rigidity of the bilayer. Bile salts has been 

recognized as natural biosurfactants with crucial roles in 

endogenous organotropism33. Their extraordinary 

emulsifying and solubilizing properties have led to their 

utilization as delivery systems for medicines and 

cosmetics as well 34,35. In pharmaceutical field, bile salts 

have been reported to enhance hydrophilicity of water-

insoluble active pharmaceutical ingredients mainly by 

the wetting effect 36–38. Furthermore, bile salts have been 

employed as permeation enhancers in topical dosage 

forms including buccal, ocular, nasal, and transdermal 

routes of administration 39–42. Moreover, bile salts are 

known by their stability in the acidic stomach medium, 

their adaptability  to dynamic  pH variations  and  the  

presence  of  selective  uptake transporters in the 

intestine, bile acid-based therapeutic systems may  be  

suitable  for  oral  drug  delivery 43,44. Therefore, the 

present study examines the delivery of curcumin 

effectively through encapsulation of curcumin in 

niosomes composed of nonionic surfactant Span 40 and 

Span 60 to improve the solubility and the therapeutic 

effects of curcumin. In addition, evaluate the efficiency 

of the addition of bile salts to formed curcusomes in 

constant percentage. 

 

MATERIAL AND METHODS 
 

Material 

Curcumin was purchased from Sigma-Aldrich 

Co (St Louis, MO, USA). Span 40 (Sorbitan 

monopalmitate), Span 60 (Sorbian monostearate) and 

Cholesterol (CH) were purchased from Loba-Chemie 

(Mumbai, India). Sodium Deoxycholate (SDC) was 

purchased from Alfa Aesar (Karlsruhe, Germany. 

Methanol, Chloroform, and Isopropyl alcohol were 

supplied as analytical grades by Fisher Scientific 

(Loughborough, UK). Double-distilled water was used 

throughout the study. 

 

Preparation of standard solution of Curcumin for UV 

Visible Spectroscopy 

A 10 mg of curcumin was accurately weighed 

and transferred in a 100 ml volumetric flask. Methanol 

was then added up to the mark to obtain a concentration 

of 100 μg/ml of Stock solution. From Stock solution, 0.1, 

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, and 

0.65 ml were withdrawn and diluted to 10 ml with 

Isopropyl alcohol to obtain concentrations of 1, 1.5, 2, 

2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5 μg/ml, respectively. 

 

Determination of maximum wavelength by UV-

visible spectroscopy: 

A six μg/ml of curcumin solution was scanned 

using UV spectrophotometer (Specord 210 plus 

(Analytik Jena AG, Germany) in the range of 200-600 

nm where isopropyl alcohol was used as blank.  

 

Preparation of standard calibration curve of 

curcumin by UV-visible spectroscopy: 

The standard calibration curve of curcumin was 

obtained through measuring the absorbance of curcumin 

solution in a ranged concentration (1-6.5 μg/ml).  the 

measurements were implied for samples prepared from 

the stock solution in isopropyl alcohol in tri-replicates. 

Calibration curve of curcumin was then plotted with 

absorbance rate on y-axis and curcumin concentration  

on x-axis. 

 

Preparation of curcumin-loaded niosomes 

(Curcusomes) 

The thin-film hydration technique 45 was 

employed to formulate the curcusomes, depending on the 
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variation in the amount of lipids used for the formation 

of bilayer (surfactant and CH), and the number of 

surfactant parts (surfactant to CH ratio). In the present 

study the effect of surfactant type (span 40, 60), lipid to 

drug molar ratio (10:1, 20:1, and 40:1), and Molar ratio 

of surfactant to cholesterol (90:10, 80:20 and 70:30) was 

investigated.  In a round-bottomed flask, a specified 

amount of curcumin, 3.68 mg and an accurately weighed 

amounts of lipid mixture (span/CH) were dissolved in 10 

ml of chloroform: methanol mixture (7:3 v/v). The 

obtained clear organic solution was evaporated slowly at 

60°C using a rotary evaporator (Heidolph-GI Germany) 

under reduced pressure for 30 min. at 90 rpm. After 

evaporation, a thin film on the wall of the flask which 

was then hydrated 10 mL of deionized water by rotating 

the flask in a water bath maintained at temp 60°C for 

Span 60 and 55° for span 40 for 45 min at 120 rpm using 

the same apparatus under normal pressure to form 

niosomal dispersion of curcumin. The formed 

suspension was sonicated in a water bath for 10 min (bath 

sonicator, LBS 2-10 FALC, Italy). The hydration step 

took place in the presence of glass beads to increase the 

yield of the formed nanovesicles and to reduce size 46,47. 

During film hydration, the temperature was maintained 

at 60°C, above the gel-liquid crystal transition 

temperature (Tc) of the used surfactants, to allow 

hydration of lipids in their fluid phase. The resulted 

dispersion was allowed to stand for 2 hrs at ambient 

temperature for complete hydration then left to 

equilibrate overnight at 4°C for further investigation. 

 

Preparation of curcumin loaded bile salts reached 

niosomes 

Following the same preparation procedures 

mentioned in the previous section, the bilosomes were 

prepared by the addition of 10% of sodium deoxycholate 

(SDC) (bile salt) to the ionized water at the hydration 

step. 

 

Determination of Entrapment efficiency of curcumin-

loaded niosomes and bile salts-reached niosomes 

Isopropyl Alcohol was selected as an 

appropriate solvent for disrupting the prepared vesicles 

according to literature. Total drug content (free + 

entrapped) of the prepared niosomal dispersion was 

determined spectrophotometrically by measuring the 

absorbance at the wavelength of 427 nm in isopropyl 

alcohol. To calculate % EE, it was estimated either by 

direct or indirect method for accurate quantification of 

the drug. The free curcumin was separated from the 

prepared niosomes by ultracentrifugation at 15000 rpm 

at 4°C for 1 hour using a cooling centrifuge (XC-HR20, 

Bio Lion, and USA). 

 

Direct determination of %EE: 

The separated vesicles were disrupted by 

isopropyl alcohol. The concentration of the entrapped 

drug was determined spectrophotometrically by 

measuring the absorbance of the clear solution at the 

wavelength of 427 nm in isopropyl alcohol. The %EE of 

entrapped drugs was calculated using the following 

equation: 

%𝐸𝐸 =
𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑛𝑡𝑎𝑟𝑎𝑝𝑒𝑑 𝑑𝑟𝑢𝑔

𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑢𝑔 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑓𝑟𝑒𝑒 + 𝑒𝑛𝑡𝑟𝑎𝑝𝑝𝑒𝑑)
× 100 

 

Indirect determination of %EE 

By calculating the difference between the total 

amount of curcumin in the prepared niosomal dispersion 

and the free (unentrapped) curcumin in an aqueous 

medium. Curcumin content in the resultant supernatant 

was determined spectrophotometrically by measuring 

the absorbance at the wavelength of 427 nm in isopropyl 

alcohol. Drug EE% was determined according to the 

following equation: 

 
%𝐸𝐸

=
𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑢𝑔 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑓𝑟𝑒𝑒 + 𝑒𝑛𝑡𝑟𝑎𝑝𝑝𝑒𝑑) − 𝑢𝑛𝑒𝑛𝑡𝑟𝑎𝑝𝑝𝑒𝑑 𝑑𝑟𝑢𝑔

𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑢𝑔 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑓𝑟𝑒𝑒 + 𝑒𝑛𝑡𝑟𝑎𝑝𝑝𝑒𝑑)
× 100 

 

Statistical analysis 

The resulted data were statistically examined 

through SPSS 16.0 program (SPSS Inc., Chicago, IL, 

USA) with paired sample T-test. The level of 

significance was at P < 0.05. 

 

RESULTS AND DISCUSSION 
 

Determination of maximum wavelength by UV-

visible spectroscopy 

According to the results shown in Figure 1, 

Wavelength corresponding to maximum absorbance of 

curcumin in isopropyl alcohol was observed at 427nm. 

 

 

 

Figure 1. Maximum absorbance of curcumin in 

isopropyl alcohol 

Standard calibration curve of curcumin by UV-

visible spectroscopy 

The standard calibration curves of curcumin in 

isopropyl alcohol at the predetermined λmax were 

presented in Figure 2 and Table 1. The results of the 

http://aprh.journals.ekb.eg/


ISSN:  2357-0547 (Print)  Research Article / JAPR / Sec. C 

ISSN:  2357-0539 (Online) Hashim et al., 2022, 6 (3), 123-132 

http://aprh.journals.ekb.eg/ 

126 

figure showed that Beer's law was obeyed in the 

concentration range 1-6.5 μg/ml.  The linear regression 

of absorbance and concentrations of curcumin illustrated 

a straight line passing through the origin with correlation 

coefficient 0.999.  The values of slope were recorded as 

0.143 which will be furtherly used in calculation of 

amount of drug entrapped in curcusomes. The Percent 

error values did not exceed 2% which indicated the 

validity of the assay method. 

 

 

 

Figure 2. Calibration curve of curcumin in isopropyl 

alcohol. 

 

 

 
Table 1. Calibration of curcumin by UV-VIS 

spectrophotometry 

Curcumin concentration 

(μg/ml) 

Absorbance rate (Mean ± 

S. D.) 

1 0.154 ± 0.006 

1.5 0.223 ± 0.007 

2 0.301 ± 0.03 

2.5 0.362 ± 0.006 

3 0.441 ± 0.006 

3.5 0.515 ± 0.009 

4 0.577 ± 0.01 

4.5 0.659 ± 0.009 

5 0.722 ± 0.005 

5.5 0.783 ± 0.001 

6 0.850 ± 0.005 

6.5 0.908 ± 0.01 

 

Preparation of curcumin-loaded niosomes 

The screening results demonstrated that this 

solvent mixture produced clear continuous film when 

evaporated for 30 min at 90 rpm 48. The temperature was 

maintained at 60°C during film hydration had a 

significant impact on the shape and size of the vesicles 

and surfactants assembly into them 49. 

 

Effect of formulation variables on entrapment 

efficiency of prepared curcusomes 

Using the nonionic surfactant; Span 40 and 

Span 60, were the most suitable surfactant as they 

exhibited high Tc and optimum HLB (4-8) so that 

suitable for vesicle preparation 50. The Span 60 was 

favored over the Span 40, in this study, as it produced 

vesicles with relatively high %EE due to its higher 

lipophilicity (HLB 4.7), compared to span 40 (HLB 6.7) 

which may result in decreasing the mass transfer within 

the droplets with consequent lower growth of nuclei and 

smaller particle size 48,51. 

Table 2 presented the composition of different 

niosomal formulations coded from 1 to 18 and their 

corresponding determined %EE. The results showed that 

the total Lipid/Drug molar ratio (L/D) has an impact on 

drug loading. Altering the L/D molar ratio from 10:1 to 

20:1 while keeping other factors invariant significantly 

augmented the %EE of curcumin from 80 ± 1.9 for 

formula 1 to 89.2 ± 1.91 for formula 4 as shown in Table 

2. This could be obviously explained that increasing the 

concentration of bilayer-forming materials, which in turn 

increases the number of vesicles in a given volume, can 

increase the amount of drug entrapped in the vesicles. 

Although enhancement of the L/D molar ratio leads to 

higher EE, that EE% decreased significantly by 

increasing lipid amount as shown in formula 18 (%EE 

was 59 ± 1.26). This may be due to higher amount of CH 

would reduce drug entrapment by competing with the 

drug for the bilayer, thus preventing incorporation of the 

lipophilic drug into the vesicles. 

It has been reported that the presence of CH 

enhanced the curcumin-loaded niosomes bi-layer 

cohesion and rigidity 52 led to a reduction in the size of 

niosomes. It was also reported that more cholesterol 

contents in niosomes can lead to a smaller diameter for 

niosomes 53. It has been shows that CH influenced the 

membrane permeation and EE%, thus led to the less 

permeable niosomes 54,55. 

Mokhtar et al. 56 have evaluated the effects of 

formulation variables like cholesterol contents of 

niosomes on the flurbiprofen encapsulation and showed 

that %EE enhanced as CH: surfactant ratio increased. 

Rahman and Manggau57 have loaded curcumin into 

niosomes through reserve phase evaporation technique 

using various concentrations of span and cholesterol. 

Comparing EE% of their study with the current study 
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Table 2. The schematic data for the preparation of curcumin-loaded niosomes using the thin-film hydration procedure 

Formula L/D ratio Type of span 
Span to cholesterol 

molar ratio 
%EE ± S. D. 

1 10:1 40 90:10 80 ± 1.9 

2 10:1 40 80:20 81 ± 1.93 

3 10:1 40 70:30 84.4 ± 1.77 

4 20:1 40 90:10 89.2 ± 1.91 

5 20:1 40 80:20 91.5 ± 1.96 

6 20:1 40 70:30 87.6 ± 1.88 

7 40:1 40 90:10 81.5 ± 1.68 

8 40:1 40 80:20 88.1 ± 1.85 

9 40:1 40 70:30 85.4 ± 1.82 

10 10:1 60 90:10 78.1 ± 1.76 

11 10:1 60 80:20 70.4 ± 1.63 

12 10:1 60 70:30 69.6 ± 1.59 

13 20:1 60 90:10 90.8 ± 1.94 

14 20:1 60 80:20 88.6 ± 1.89 

15 20:1 60 70:30 83.5 ± 1.86 

16 40:1 60 90:10 77.6 ± 1.66 

17 40:1 60 80:20 68.3 ± 1.49 

18 40:1 60 70:30 59 ± 1.26 

 

 

Table 3. The schematic data for the preparation of bile salts-enriched niosomes (bilosomes) using the thin-film hydration 

procedure after the addition of 10% of bile salts 

Formula L/D molar ratio Type of span 
Span to cholesterol 

molar ratio 
%EE ± S. D. 

1 10:1 40 90:10 90.4±2.66 

2 
10:1 40 80:20 91.8±1.79 

3 
10:1 40 70:30 88.8±3.1 

4 20:1 40 90:10 91.6±3.2 

5 
20:1 40 80:20 92.4±3.58 

6 
20:1 40 70:30 90.8±2.66 

7 40:1 40 90:10 89.9±4.53 

8 
40:1 40 80:20 90.2±2.48 

9 
40:1 40 70:30 86.3±3.83 

10 
10:1 60 90:10 91.9±3.4 

11 
10:1 60 80:20 91.2±3.66 

12 
10:1 60 70:30 80 ±2.69 

13 
20:1 60 90:10 92.2±3.56 

14 
20:1 60 80:20 91.5 ±2.87 

15 
20:1 60 70:30 87.3±4.22 

16 
40:1 60 90:10 84.2±4.9 

17 
40:1 60 80:20 83.7±3.95 

18 
40:1 60 70:30 81.6±5.1 
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showed that EE% was much lower (61%) than the EE% 

obtained in the current study (90%). 

As shown also in Table 2, incorporation of CH 

into span 60 niosomes (90:10 & 80:20) for span 40 

considerably enhanced curcumin EE. However, beyond 

this amount (70:30), a decrease in EE was observed.  The 

increase in EE can be rationalized by proposing that CH 

increases the microviscosity of the membrane by 

abolishing the gel-to-liquid phase transition of the 

surfactant bilayer, resulting in a more stable and 

hydrophobic bilayer that retards permeation and prevents 

leakage of hydrophobic drugs entrapped in the bilayer. 

In contrast, subsequent intercalation of CH would reduce 

drug entrapment by competing with the drug for the 

bilayer, thus preventing incorporation of the amphiphilic 

or lipophilic drug into the vesicles 55. 

 

Preparation of curcumin loaded bile salts reached 

niosomes 

The addition of 10% of SDC (bile salt) has 

successfully produced bilosomes. The %EE of the 

produced formulae were listed in Table 3. According to 

obtained data, the addition of 10% of SDC enhanced the 

%EE to 92.4%, when the L/D ratio was 20, and span to 

cholesterol molar ratio was 80:20 in case of span 40, 

while the %EE was enhanced to 92.2% when span 60 

was employed, the L/D ratio was 20, and span to 

cholesterol molar ratio was 90:10. The enhancement of 

entrapment efficiency could be attributed to the 

formation of a more favorable hydrophobic region for the 

highly lipophilic curcumin. Further studies will be 

conducted for characterization of formed bilosomes.  

Overall, as shown in Table 3, two formulations 

of curcumin-loaded niosomes gave a suitably high %EE. 

Formula 5 composed of 20:1 lipid to drug molar ratio 

(span 40), 90:10 lipid to CH molar ratio and 10% bile salt 

and Formula 13 composed of 10:1 lipid (span 60), 80: 20 

Lipid: CH with 10% bile salt. 

 

CONCLUSION 

From all obtained results, we can conclude that 

the formulation of curcumin-loaded niosomes  

with the thin-film hydration method where span 40 or 

span 60 are used as surfactant enhances the %EE of 

curcusomes which in turn improves the poor solubility 

and bioavailability of curcumin. Moreover, the  

addition of bile salts enhanced the %EE which will be 

discussed furtherly. It is highly recommended to discuss 

the effect of bilosomes on enhancing oral  

delivery of curcumin. 
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