

**Egyptian Journal of Chemistry** 

http://ejchem.journals.ekb.eg/



# A Review on Traditional uses, Phytochemistry and Pharmacological Potential of Family Malpighiaceae

Haidy A. Abbas<sup>1</sup>, Soad H. Tadros<sup>2</sup>, Sayed A. El-Toumy<sup>3</sup>, Ahmed M. Salama<sup>1</sup>,

Rania A. El Gedaily<sup>2\*</sup>

<sup>1</sup>Department of Pharmacognosy<sup>c</sup>, Faculty of Pharmacy, Ahram Canadian University, 6<sup>th</sup> of October City 12451, Giza, Egypt <sup>2</sup>Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt

<sup>2</sup>Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt <sup>3</sup>Chemistry of Tannins Department, National Research Centre, ElBhouth St. (Former ElTahrir St.) Dokki 12622, Giza, Egypt

#### Abstract

Herbal medicine has become more popular in recent years. As a result, an effort is being made to document valuable phytoconstituents and pharmacological knowledge as part of the revitalization of herbal remedies. There are still several plants of certain families that haven't been researched. This is the situation with Malpighiaceae; a flowering plant family rich in secondary metabolites including alkaloids, flavonoids, carbohydrate like substance as vitamin C, proanthocyanidins and phenolic compounds, with promising therapeutic effects as anti-inflammatory, anti-ulcer, anti-cancer, anti-diabetic, antioxidant, anti-depressant, anti-HIV, and anti-microbial activities. The goal of this review is to offer an overview of the chemistry of plants belonging to Malpighiaceae, with a focus on their potential biological impact in recent years.

Keywords: Malpighiaceae; Byrsonima; Malpighia; Phytochemical constituents; Biological study.

#### 1. Introduction

Nature, particularly plants, is an important source of compounds in healthcare. Only about 15% of the world's plant species have been studied for their pharmacological properties [1]. Even though a wide range of medicinal plants have developed novel and diversified chemical identities that might be utilized as drugs, some botanical families remain unstudied. This is the case of the Malpighiaceae family, a large plant family with about 65 genera and 1,250 species which can be located in tropical and subtropical regions in both hemispheres [2]. It is a family of flowering plants, including trees or shrubs usually lianas [3].

The infra-family classification is based on winged or unwinged fruit, even though the family is obviously monophyletic [4, 5]. Malpighiaceae is a family that belongs to Malpighiales order, Rosidae subclass, Magnoliopsida class, Magnoliophyta division, Spermatophyta superdivision, and Tracheobionta subkingdom [6, 7]. This family is difficult to study due to the large number of species, nomenclatural issues, and difficulty in taxonomic identification. For example, glandular calyces are prevalent in the neotropical Malpighiaceae, but glandular calyces can be found in species belonging to the genera Banisteriopsis, Byrsonima, Galphimia, and *Pterandra* [8], making it difficult to discriminate between these genera using this morphological feature. Complications arise regularly because of morphological variety and species synonymies. [2, 9, 10]. Most botanists believe the family is related to the Geraniales; Hutchinson included it in his Malpighiales (along with the Erythroxylaceae) whereas Hallier placed it in the Polygalales [3].

Several secondary metabolites with medicinal effects have been discovered in the Malpighiaceae family. Although a wide range of medicinal plants have offered new and different chemical identities that could be effective as medications, only a few species in this family have been researched in terms of chemistry and biology [11]. The phytochemical

\*Corresponding author e-mail: <u>rania.elgedaily@pharma.cu.edu.eg</u>; (Rania A. El Gedaily)

Receive Date: 01 February 2022; Revise Date: 08 March 2022; Accept Date: 10 March 2022. DOI: 10.21608/EJCHEM.2022.119510.5372.

<sup>©2019</sup> National Information and Documentation Center (NIDOC).

studies showed most plants belonging to that family contain  $\beta$ -carbolines alkaloids, vitamins, carotenoids, nor-secofriedelanes and nor-friedelane terpenoids, hydroxycinnamic acids, flavonoids, proantho-cyanidines, and phenolic compounds. Malpighiaceae family contains several medicinally significant genera, including the following: Acridocarpus, Aspidopterys, Banisteriopsis, Bunchosia, Byrsomina, Callaeum, Caucanthus, Camarea, Diplopterys, Echinopterys, Flabellaria,

Galphimia, Hiptage, Heteropterys, Hiraea, Malpighia, Stigmaphyllon, Tetrapterys, Tristellateia, and Niedenzuella. Pharmacological investigations have revealed that most genera in this family have significant biological activities such as antioxidant, anti-inflammatory, anti-diabetic, antimicrobial, anti-depressant, and cytotoxic properties

| Plant species                                           | Part used          | Phytoconstituents                                                                                                                                                                | Chemical Class                          | Biological<br>activities                                                                         | Ref. |
|---------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|------|
|                                                         |                    | Morin and morin-3- $O$ - $\beta$ -D-glucopyranoside.                                                                                                                             | Flavonoids                              | Antifungal,<br>phytotoxic<br>anticancer, anti-lipi<br>peroxidation                               | [24] |
|                                                         | Aerial parts       | β-sitosterol, $β$ -sitosterol-3-<br><i>O</i> - $β$ -D-glucopyranoside,<br>betulinic acid and botulin                                                                             | Steroids and triterpenoids              | NA                                                                                               | [49] |
|                                                         |                    | 2,5-dimethoxy-1,4-benzo-<br>quinone, 2,6-dimethoxy-<br>1,4-benzoquinone                                                                                                          | Benzoquinone                            |                                                                                                  |      |
| Acridocarpus<br>orientalis A.<br>Juss                   |                    | Quercetin, choerospondin,<br>morin, morin-3- $O$ - $\alpha$ - L-<br>rhamnopyranoside, and<br>morin-3- $O$ - $\beta$ -D-gluco-<br>pyranoside.                                     | Flavonoids                              |                                                                                                  |      |
|                                                         |                    | 1-docosanol                                                                                                                                                                      | Saturated fatty alcohol                 |                                                                                                  |      |
|                                                         | Leaves<br>and stem | NA                                                                                                                                                                               | Flavonoids and<br>phenolic<br>compounds | Antioxidant, lipid<br>peroxidation,<br>anticancer, α-<br>glucosidase, and<br>urease inhibitory.  | [27  |
|                                                         |                    | Morin and morin-3- <i>O-β</i> -D-<br>glucopyranoside                                                                                                                             | Flavonoids                              | Anticancer (inhibit<br>4T1 cells and                                                             | [48  |
|                                                         | Leaves             | $\beta$ -sitosterol, $\beta$ -sitosterol-3- <i>O</i> - $\beta$ -d- gluco-pyranoside and betulinic acid.                                                                          | Steroids and triterpenoids              | promotes<br>mesenchymal stem<br>cells (MSCs)                                                     |      |
|                                                         |                    | Botulin                                                                                                                                                                          | Miscellaneous                           | proliferation).                                                                                  |      |
|                                                         |                    | NA                                                                                                                                                                               | Flavonoids, tannins, carbohydrates      | Hepatoprotective                                                                                 | [26  |
|                                                         | Arial parts        | NA                                                                                                                                                                               | NA                                      | Antidiabetic                                                                                     | [103 |
|                                                         | Leaves<br>and stem | Methyl 8-pimaren-18-oate,<br>octacosane, heptacosane,<br>hexacosane, methyl<br>dehydro-abietate,<br>tetracosane, heptacosane,<br>docosane, $\alpha$ -pinene, and<br>heneicosane. | Volatile<br>constituents                | Urease, <i>α</i> -<br>glucosidase, and<br>carbonic anhydrase II<br>(CA-II) enzyme<br>inhibitory. | [41  |
| Acridocarpus<br>Smeathmannii<br>(DC.) Guill. &<br>Perr. | Roots              | Octadecanoic acid ethyl<br>ester, docosenoic acid,<br>Octadecenoic acid ethyl<br>ester, Octadecenoic acid                                                                        | Fatty acids                             | A male reproductive<br>enhancer                                                                  | [21  |

| Table 1 | Constituents and | biological a | ctivities of selected | genera of the N | Alpighiaceae family |
|---------|------------------|--------------|-----------------------|-----------------|---------------------|
|         |                  |              |                       |                 |                     |

|   |          |      | 239 |
|---|----------|------|-----|
|   |          |      |     |
|   | (against | [17] |     |
| l | cancer   |      |     |
|   | AGS      |      |     |

| Aspidoj<br>obcore                                             | -            | Vines                                            | Obcordatas A-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Polyoxypregnane<br>glycosides                              | Antitumor (against<br>the human cancer<br>cell lines AGS,<br>SW480, HuH-7 and<br>MCF-7).                             | [17]  |
|---------------------------------------------------------------|--------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------|
| Hen                                                           | nsl          |                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                         | KidneyStones(InhibitNOX4expression).                                                                                 | [18]  |
|                                                               |              |                                                  | Aspidoptoids A–D,<br>spruceanol and sonderianol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Diterpenoids.                                              | Cytotoxic and<br>inhibit nitric oxide<br>(NO) production.                                                            | [104] |
| Aspidop<br>indica                                             |              | Aerial<br>parts                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tannins,<br>phytosterols,<br>flavonoids                    | Antioxidant                                                                                                          | [57]  |
|                                                               |              | Catechi<br>hyperos<br>guaijav                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flavonoids                                                 | Antifungal and cytotoxic                                                                                             | [105] |
| Banisteriopsis<br>argyrophylla                                | Leaves       | 3-O-α-l<br>kaempf<br>rhamno<br>O-(2"-g<br>rhamno | in-pentoside and quercetin-<br>L- rhamnopyranoside,<br>$\alpha$ -D- $\alpha$ -L-<br>$\alpha$ -D- $\alpha$ -L-<br>pyrano-side, quercetin-3-<br>galloyl)- $\alpha$ -L-<br>pyranoside, Procyanidin<br>and procyanidin dimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flavonoids                                                 | Antioxidant, and $\alpha$ -<br>amylase,<br>$\alpha$ -glucosidase,<br>pancreatic lipase, and<br>glycation inhibitors. | [58]  |
|                                                               |              | Macara<br>side B                                 | ngioside A, and macarangio-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Megastigmane<br>glucosides                                 |                                                                                                                      |       |
|                                                               | Stem         | Harmin                                           | e, harmaline and caffeine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alkaloids                                                  | CNS stimulants                                                                                                       | [106] |
|                                                               | Aerial parts | carbolin<br>carbolin<br>tetrahyo<br>Baniste      | amoyl-7- methoxy $\beta$ -<br>ne, 1-acetyl-7-methoxy $\beta$ -<br>ne and 1-methoxy- 1,2,3,4-<br>dro-1-oxo- $\beta$ -carboline.<br>enoside A, banistenoside B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Alkaloids                                                  | NA<br>Treatment of                                                                                                   | [107] |
|                                                               |              | Tetrahy                                          | ir acetate<br>/droharmine, harmol,<br>dro-norharmine harmaline,<br>mine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | glycosides $\beta$ -carbolines alkaloids                   | Parkinsonism, and<br>other neuro-<br>degenerative disorders.                                                         |       |
| Banisteriopsis<br>Caapi (Syn.<br>Banisteriopsis<br>inebrians) |              | β-d-fru                                          | where the set of the | Proantho-<br>cyanidines<br>Monosaccharide,<br>disaccharide |                                                                                                                      |       |
|                                                               | Stem bark    | B, harı<br>tetra-h                               | enoside A, banistenoside<br>mine, harmaline, and<br>ydroharmine, and harmol.<br>chin, and procyanidine B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\beta$ -carboline<br>alkaloids<br>Proantho-               | Treatment of<br>neurodegenerative<br>Disorders Relevant to<br>Parkinson's Disease                                    | [29]  |
|                                                               |              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cyanidines                                                 | (MAO inhibition and antioxidant effects).                                                                            |       |
| -                                                             | Aerial parts | hydroh<br>5-hydro                                | e, harmaline, and tetra-<br>armine<br>xytryptamine (serotonine),<br>N-dimethyltryptamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\beta$ -carboline<br>alkaloids<br>Miscellaneous           | Antidepressant                                                                                                       | [28]  |
|                                                               | Liana        | hydroh                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\beta$ -carboline alkaloids                               | Monoamine<br>oxidase (MAO)<br>inhibitors.                                                                            | [108] |
|                                                               |              | N, N-di                                          | methyltryptamine (DMT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Miscellaneous                                              | millotors.                                                                                                           |       |

Abbas H. A. et.al.

| Banisteriopsis<br>campestris | Flowers                        | Hexadecanoic acid (palmitic acid),<br>nerolidol, myristic acid, linoleic<br>acid, triacontane, heptacosane and<br>linalool. | Volatile<br>constituents and<br>Fatty acids | Antibacterial, and antifungal                                                                                                  | [42]  |
|------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|
|                              | leaves,<br>stems, and<br>roots | Palmitic acid, palmitoleic acid,<br>phytol, triacontane, linoleic acid,<br>and oleic acid.                                  | Volatile<br>constituents and<br>Fatty acids | Antibacterial,<br>antifungal,<br>antioxidant,<br>antiprotozoal,<br>cytotoxicity on Vero<br>cells, and glycation<br>inhibitors. | [43]  |
| Banisteriopsis<br>cornifolia | Bark, leaf,<br>and stem        | NA                                                                                                                          | NA                                          | Antidote, treat side<br>effects caused by<br>snakebite                                                                         | [109] |

| Bunchosia                   | Leaves                   | Rutin, afzelin, isoquercitrin, kaempferol and quercetin                                                                                                                                                      | Flavonoids                                           | Antimicrobial,<br>antioxidant,<br>antiinflammatory                         | [59]          |
|-----------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|---------------|
| armeniaca                   | Unripe,<br>ripe fruit    | Pyran-4-one,2,3-dihydro-3,5-<br>dihydroxy-6-methyl, 1H-Pyrrole-<br>2,5-dione, 1-Nona-decene, 3-<br>Eicosense, 2-Furanmethanol,<br>9,12,15-Octadecanoic acid, methyl<br>ester and <i>n</i> -Hexadecanoic acid | Volatile<br>constituents<br>and Fatty<br>acids       | Antioxidant                                                                | [44]          |
|                             | Fleshy<br>Fruit          | Vitamin C                                                                                                                                                                                                    | Vitamins                                             |                                                                            | [11,<br>110]  |
|                             | Leaves                   | NA                                                                                                                                                                                                           | NA                                                   | Anti- against<br>Klebsiella<br>pneumonia.                                  | [74]          |
| Bunchosia<br>glandulifera   | Fruit pulp<br>& seed     | Lauric, linolenic, docosadienoic,<br>myristic, cerotic, myristoleic,<br>palmitic, palmitoleic, stearic,<br>oleic, linoleic, arachidonic, and<br>behenic acids.                                               | Fatty acids                                          | NA                                                                         | [45]          |
|                             | Ripe fruits              | $\beta$ -Carotene, and lycopene Vitamin C                                                                                                                                                                    | Carotenoids<br>Vitamins                              |                                                                            | [111]         |
|                             | Tree                     | NA                                                                                                                                                                                                           | Vitamins,<br>Carotenoids                             | - Antioxidant                                                              | [60]          |
|                             | Fruit pulp               | Rutin, vitexin, and quercitrin $\beta$ -Carotene, and lycopene Vitamin C Caffeine                                                                                                                            | Flavonoids<br>Carotenoids<br>Vitamins<br>Alkaloids   | 7 IndoAlduik                                                               | [112-<br>114] |
| Byrsomina<br>Sericea DC     | Stem bark                | NA                                                                                                                                                                                                           | NA                                                   | Fevers, diarrheas,<br>syphilis, and kidney<br>diseases                     | [115]         |
|                             | Leaves                   | NA                                                                                                                                                                                                           | Flavonoids,<br>proantho-<br>cyanidins and<br>tannins | Antioxidant, gastro-<br>protective properties                              | [116]         |
| Byrsomina<br>bucidaefolia   | Leaves                   | Methyl gallate and<br>Methyl <i>m</i> -trigallate                                                                                                                                                            | Phenolic<br>acids                                    | Antioxidant                                                                | [61]          |
| Byrsomina<br>coccolobifolia | Leaves<br>& Stems        | Isoquercitrin, catechin,<br>epicatechin, quercitrin,<br>quercetin and kaempferol                                                                                                                             | Flavonoids                                           | Antileshimina                                                              | [98]          |
|                             | Leaves &<br>Aerial parts | NA                                                                                                                                                                                                           | NA                                                   | Antimicrobial (against<br>Mycobacterium<br>fortuitum)                      | [117]         |
| Byrsomina                   | Leaves                   | Quercetin, and quercetin-3- <i>O</i> -<br>(2"-galloyl)-a-L-<br>arabinopyranoside.<br>Methyl gallate, and<br>epigallocatechin gallate.                                                                        | Flavonoids<br>Phenolic<br>acids                      | Antimicrobial                                                              | [75]          |
| crassa<br>Nied.             |                          | Quercetin-3- $O$ - $\beta$ -d-<br>galactopyranoside, quercetin-3- $O$ - $\alpha$ -l-arabinopyranoside,<br>amentoflavone, catechin and<br>epicatechin.                                                        | Flavonoids                                           | Antiulcerogenic                                                            | [118]         |
|                             |                          | Quercetin-3- $O$ - $\beta$ -d-galacto-<br>pyranoside, quercetin-3- $O$ - $\alpha$ -l-<br>arabino-pyranoside, amentoflavone<br>and catechin.<br>Methyl gallate                                                | Flavonoids<br>Phenolic<br>acids                      | Mutagenic (using<br>Salmonella<br>mutagenicity and<br>micronucleus tests). | [119]         |

| Byrsomina<br>crassa Nied.       | leaves &<br>bark                   | $\alpha$ -amyrin, $\beta$ -amyrin and their<br>acetates, lupeol, oleanolic<br>acid, ursolic acid, friedelin,<br>and $\alpha$ -amyrinone.                                               | Triterpenes                                                                                                                       | Antitubercular                                                                 | [120] |
|---------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------|
|                                 | Aerial<br>parts                    | NA                                                                                                                                                                                     | Polyphenolic<br>compounds,<br>flavonoids, tannins,<br>and terpenoids.                                                             | Antimicrobial (Anti<br>H. pylori), immune-<br>stimulatory                      | [121] |
|                                 | Leaves                             | Betulin aldehyde, betulin,<br>betulinic acid, lupeol, oleanolic<br>acid and ursen-aldehyde<br>$\beta$ -sitosterol and its glucoside<br>Catechin, epicatechin,<br>guaijaverin, hyperin, | Triterpenes<br>Sterols<br>Flavonoids                                                                                              | Spasmogenic activity                                                           | [50]  |
|                                 |                                    | quercetin and its 3- <i>O</i> -[6"-<br>galloyl] galactoside<br>Methyl gallate (an aromatic<br>ester).                                                                                  | Phenolic acid                                                                                                                     |                                                                                |       |
|                                 |                                    | Alanine, aspartic acid, proline,<br>valine, pipecolic acid and 5-<br>hydroxy-pipecolic acid                                                                                            | Protein and non-<br>protein amino<br>acids.                                                                                       |                                                                                |       |
|                                 | leaves &<br>bark                   | NA                                                                                                                                                                                     | NA                                                                                                                                | Antidote and treat side<br>effects caused by<br>snakebite                      | [109  |
| Byrsomina                       | Leaves                             | Gallic acid, and methyl<br>gallate<br>Quercetin and its                                                                                                                                | Phenolic acids<br>Flavonoids                                                                                                      | Gastro protective,<br>healing, and<br>antidiarrheal                            | [94]  |
| crassifolia                     |                                    | glycosides                                                                                                                                                                             | Tavonolas                                                                                                                         |                                                                                |       |
| (L) Kunth<br>(Syn.<br>Byrsonima | Fruits &<br>Seed                   | NA                                                                                                                                                                                     | NA                                                                                                                                | Antihypeglycemic,<br>antihyperlipidemic and<br>antiglycation                   | [70]  |
| fagifolia<br>Nied.)             | Aerial<br>parts                    | Quercetin 3-O-xyloside,<br>quercetin, rutin and hesperidin                                                                                                                             | Flavonoids                                                                                                                        | Antidepressant                                                                 | [88]  |
|                                 | Leaves                             | Bassic acid, lupeol, $\alpha$ - amyrin, $\beta$ -amyrin and their acetates.                                                                                                            | Triterpene                                                                                                                        | Antitubercular                                                                 | [51]  |
|                                 |                                    | NA                                                                                                                                                                                     | NA                                                                                                                                | Diabetic wound<br>healing in rats (by<br>tissue regeneration).                 | [122  |
|                                 | Seeds                              | labda-17-acetoxi-13E-en-15-<br>palmitate, and abda-8(17),13E-<br>dien-19-carboxy-15-yl<br>palmitate)                                                                                   | Diterpene labdane                                                                                                                 | Antimicrobial                                                                  | [123  |
|                                 |                                    | Byrsoninas A and B                                                                                                                                                                     | Dimeric<br>guaianolides<br>sesquiterpene<br>lactone                                                                               | Antioxidant,<br>hypoglycemic, and<br>hypolipidemic.                            | [71]  |
|                                 | Bark                               | NA                                                                                                                                                                                     | Phenolic compounds,<br>tannins, flavonoids,<br>anthra-quinones,<br>triterpenes,<br>cardiotonic glycosides<br>and reducing sugars. | Antifungal and<br>antioxidant                                                  | [124  |
|                                 | Yellow<br>& red<br>nance<br>fruits | Lutein and its isomers, zeaxanthin, $\beta$ -carotene and its isomers and lutein dimyristate                                                                                           | Carotenoids and xanthophyll esters                                                                                                | High lutein renders<br>nance fruit as a<br>nutritionally (micro-<br>nutrient). | [125  |

\_

|                                     | Leaves              | quercetin                                                                                                                                                                                                                        | Flavonoids                                                                            | Antioxidant                                                                                                         | [126] |
|-------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------|
| Byrsomina                           |                     | Ferulic acid                                                                                                                                                                                                                     | Phenolic acids                                                                        |                                                                                                                     |       |
| crassifolia<br>(L) Kunth<br>(Syn.   | Fruits              | NA                                                                                                                                                                                                                               | Polyphenols and carotenoids                                                           | Antioxidant effects<br>and application to<br>aging.                                                                 | [62]  |
| Byrsonima<br>fagifolia<br>Nied.)    | -                   | NA                                                                                                                                                                                                                               | Phenolic compound,<br>flavonoids, and<br>vitamin C                                    | Antioxidant                                                                                                         | [63]  |
|                                     | Leaves              | Gallic acid, ferric acid, ferrulic<br>acid<br>Myricetin and quercetin,<br>catechin, and epicatechin                                                                                                                              | Phenolic acids<br>Flavonoids                                                          | Antimicrobial                                                                                                       | [127] |
|                                     | Pulp                | NA                                                                                                                                                                                                                               | Phenolic<br>compounds,<br>flavonoids, and fatty<br>acids.                             | Antioxidant,<br>Cytotoxic<br>and Cytoprotective                                                                     | [83]  |
| Byrsonima<br>duckeana<br>W. R.      | Leaves              | NA                                                                                                                                                                                                                               | NA                                                                                    | Hemolytic and<br>cytotoxicity (against cell<br>lines a U937 human<br>monocyte, and HT29<br>tumor colon cell lines). | [84]  |
| Anderson                            | -                   | Ethyl gallate, quinic acid, and<br>gallic acid,<br>Catechin, epicatechin,<br>quercetrin, and quercetin                                                                                                                           | Phenolic acids<br>Flavonoids                                                          | Analgesic,<br>antiinflammatory, and<br>antioxidant                                                                  | [64]  |
|                                     | Leaves              | Catechin, epicatechin, gallic acid<br>methyl gallate, amentoflavone<br>quercetin and its glycosides.                                                                                                                             |                                                                                       | Mutagenic (for the<br>strains TA98 and<br>TA100 in the Ames<br>assay).                                              | [128] |
|                                     | Stem<br>bark        | NA                                                                                                                                                                                                                               | Flavonoids,<br>saponins, tannins,<br>triterpenes, and<br>steroids.                    | Antiinflammatory and antinociceptive                                                                                | [129] |
|                                     |                     | Catechin                                                                                                                                                                                                                         | Flavonoids                                                                            | Chronic and acute antiinflammatory                                                                                  | [130] |
| Byrsonima<br>intermedia<br>A. Juss. | -                   | Gallic acid, 3,4-di-O-<br>galloylquinic acid, methyl<br>gallate, catechin, epicatechin,<br>1,3,5-tri-O-galloylquinic acid,<br>amento-flavone, quercetin, and<br>its glycosides.                                                  | Phenolic acids,<br>oligomeric<br>proanthocyanidins,<br>and flavonoids.                | Gastric and duodenal<br>antiulcer,<br>antimicrobial and<br>antidiarrheal                                            | [95]  |
|                                     | Leaves <sup>-</sup> | Gallic acid, 3,4-di- <i>O</i> -<br>galloylquinic acid, methyl<br>gallate, catechin, epicatechin,<br>1,3,5-tri- <i>O</i> galloyl-quinic acid,<br>1,3,4,5-tetra- <i>O</i> -galloylquinic<br>acid, quercetin and its<br>glycosides. | Phenolic acids,<br>oligomeric<br>proanthocyanidins,<br>and flavonoids.                | Gastroprotective<br>(against peptic ulcers,<br>improve healing<br>through antioxidant and<br>antiinflammatory).     | [96]  |
|                                     | -                   | Cinnamic acids, galloyl quinic and shikimic acid.<br>Quercetin, epicatechin and their glycosides<br>Lupane and oleanane, betulinic acid, oleanolic acid, $\beta$ -amyrin and 3-oxo-olean-12-en-28-al.                            | Phenolic acids<br>Proanthocyanidins,<br>and glycosylated<br>flavonoids<br>Triterpenes | NA                                                                                                                  | [131] |

| Byrsonima                                                                                                      |                  | NA                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                 | Treatment of external<br>ulcers and<br>inflammations.                                                    | [115] |
|----------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------|
| gardneriana<br>(A. Juss.)                                                                                      | Leaves           | Pyroglutamic, Hexadecanoic,<br>heptanoic, and octanoic acids.<br>Eucalyptol<br>Retinal (Vitamin A)                                                                                                                                                                                              | Fatty acids<br>Terpenoids<br>Vitamins                                                                                                                                                                              | Antifungal against<br><i>Candida</i> spp.,<br>antioxidant activity,<br>and cytotoxicity.                 | [46]  |
|                                                                                                                | Stem bark        | NA                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                 | Treatment of external<br>ulcers and<br>inflammations                                                     | [115] |
| Byrsonima<br>verbascifolia                                                                                     | Leaves           | Quinic acid, gallic acid, proto-<br>catechuic acid, and their glycosides<br>Epicatechin, catechin, rutin,<br>apigenin, quercetin, kaempferol and<br>their glycosides                                                                                                                            | Phenolic acids<br>Flavonoids                                                                                                                                                                                       | Antiinflammatory<br>(inhibition of tumor<br>necrosis factor alpha,<br>prostaglandin E2<br>production and | [132] |
| (L.) DC.                                                                                                       |                  | Procyanidins, and Prodelphindin                                                                                                                                                                                                                                                                 | Proanthocyanidin                                                                                                                                                                                                   | polymorphonuclear leucocyte migration).                                                                  |       |
|                                                                                                                |                  | Quercetin, epicatechin, catechin, and<br>amentoflavone<br>Quinic acid, and gallic acid                                                                                                                                                                                                          | Flavonoids<br>Phenolic acids                                                                                                                                                                                       | Antiinflammatory                                                                                         | [133] |
|                                                                                                                | Fruit            | butanoic acid, ethyl ester; hexanal;<br>2-heptanone; methyl octanoate;<br>butyl hexanoate; ethyl octanoate;<br>decanoic acid, methyl ester; and<br>hexanoic acid, ethyl ester                                                                                                                   | Volatile<br>constituents                                                                                                                                                                                           | Antioxidiant                                                                                             | [134] |
| Byrsomina<br>microphylla<br>A. Juss.                                                                           | Leaves           | 24-hydroxy-urs-12-enyl 3b-<br>eicosanate, estearate and palmitate,<br>24-hydroxy-olean-12-enyl 3b-<br>eicosanate, oleanolic and 3b,24-<br>dihydroxy-urs-12-en-28-oic acids.<br>Quercetin                                                                                                        | Triterpenes<br>esterified with fatty<br>acid<br>Flavonoids                                                                                                                                                         | NA                                                                                                       | [135] |
|                                                                                                                |                  | Methyl galic ester                                                                                                                                                                                                                                                                              | Phenolic acid                                                                                                                                                                                                      |                                                                                                          |       |
|                                                                                                                |                  | NA                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                 | Antiinflammatory,<br>antihyperalgesic,<br>antiplatelet and<br>antiulcer                                  | [34]  |
| Byrsomina<br>japurensis<br>A. Juss.                                                                            | Stem bark        | NA                                                                                                                                                                                                                                                                                              | Phenolic compounds<br>(anthocyanins/anthocy<br>anidins, aurones,<br>chalcones, flavanones<br>and condensed tannins<br>and steroid compounds<br>(saponins, pentacyclic<br>triterpenes, cardio-<br>active steroids). | Antioxidant (by                                                                                          | [136] |
| <i>Callaeum</i><br><i>antifebrile</i><br>(Griseb.)                                                             | Stem &<br>leaves | Harmine                                                                                                                                                                                                                                                                                         | Alkaloids                                                                                                                                                                                                          | Antifever                                                                                                | [137] |
| Caucanthus<br>auriculatus<br>(Radlk.) Nied.                                                                    | Leaves           | NA                                                                                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                 | Nutritive value for<br>animal livestock                                                                  | [138] |
| Camarea.<br>ericoides<br>C. humifusa<br>C. affinis<br>C. hirsute<br>C. elongates<br>C. axillaris<br>C. sericea | Leaves           | Apigenin, apigenin 7-O-glucoside,<br>luteolin 7-O-galactoside, chrysoeriol,<br>kaempferol, kaempferol 3-O-<br>glucoside, kaempferol 3-O-<br>galactoside, kaempferol 3-O-<br>rutinoside, Quercetin, Quercetin 3-O-<br>glucoside, Quercetin 3-O-galactoside,<br>Quercetin 3-O-rutinoside (Rutin). | Flavonoids                                                                                                                                                                                                         | NA                                                                                                       | [139] |

| NA<br>N- <i>cis</i> -Feruloyl-tyramine, and<br>Simulansamide<br>Cucumerin A, Syringetin 3-<br>glucuronide, and<br>Macarangaflavanone A.<br>3-β-O-( <i>cis</i> -p-coumaroyl)<br>corosolic acid, 25-anidro-<br>alisol F, Phytuberina<br>Ginsenoside<br>S-cucujolide<br>NA | Phenolic compounds,<br>among them, mainly<br>flavonoids<br>Alkaloids<br>Flavonoids<br>Terpenoid<br>Saponins<br>Lactone<br>NA                                             | Antitumor<br>(Melanoma<br>Cell Line)<br>NA                                                                                                                                                                | [54]                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Simulansamide<br>Cucumerin A, Syringetin 3-<br>glucuronide, and<br>Macarangaflavanone A.<br>$3-\beta$ -O-( <i>cis</i> -p-coumaroyl)<br>corosolic acid, 25-anidro-<br>alisol F, Phytuberina<br>Ginsenoside<br>S-cucujolide<br>NA                                         | Flavonoids<br>Terpenoid<br>Saponins<br>Lactone                                                                                                                           | NA                                                                                                                                                                                                        | [140]                                                                                                                                                                                                                                                                                                                        |
| glucuronide, and<br>Macarangaflavanone A.<br>$3-\beta-O-(cis-p-coumaroyl)$<br>corosolic acid, 25-anidro-<br>alisol F, Phytuberina<br>Ginsenoside<br>S-cucujolide<br>NA                                                                                                  | Terpenoid<br>Saponins<br>Lactone                                                                                                                                         |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                              |
| corosolic acid, 25-anidro-<br>alisol F, Phytuberina<br>Ginsenoside<br>S-cucujolide<br>NA                                                                                                                                                                                | Saponins<br>Lactone                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                              |
| S-cucujolide<br>NA                                                                                                                                                                                                                                                      | Lactone                                                                                                                                                                  |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                              |
| NA                                                                                                                                                                                                                                                                      |                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                              |
| NA                                                                                                                                                                                                                                                                      |                                                                                                                                                                          | Antibacterial                                                                                                                                                                                             | [141]                                                                                                                                                                                                                                                                                                                        |
| NA                                                                                                                                                                                                                                                                      | Saponins,<br>cardenolides,<br>alkaloid and<br>tannins.                                                                                                                   | Antibacterial (aganist<br>Staphylococcus.<br>aureus, Pseudomonas<br>aerugniosa, Eustaricia<br>coli and Klabellia<br>pneumoniae).                                                                          | [76]                                                                                                                                                                                                                                                                                                                         |
| NA                                                                                                                                                                                                                                                                      | Tannins and amino-<br>glycosides                                                                                                                                         | Antiinfective and wound healing                                                                                                                                                                           | [101]                                                                                                                                                                                                                                                                                                                        |
| NA                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                       | <i>In-vitro</i> antibacterial<br>and <i>in-vivo</i> wound<br>healing activities                                                                                                                           | [102]                                                                                                                                                                                                                                                                                                                        |
| NA                                                                                                                                                                                                                                                                      | Saponnins,<br>alkaloids,<br>anthraquinones,<br>flavonoids and<br>tannins                                                                                                 | Antimicrobial<br>(against different<br>Candida species)                                                                                                                                                   | [142]                                                                                                                                                                                                                                                                                                                        |
| NA                                                                                                                                                                                                                                                                      | Phenolics,<br>flavonoids and<br>proanthocyanidins                                                                                                                        | Antioxidant                                                                                                                                                                                               | [66]                                                                                                                                                                                                                                                                                                                         |
| NA                                                                                                                                                                                                                                                                      | Terpenoids, tannins,<br>saponin and<br>flavonoids.                                                                                                                       | Gastric ulcers                                                                                                                                                                                            | [143]                                                                                                                                                                                                                                                                                                                        |
| NA                                                                                                                                                                                                                                                                      | Tannins, saponins,<br>flavonoids, and of a<br>steroidal nucleus<br>(cardiac glycoside)                                                                                   | Sub-Chronic<br>Oral Toxicity                                                                                                                                                                              | [144]                                                                                                                                                                                                                                                                                                                        |
| Friedelin and friedelinol                                                                                                                                                                                                                                               | Triterpenoids<br>Steroids<br>Flavonoid glycoside                                                                                                                         | Gastroprotective                                                                                                                                                                                          | [52]                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                         | Friedelin and friedelinol<br>Sitosterol and sitosterol- $\beta$ -d-glucoside)<br>Kaempferol-3- $O$ - $\alpha$ -l-rhamno-<br>pyranosyl- $(1 \rightarrow 6)$ - $\beta$ -d- | flavonoids, and of a steroidal nucleus (cardiac glycoside)   Friedelin and friedelinol Triterpenoids   Sitosterol and sitosterol-β-d-glucoside) Steroids   Kaempferol-3-O-α-l-rhamno- Flavonoid glycoside | flavonoids, and of a<br>steroidal nucleus<br>(cardiac glycoside)Oral ToxicityFriedelin and friedelinolTriterpenoidsGastroprotectiveSitosterol and sitosterol- $\beta$ -d-<br>glucoside)SteroidsFlavonoid glycosideKaempferol-3- $O$ - $\alpha$ -l-rhamno-<br>pyranosyl- $(1 \rightarrow 6)$ - $\beta$ -d-Flavonoid glycoside |

|                             | Whole plant      | Gallic acid, methyl gallate, and tetragalloylquinc acid                                                                                                                                                                                                                                                                                             | Phenolic acids                                                                                                                                                                       | Antiasthmatic                                                 | [145] |
|-----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------|
|                             |                  | Quercetin                                                                                                                                                                                                                                                                                                                                           | Flavonoids                                                                                                                                                                           |                                                               |       |
|                             | Aerial parts     | Gaiphimine B                                                                                                                                                                                                                                                                                                                                        | Nor-<br>secotriterpenoid                                                                                                                                                             | Sedative                                                      | [146] |
|                             | Whole plant      | Galphin A, galphin B, galphin<br>C, and galphimidin.                                                                                                                                                                                                                                                                                                | Nor-secofriedelanes<br>and nor-friedelane<br>terpenoids                                                                                                                              | Antiprotozoal<br>Activity                                     | [99]  |
|                             |                  | Quercetin                                                                                                                                                                                                                                                                                                                                           | Flavonoids                                                                                                                                                                           |                                                               |       |
|                             |                  | Stigmasterol and sitosterol 3-<br>O- $\beta$ -d-glucoside.                                                                                                                                                                                                                                                                                          | Sterols                                                                                                                                                                              |                                                               |       |
|                             |                  | Galphimine B.                                                                                                                                                                                                                                                                                                                                       | Nor-secotriterpene.                                                                                                                                                                  | Anxiolytic and antidepressant                                 | [89]  |
| Galphimia<br>glauca<br>Cav. | Aerial parts –   | Galphimine-B, galphimine-A, galphimine-E, and galphimine-J                                                                                                                                                                                                                                                                                          | Nor-secotriterpene.                                                                                                                                                                  | Antiinflammatory                                              | [86]  |
| Cav.                        |                  | $\alpha$ -amyrin, $\beta$ -amyrin                                                                                                                                                                                                                                                                                                                   | Triterpenoid                                                                                                                                                                         |                                                               |       |
|                             |                  | $\beta$ -sitosterol, and $\beta$ -sitosteryl-<br>3-O- $\beta$ -D-glucopyranoside                                                                                                                                                                                                                                                                    | Sterols                                                                                                                                                                              |                                                               |       |
|                             |                  | methyl-gallate, 4-methoxy<br>methyl gallate, and gallic acid.                                                                                                                                                                                                                                                                                       | Phenolic acids                                                                                                                                                                       |                                                               |       |
|                             |                  | Kaempferol, quercetin,<br>kaempferol 3- $O$ - $\beta$ -D-gluco-<br>pyranoside, quercetin 3- $O$ -<br>$\beta$ -D-glucopyranoside,<br>kaempferol 3- $O$ - $\beta$ -D-(2"-<br>galloyl)-glucopyranoside,<br>kaempferol 3- $O$ - $\beta$ -D-(2"-<br>galloyl) galactopyranoside,<br>and quercetin 3- $O$ - $\beta$ -D-(2"-<br>galloyl)-galactopyranoside. | Flavonoids                                                                                                                                                                           |                                                               |       |
|                             | Leaves           | NA                                                                                                                                                                                                                                                                                                                                                  | Amino acids,<br>carbohydrates,<br>proteins,<br>flavonoids, tannins,<br>and phenolic<br>compounds.                                                                                    | CNS Depressant<br>and muscle<br>relaxant                      | [147] |
|                             | Bark &<br>leaves | NA                                                                                                                                                                                                                                                                                                                                                  | Phenolic compounds,<br>flavonoids, alkaloids,<br>carbohydrates,<br>steroids, protein &<br>amino acids,<br>anthraquinone, gums<br>& mucilage,<br>glycosides, tannins<br>and saponins. | Antioxidant,<br>antibacterial and<br>anticancer<br>Activities | [67]  |

|                        | Leaves                      | NA                                                                                                                                                                                                                                                | NA                                                                                                       | Anthelmintic                                                                                                                                                                          | [148] |
|------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                        |                             | NA                                                                                                                                                                                                                                                | Carbohydrate,<br>proteins, amino acids,<br>saponins, tannins,<br>glycosides, phenolic<br>and flavonoids. | Antiinflammatory,<br>and anthelmintic                                                                                                                                                 | [149] |
|                        |                             | NA                                                                                                                                                                                                                                                | Phenolic<br>compounds                                                                                    | Antioxidant                                                                                                                                                                           | [150] |
|                        | Leaves &<br>stem<br>bark    | NA                                                                                                                                                                                                                                                | Alkaloids,<br>anthraquinones,<br>coumarin,<br>flavonoids, phenols,<br>steroids, tannins,<br>terpenoids & | Antibacterial (against<br>Staphylococcus<br>aureus, Klebsiella<br>pneumoniae, Bacillus<br>subtilis, Escherichia<br>coli, Pseudomonas<br>acrucianen and                                | [151] |
|                        | Leaves                      | NA                                                                                                                                                                                                                                                | xanthoprotein<br>Steroids, terpenoids,<br>carbohydrates,<br>phenolics and<br>glycosides.                 | <i>aeruginos</i> a and<br><i>Salmonella typhi</i> ).<br>Hepato-protective<br>(against carbon<br>tetrachloride-induced<br>liver damage in rats).                                       | [92]  |
|                        | Root<br>bark                | NA                                                                                                                                                                                                                                                | NA                                                                                                       | Larvicidal, adulticidal,<br>and repellent (against<br>the larvae and adults of<br><i>Anopheles barbirostris</i> ,<br><i>Culex quinquefasciatus</i> ,<br>and <i>Aedes albopictus</i> ) | [152  |
| Hiptage<br>enghalensis | Leaves,<br>stem &<br>flower | NA                                                                                                                                                                                                                                                | Flavonoids (free + bound)                                                                                | NA                                                                                                                                                                                    | [153  |
| (L.) kurz              | Stem                        | NA                                                                                                                                                                                                                                                | Steroids,<br>carbohydrate,<br>flavonoid, alkaloid,<br>tannins, phenol,<br>mangiferin and<br>terpenoids.  | Antidiabetic                                                                                                                                                                          | [154  |
|                        | Leaves                      | NA                                                                                                                                                                                                                                                | Steroid,<br>carbohydrate,<br>flavonoid, alkaloid,<br>tannin, phenol,<br>mangiferin and<br>terpenoids.    | Analgesic and<br>antiinflammatory                                                                                                                                                     | [87]  |
|                        |                             | NA                                                                                                                                                                                                                                                | Steroids, terpenoids,<br>carbohydrate,<br>phenolics and<br>glycosides.                                   | Antidiabetic                                                                                                                                                                          | [72]  |
|                        | Root                        | NA                                                                                                                                                                                                                                                | NA                                                                                                       | Antiobesity                                                                                                                                                                           | [100  |
|                        | Stem<br>bark                | Alnus-5(10)-en- $3\beta$ -yl<br>acetate, oleanan-3-one,<br>$3\beta$ -acetoxy- $9\beta$ -bauer-7-<br>en-6-one, lupeol, 24-<br>propylcholesterol, alnus-<br>5(10)-en- $3\beta$ -ol, $3\beta$ -<br>acetoxy-20-hydroxy-<br>lupane and betulonic acid. | Triterpenes and<br>steroid<br>compound                                                                   | Antiinflammatory                                                                                                                                                                      | [155  |
|                        |                             | NA                                                                                                                                                                                                                                                | NA                                                                                                       | Antimicrobial (against<br>Klebsiela pneumonia,<br>Escherichia coli,<br>Micrococcus luteus<br>and Pseudomonas<br>aeruginosa).                                                          | [77]  |

| Hiptage<br>benghalensis<br>(L.) kurz                                                      | Leaves            | NA                                                                                                                                                       | NA                                                                                                                                                                                           | Anticancer (human cervical<br>carcinoma (HeLa), human<br>breast cancer (MCF-7) and<br>human neuro-blastoma<br>(IMR-32) cells).                  | [85]  |
|-------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                           | Leaves            | NA                                                                                                                                                       | Phenols, tannins,<br>flavonoids, steroids,<br>and triterpenoids                                                                                                                              | Antidiabetic                                                                                                                                    | [73]  |
| Heteropterys<br>brachiate L.                                                              | Aerial            | Chlorogenic acid and<br>chlorogenic acid<br>methyl ester                                                                                                 | Hydroxycinnamic<br>acids                                                                                                                                                                     | Antidepressant, anxiolytic and anticonvulsive.                                                                                                  | [156] |
| DC.                                                                                       | parts             | NA                                                                                                                                                       | Mixture of terpene                                                                                                                                                                           |                                                                                                                                                 | 5001  |
|                                                                                           |                   | NA                                                                                                                                                       | NA                                                                                                                                                                                           | AntiHIV and anti <i>Candida</i> effects                                                                                                         | [80]  |
| Heteropterys<br>byrsonimifolia<br>A. Juss.                                                | Leaves            | Guaijaverin, quercetin<br>3- $O$ - $\alpha$ -L-rhamno-<br>pyranoside, quercetin<br>3- $O$ -robinobioside and<br>rutin.                                   | Flavonoids                                                                                                                                                                                   | Antifungal (against<br>Aspergillus ochraceus).                                                                                                  | [157] |
| Heteropterys<br>chrysophylla<br>(Lam.) Kunth                                              | Leaves<br>& twigs | Palmitic acid<br>Dihydroactinolide<br>Kaempferol-3- <i>O</i> -α-L-<br>rhamnoside, kaempferol-<br>3- <i>O</i> -α-L-rhamnose-(2-1)-<br>β-D-xylopyranoside. | Fatty acids<br>Volatile terpene<br>Flavonoids                                                                                                                                                | Exhibited hormonal effects<br>on prostate cancer cells                                                                                          | [158] |
| Heteropterys<br>cotinifolia A.<br>Juss.                                                   | Aerial<br>parts   | Chlorogenic acid<br>Rutin                                                                                                                                | Hydroxycinnamic<br>acids<br>Flavonoids                                                                                                                                                       | Antidepressant                                                                                                                                  | [91]  |
| Heteropterys<br>glabra<br>Hook. &Arn.<br>(Syn.<br>Heteropterys<br>angustifolia<br>Griseb  | Root              | Hiptagin (1, 2, 4, 6-tetra-<br>3-nitropropanoyl-β-D-<br>gluco-pyranoside)                                                                                | Aliphatic nitro<br>compound                                                                                                                                                                  | NA                                                                                                                                              | [159] |
|                                                                                           | Fruits            | NA                                                                                                                                                       | NA                                                                                                                                                                                           | Anxiolytic and sedative in DBA/2J mice.                                                                                                         | [90]  |
| Heteropterys<br>tomentosa<br>A. Juss. (Syn.<br>Heteropterys<br>aphrodisiaca<br>(O.) Mach. |                   | NA                                                                                                                                                       | Flavonoid, cardiac<br>glycosides with<br>steroidal nucleus,<br>or pentagonal<br>lactonic ring,<br>saponins, hydro-<br>lysable and<br>condensed tannins<br>and aliphatic nitro-<br>compounds. | Improves learning and memory deficits in aged rats.                                                                                             | [97]  |
|                                                                                           | Roots             | 2,3,4,6-tetra- $O$ -(3-<br>nitropropanoyl)- $O$ - $\beta$ -D-<br>glucopyranoside                                                                         | Aliphatic nitro<br>compound                                                                                                                                                                  | Antimicrobial (against<br>staphylo-coccus aureus,<br>Bacillus subtilis, Candida<br>albicans, C. parapsilosis, C.<br>krusei, and C. tropicalis). | [78]  |
|                                                                                           |                   | Neoastilbin, astilbin and isoastilbin                                                                                                                    | Flavonoids                                                                                                                                                                                   | NA                                                                                                                                              | [160] |
|                                                                                           |                   | 2,3,4,6-tetra- $O$ - $(3$ -<br>nitropropanoyl)- $O$ - $\beta$ -D-<br>glucopyranoside                                                                     | Aliphatic nitro<br>compound                                                                                                                                                                  | Antiviral (against poliovirus<br>type-1 (PV-1) and bovine<br>herpes virus type-1 (BHV-1)<br>by plaque reduction assay).                         | [79]  |
|                                                                                           |                   | NA                                                                                                                                                       | NA                                                                                                                                                                                           | Stimulant and aphrodisiac<br>(by reduce Cyclosporine A<br>(CsA) induced injuries in the<br>testis.                                              | [161] |

| Heteropterys<br>tomentosa A.<br>Juss. (Syn.<br>Heteropterys<br>aphrodisiaca<br>(O.) Mach. |                                | NA                                                                                                                                                                                                                                                                                                                     | NA                                                         | Increasing the spermatogenic<br>yield (by increase<br>testosterone production and<br>spermatogonia mitosis).                                                  | [162] |
|-------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                           | Roots                          | NA                                                                                                                                                                                                                                                                                                                     | NA                                                         | Anabolic effects (Produce<br>more organized collagen<br>bundles and more resistant<br>tendons to support higher<br>loads from intense muscle<br>contraction). | [163] |
|                                                                                           |                                | Astilbin, isoastilbin and<br>neoastilbin<br>2, 3, 4, 6-tetra- <i>O</i> -(3-<br>nitropropanoyl)- <i>O</i> -β-D-<br>glucopyranoside.                                                                                                                                                                                     | Flavonoids<br>Aliphatic nitro<br>compound                  | Memory retrieval<br>improvement in aging rats<br>and antioxidant                                                                                              | [164] |
|                                                                                           |                                | NA                                                                                                                                                                                                                                                                                                                     | NA                                                         | A protective action against<br>the side effects of<br>Cyclosporin A on the<br>ventral prostate tissue.                                                        | [165] |
|                                                                                           | Roots,<br>branches<br>& Leaves | Catechin, taxifolin, and<br>rutin.<br>Chlorogenic acid                                                                                                                                                                                                                                                                 | Flavonoids<br>Hydroxy-<br>cinnamic acids                   | Not show evidence of<br>adaptogenic effect                                                                                                                    | [166] |
|                                                                                           |                                | Caffeoylquinic acids<br>Taxifolin derivatives                                                                                                                                                                                                                                                                          | Phenolic acids<br>Flavonoids                               | Decrease the viability of astrocytes.                                                                                                                         | [167] |
|                                                                                           | Roots                          | NA                                                                                                                                                                                                                                                                                                                     | NA                                                         | Improves the endurance<br>capacity of skeletal muscles<br>in trained rats                                                                                     | [168] |
|                                                                                           |                                | NA                                                                                                                                                                                                                                                                                                                     | NA                                                         | Effect on anxiety and male<br>exposure of female mice<br>with advanced age.                                                                                   | [169] |
|                                                                                           |                                | Taxifolin and taxifolin 3-<br>O-rhamnoside (astilbin).                                                                                                                                                                                                                                                                 | Flavonoids                                                 | Adaptogenic effect.                                                                                                                                           | [170] |
| Hiraea<br>reclinate<br>Jacq.                                                              | Leaves                         | Kaempferol 3- <i>O</i> -(6 <sup>"</sup> -galloyl)<br>b-D-galactopyranoside,<br>hyperin 6 <sup>"</sup> -gallate, vitexin<br>2 <sup>"</sup> rhamnoside, isovitexin<br>2 <sup>"</sup> rhamnoside, orientin<br>2 <sup>"</sup> rhamnoside, isoorientin<br>2 <sup>"</sup> rhamnoside.<br>1,3,4,5-tetragalloyl-quinic<br>acid | Flavonoids<br>Phenolic<br>acids                            | AntiHIV                                                                                                                                                       | [81]  |
| Malpighia<br>glabra L.<br>(Syn.<br>Malpigia<br>punicifolia<br>L.)                         | Mature &<br>immature<br>fruit  | Acethyl-methyl-carbinol,<br>2-methyl-propyl-acetate,<br>limonene, E-Z-octenal,<br>ethyl hexanoate, isoprenyl<br>butirate and acetofenone,<br>methyl hexanoate, 3-<br>octen-1-ol and hexyl-<br>butirate, methyl-propyl-<br>ketone, E-Z-hexenyl-<br>acetate and 1-octadecanol.                                           | Volatile<br>components                                     | NA                                                                                                                                                            | [47]  |
|                                                                                           | Fruit                          | Pelargonidin, malvidin 3,5-<br>di-glycoside and cyanidin<br>3-glycoside<br>Quercetin, and kaempferol<br><i>p</i> -Coumaric, ferulic,                                                                                                                                                                                   | Anthocyanins an<br>anthocyanidin<br>Flavonoids<br>Hydroxy- | NA                                                                                                                                                            | [40]  |
|                                                                                           |                                | chlorogenic, caffeic acids.                                                                                                                                                                                                                                                                                            | cinnamic acids                                             |                                                                                                                                                               |       |

|                                                                   | Fruit                  | Lutein, $\alpha$ -carotene, and $\beta$ -carotene                                                                                                                                                                                                                                                       | Carotenes                                                                                                                                                         | NA                                                                                                                                                                                                    | [171]        |
|-------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                   |                        | $\beta$ -cryptoxanthin                                                                                                                                                                                                                                                                                  | Monohydroxy carotenoids                                                                                                                                           |                                                                                                                                                                                                       |              |
|                                                                   |                        | Violaxanthin                                                                                                                                                                                                                                                                                            | Dihydroxy<br>carotenoids                                                                                                                                          |                                                                                                                                                                                                       |              |
|                                                                   | Unripe &<br>ripe fruit | Ascorbic acid<br>Rutin and quercetin                                                                                                                                                                                                                                                                    | Vitamins<br>Flavonoids                                                                                                                                            | Antigenotoxic and antioxidant                                                                                                                                                                         | [12,<br>172] |
|                                                                   | Fresh Pulp             | NA                                                                                                                                                                                                                                                                                                      | Ascorbic acid,<br>anthocyanins,<br>carotenoids,<br>phenols, and<br>flavonoids.                                                                                    | Cytotoxic and<br>mutagenic effects of<br>iodine-131 and<br>radioprotection                                                                                                                            | [173]        |
| Malpighia<br>glabra L.<br>(Syn.<br>Malpigia<br>punicifolia<br>L.) | Fruit                  | NA                                                                                                                                                                                                                                                                                                      | Volatile components,                                                                                                                                              | Antimicrobial (against<br><i>Pseudo-monas putida, P.</i><br><i>fluorescens, P. fragi,</i> and<br><i>Brochothrix, thermo-</i><br><i>sphacta</i> by agar well<br>diffusion and agar dilution<br>tests). | [174]        |
|                                                                   |                        | Tocopherol, and $\beta$ -carotene.<br>Gallic acid, and ellagic<br>acid.                                                                                                                                                                                                                                 | Carotenoids<br>Phenolic acids                                                                                                                                     | Antioxidant                                                                                                                                                                                           | [175]        |
|                                                                   |                        | Catechin, epicatechin, rutin,<br>quercitrin, quercetin and<br>kaempferol.                                                                                                                                                                                                                               | Flavonoids                                                                                                                                                        |                                                                                                                                                                                                       |              |
|                                                                   |                        | Caffeic acid                                                                                                                                                                                                                                                                                            | Hydroxycinnamic acids                                                                                                                                             |                                                                                                                                                                                                       |              |
|                                                                   | Fruit pulp             | Kaempferol, myricetin,<br>quercitin, and epicatechin<br>Procyanidin B1                                                                                                                                                                                                                                  | Flavonoids<br>Procyanidin                                                                                                                                         | Antioxidant                                                                                                                                                                                           | [176]        |
|                                                                   |                        | Trans-resveratrol<br>Acacetin, hispertin, quercetrin,<br>hesperidin, rutin, naringin and<br>apigenin 6-glucose 8-rhamnose.                                                                                                                                                                              | Phenol<br>Flavonoids                                                                                                                                              | Anticancer and antimicrobial activities                                                                                                                                                               | [82]         |
|                                                                   | Leaves                 | NA                                                                                                                                                                                                                                                                                                      | Cardiac glycosides,<br>alkaloids,<br>anthraquinone<br>glycosides,<br>carbohydrates,<br>saponins, sterols and/o<br>triterpenes, tannins,<br>volatile constituents, | 1                                                                                                                                                                                                     |              |
|                                                                   |                        | Caffeic acid, and chlorogenic<br>acid                                                                                                                                                                                                                                                                   | and vitamins.<br>Hydroxycinnamic<br>acids                                                                                                                         | Antioxidant                                                                                                                                                                                           | [68]         |
|                                                                   |                        | Quercetin, and kaempferol<br>Saponarin, vicenin, apigenin-C-<br>hexoside-C-pentosyl, vitexin-<br><i>O</i> - pentoside, rutin, kaempferol,<br>isorhamnetin-O-rutinoside,<br>isoorientin, fisetin, luteolin,<br>quercitrin, kaempferol–3- <i>O</i> -<br>rutinoside, orientin, quercetin<br>and myricetin. | Flavonoids<br>Flavonoids                                                                                                                                          | Hepatoprotective<br>activity                                                                                                                                                                          | [93]         |
|                                                                   |                        | Caffeoyl quinic acid, caffeoyl<br>feruloyl-quinic acid, <i>Trans</i> -<br>Cinnamate and 4-<br>methoxycinnamic acid.                                                                                                                                                                                     | Phenolic acids                                                                                                                                                    | -                                                                                                                                                                                                     |              |

|                               | Fruit                     | Vitamin C                                                                                                      | Vitamins                           | Antimicrobial,<br>and cytotoxic                       | [177] |
|-------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------|-------|
|                               | Ripe &<br>unripe          | Tartaric acid, malic acid, and citric acid                                                                     | Organic acids                      | Antioxidant                                           | [178] |
|                               | fruit                     | Ascorbic acid                                                                                                  | Vitamins                           |                                                       |       |
|                               |                           | Catechin                                                                                                       | Flavonoids                         |                                                       |       |
|                               |                           | Caffeic, ferulic, and coumaric                                                                                 | Hydroxycinnamic                    |                                                       |       |
|                               |                           | acids.                                                                                                         | acids                              |                                                       |       |
|                               |                           | Gallic acid, and syringic acid                                                                                 | Phenolic acid                      |                                                       |       |
|                               |                           | Cyanidin-3- $\alpha$ - <i>O</i> -rhamnoside and pelargonidin-3- $\alpha$ - <i>O</i> -rhamnoside.               | Anthocyanins                       | Antihyperglycemic                                     | [179  |
|                               |                           | Cyanidin 3,5-hexose pentose,<br>Cyanidin 3-glucoside, Cyanidin 3-                                              | Anthocyanins                       | NA                                                    | [180  |
|                               | Fruit                     | rutinoside, Pelargonidin 3-<br>glucoside, Peonidin 3-glucoside,<br>Cyanidin 3-rhamnoside and<br>Cyanidin.      |                                    |                                                       |       |
|                               |                           | Epigallocatechin gallate,<br>epicatechin and rutin                                                             | Flavonoids                         | Antioxidant (by<br>ABTS, DPPH                         | [181  |
| lalniahia                     |                           | Vitamin C                                                                                                      | Vitamins                           | and ORAC                                              |       |
| lalpighia<br>narginata<br>DC. |                           | Chlorogenic acid                                                                                               | Hydroxycinnamic acids              | methods).                                             |       |
| DC.                           |                           | Procyanidin B1                                                                                                 | Procyanidin                        |                                                       |       |
|                               |                           | NA                                                                                                             | Vitamin C, phenolic compounds, and | Antioxidant and antimicrobial                         | [182  |
|                               |                           |                                                                                                                | flavonoids                         |                                                       |       |
|                               | Aerial                    | Acerolanins A, B, C                                                                                            | Tetranor-                          | Cytotoxic                                             | [39   |
|                               | parts                     |                                                                                                                | diterpenes                         |                                                       |       |
|                               |                           | Vitamin C                                                                                                      | Vitamins                           |                                                       |       |
|                               |                           | NA                                                                                                             | Anthocyanins,                      |                                                       |       |
|                               |                           |                                                                                                                | flavonoids, and                    |                                                       |       |
|                               | D: 0-                     | Vitamin C                                                                                                      | phenolics.                         | Effect on harde                                       | F102  |
|                               | Ripe &<br>unripe<br>fruit | Rutin                                                                                                          | Vitamins<br>Flavonoids             | Effect on brain<br>energy metabolism<br>of mice fed a | [183  |
|                               |                           |                                                                                                                |                                    | cafeteria diet.                                       |       |
|                               |                           | Rhinocerotinoic acid, and isotriptophenolide                                                                   | Diterpene                          | Antioxidant and anti-fungal                           | [184  |
|                               |                           | Quinic acid, and protocatechuic acid                                                                           | Phenolic acids                     |                                                       |       |
|                               | Leaves                    | Gallocatechin, apigenin-7-O-<br>glucoside, and apigenin-8-O-                                                   | Flavonoids                         |                                                       |       |
|                               |                           | glucoside<br>Matricin                                                                                          | Sesquiterpene                      |                                                       |       |
|                               |                           | Ascorbic acid, and vitamin B3                                                                                  | Vitamins                           | An immune-                                            | [185  |
|                               |                           | Rutin                                                                                                          | Flavonoids                         | stimulatory and                                       | [10.  |
|                               |                           | Ellagic acid                                                                                                   | Phenolic acids                     | antiinflammatory.                                     |       |
|                               |                           | Caffeic acid                                                                                                   | Hydroxycinnamic<br>acids           | j.                                                    |       |
|                               | Fruits                    | Chlorogenic and isochlororgenic acids                                                                          | Hydroxycinnamic acids              | Antioxidant                                           | [69]  |
|                               |                           | Cyanidin, delphinidin-3 $\beta$ -D-glucoside, phloretin, peonidin                                              | Anthocyanins                       |                                                       |       |
|                               |                           | Genistein, luteolin, kaempferol,<br>apigenin 7-glucoside, quercitrin,<br>astragalin, kaempferol 3-O- $\beta$ - | Flavonoids                         |                                                       |       |
|                               |                           | glucoside, vitexin, malonylapiin<br>and isovitexin                                                             |                                    |                                                       |       |

|                                               |              | Trigonelline<br>Tryptophan                                                                                                                                                                                                            | Alkaloids<br>Amino acids                                      | NA                                                                      | [186] |
|-----------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|-------|
| Niedenzuella<br>multiglandulosa<br>(A. Juss.) | Leaves       | 4-hydroxy-cinnamic acid,<br>cinnamic acid.and cis-p-<br>coumaricacid4-O-β-D-gluco-                                                                                                                                                    | Phenolic acids                                                |                                                                         |       |
|                                               |              | pyranoside<br>Luteoforol                                                                                                                                                                                                              | Flavonoids                                                    |                                                                         |       |
|                                               |              | Integristerone A, icariside F2,<br>epiecdysterone, ecdysterone,<br>calonysterone, and<br>odecdysoneB.                                                                                                                                 | Miscellaneous                                                 |                                                                         |       |
| Stigmaphyllon                                 | Leaves       | NA                                                                                                                                                                                                                                    | Alkaloids, steroids,<br>flavonoids,<br>terpenoids, phenolics, | Antimalarial in<br>Plasmodium<br>falciparum infected                    | [187] |
| ovatum (Cav.)                                 |              |                                                                                                                                                                                                                                       | and eugenols                                                  | mice                                                                    |       |
|                                               |              | NA                                                                                                                                                                                                                                    | NA                                                            | Anticancer against human cervical carcinoma                             | [188] |
| Stigmaphyllon<br>paralias (A.<br>Juss.)       | Aerial parts | Friedelin, lupenone, 3-oxo- $\alpha$ -<br>amirin, 3-oxo- $\beta$ -amirin,<br>mixture of $\alpha$ -amirinyl<br>palmitate and stearate,<br>lupeol, $\alpha$ -amirine, and 3,4-<br>seco-friedelan-3-oic acid.                            | Triterpenes                                                   | NA                                                                      | [189] |
|                                               | Bark         | Luteolin-7-rutinoside<br>Mucronatin B, 5-hydroxy-N, N-                                                                                                                                                                                | Flavonoids<br>Alkaloids                                       | AntiAlzheimer                                                           | [55]  |
| Tetrapterys<br>mucronate                      |              | dimethyltryptamine<br>(bufotenine), 5-methoxy -N-<br>methyl-tryptamine, 5-methoxy-<br>N, N di-methyl-tryptamine,<br>trans-N feruloyl-tyramine<br>(Moupinamide), and 2-methyl-<br>6-methoxy-1,2,3,4-tetrahydro-<br>$\beta$ -carboline. |                                                               | (acetylcholine-esterase<br>inhibition in a TLC<br>bioautography assay). |       |
| Cav.                                          |              | Gentisic acid, gentisic acid 5-O- $\beta$ -xyloside, vanillic acid, and methoxy-4,5-(methylenedioxy) cinnamic acid.                                                                                                                   | Phenolic acids                                                |                                                                         |       |
|                                               |              | Catechin                                                                                                                                                                                                                              | Flavonoids                                                    |                                                                         |       |
|                                               |              | 2,6-phenanthrenediol, 7-<br>methyl-2,6-phenan-threnediol,<br>and 6-dihydroxy-9,10<br>dihydro-phenanthrene.                                                                                                                            | Phenanthrene<br>derivative                                    |                                                                         |       |
|                                               |              | Lyoniside, cannabisin F, and smilaside L                                                                                                                                                                                              | Carbohydrate                                                  |                                                                         |       |
|                                               |              | Nudiposide-9'-dihydroxy-<br>benzoic acid                                                                                                                                                                                              | Aromatic acids                                                |                                                                         |       |
|                                               | Stem bark    | Bufotenine, 5-methoxy-N-<br>methyl-tryptamine, 5-<br>methoxy-bufotenine, 2-<br>methyl-6-methoxy-1,2,3,4-<br>tetrahydro-carboline.                                                                                                     | Alkaloids                                                     | NA                                                                      | [56]  |
| Tristellateia                                 | Leaves &     | Acyclic hexitol, and dulcitol                                                                                                                                                                                                         | Alcohol                                                       | NA                                                                      | [190] |
| australasiae<br>(A. Rich)                     | stem         | Isorhamnetin<br>Friedelin, epifriedelinol, $\beta$ -<br>amyrin, lupeol and $\beta$ -<br>sitosterol.                                                                                                                                   | Flavonoids<br>Steroids and<br>triterpenes                     |                                                                         |       |
| Tristellateia                                 | Leaves       | NA NA                                                                                                                                                                                                                                 | NA                                                            | Antimalarial                                                            | [191] |

## 2. Experimental

Different databases are used to collect data conduct research, including SciFinder, PubMed, Science Direct, Scopus, Plos One, Web of Science, and Google Scholar in addition other sources including books, thesis, and official websites. "The Plant List" (www.theplantlist.org) was used to verify the accepted species number and names. All chemical structures were drawn using *ChemDraw* Ultra 7.0 software.

## 3. Distribution

Tropical and subtropical regions are the primary habitats for the plants of this family. The New World (the Caribbean and the southernmost United States to Argentina) has about 80% of the genera and 90% of the species, whereas the Old World (the remainder of the world including Africa, Madagascar and Indomalaya to New Caledonia and the Philippines) has the rest. Seven species of five genera are native to the warmer parts of the country: Byrsonima in southern Florida, Malpighia and Thryallis in Texas, and Aspicarpa and Janusia in western Texas and southern Arizona. Banisteria is one of the bigger genera in the family, with roughly 16 species native to Mexico [3]. There is no genus or species that is found in both hemispheres. A Caribbean and Atlantic coast species of a huge American genus, Stigmaphyllon ovatum (Cav.) Nied., has been collected numerous times in western Africa. Heteropterys leona (Cav.) Exell is a well-known species in western Africa, but it's hard to distinguish it from its closest relatives H. platyptera DC. and H. multiflora (DC.) Hochr., which grow in the Caribbean and along the Atlantic coast of Central and South America [8].

## 4. Traditional uses

A set of herbal preparations used in the Indian traditional health care system contains a variety of medicinal plants that have been used for thousands of years (Ayurveda). Although the species of Malpighiaceae family may not have a great economic potential, *Malpighia glabra* (Barbados cherry) and *Malpighia emarginata* (Acerola) have a high nutritional value due to their high vitamin C content [12, 13]. The juicy fruits of *Byrsonima* and *Malpighia* are also consumed fresh, prepared, or as canned juices, in jellies, ice cream, and preserves that are popular in Latin American cuisine [14].

*Malpighia* genus has not been widely utilized in traditional medicine, however *Malpighia glabra* is used as a tonic and diuretic [15].

Acridocarpus, Banisteriopsis, Byrsonima, Galphimia, Heteropterys, Malpighia, Peixotoa, and Stigmaphyllon species are also grown as ornamental plants [13, 16]. Aspidopterys obcordate has a long history in Dai traditional medicine, and it contains some important biochemical compounds with antiphlogistic and diuretic effects that could be used to treat acute, chronic nephritis, cystitis, rheumatism, bone pain, and to expel stone as well as postpartum weight loss in the form of a health tea and children's digestive diseases [17-20]. A. andamanica and A. cordata, on the other hand, are utilized as postpartum remedy [15].

Several species of Acridocarpus are still used as a folk medicine all over the world, and more specific studies to support this is needed. Some species are reported to have many ecological advantages as well. Stomachaches are traditionally treated with Acridocarpus alternifolius roots, whereas diarrhoea and dysentery are treated with A. excelsus bark, which is an astringent. The root of A. longifolius is used to cure venereal diseases and stomach problems as a laxative. Its leaf sap is used to treat eye infections and as a febrifuge; however, its root and leaf sap are utilized to treat cutaneous and subcutaneous parasite infections. A. plagiopterus root is used as a febrifuge, vermifuge, reptile repellent, and for sleep sickness, superstitions, and magic, while A. spectabilis roots are used as diuretics, cutaneous and subcutaneous parasitic infection, kidney and nasopharyngeal affections, ceremonial, and superstitions [15].

According to folklore medicine, *A. smeathmannii* roots are used for aphrodisiac, anti-anemia, pain killers, and various cutaneous and subcutaneous parasite infections. Several Ayurvedic preparations containing *A. smeathmannii* root were used as aphrodisiacs and used to enhance fertility and barrenness. The effect of *A. Smeathmannii* (DC.) root on reproductive potentials and biochemical pathways in male Wistar rats was investigated in a pharmacological study to determine its folkloric medicine application [21-23]. In Yemen, *A. socotranus* is widely traditionally used to relieve headaches, paralysis, and muscle discomfort. While *A. orientalis* (AO) is a traditional medicinal plant

used for treatment of inflammatory diseases that may have potential in cancer treatment. *A. orientalis* has primarily been recorded from the border areas of UAE and Oman, where it is used for the treatment of muscle pain, headaches, paralysis, tendon, and joint pains as well as to treat the udder inflammation in cattle [24-27].

However, some Malpighiaceae species are used traditionally as CNS modulators. Banisteriopsis caapi distinguishes particularly among them because it is the main ingredient in Ayahuasca, an Amazonian psychoactive beverage used in religious ceremonies that contains 5-HT2A receptor agonist N, N-dimethyltryptamine (DMT), as well as monoamine oxidase inhibitor alkaloids (harmine, harmaline and tetrahydroharmine) [28-30]. The vine *Banisteriopsis caapi* is a primary source of  $\beta$ -Carbolines alkaloids in the ayahuasca drink, which is made by mixing its stems with the leaves of Psychotria viridis. The monoamine oxidase inhibitory (MAOi) action of the vine has been related to the traditional explanation of the vine's participation in this psychedelic beverage [31]. **Diplopterys** cabrerana (also known as Banisteriopsis rusbyana) is a hallucinogenic plant that has been used for religious, medical, and social purposes. Ayahuasca is a psychoactive substance used in religious ceremonies. It is an ingredient in the entheogenic tea, a South American hallucinogenic beverage produced by Amazon Indians from the bark of the Malpighiaceous liana B. caapi combined with the leaves of other admixture plants, such as Psychotria viridis, Psychotria carthagenensis, or **Diplopterys** cabrerana [15].

Some species of genus *Bunchosia* have been used traditionally as natural remedies, among of which *Bunchosia armeniaca* is used to treat endocrine, infectious, inflammatory, nutritional, and metabolic disorders, as well as some types of cancer [32]. Seeds of *Bunchosia nitida* (Jacq.) DC. were reported to be used as purgative and antiemetic. While *Bunchosia swartziana* Griseb. is used for externally for scabies while flower juice is often used in ear pain. The leaves and bark are used in treating fungal diseases. While the leaves, bark and flowers are aromatic in nature, and are commonly used as a refrigerant, expectorant, cardiotonic, anti- inflamm-atory and insecticidal. They are used in burning sensation, wounds, ulcers, leprosy,

epilepsy, convulsion, magic, ritual, and ceremonial to sweep away evil winds or spirits. Tea made from the roots of *Bunchosia glandulosa* (Cav.) DC. has been used for fertility, ritual, and ceremonial purposes, as well as to ward off evil spirits [15].

A decoction of the dry bark of Byrsonima crassifolia is used to treat asthma, bronchitis, colds, coughs, fevers, tonsillitis, and skin infections; an infusion is used to treat diarrhoea, gastrointestinal diseases, chronic colitis, chest colds, pulmonary complaints, wounds, skin diseases, stomachache, and as a snakebite antidote. Pounded bark was applied to wounds as a poultice, while pulverized bark was applied to ulcers. Leaves and bark is used to cure diarrhea, the bark ground in water and applied directly to the skin to treat measles. In the Amazonian savannas, Byrsonima crassifolia and B. coccolobifolia, sometimes known as mirixis, muricis, mantecos, or nances, are the most frequently used fruit species. Their fruits are used to make juices and other beverages, while the rest of the plant is used for a variety of reasons by some indigenous people. A decoction of bark from Byrsonima spicata is an antidote for rattlesnake bites, as well as a purgative and febrifuge [15, 33]. B. japurensis A. Juss. is used in folk medicine in rural areas of Amazonas State (Brazil), where it is known as "saratudo" and is used to treat gastrointestinal and genitourinary tract disorders, as well as being a potent anti-inflammatory [34].

Flabellaria paniculata leaves are used for skin infections and wound dressing. Leaves, seeds, and pods of *Heteropterys leona* have traditionally been used as an antiparasitic, febrifuge, analgesic, and as topical application for headaches and fevers [15]. *Hiptage benghalensis* is a plant that is used in traditional medicine. The leaf is considered one of the important plant organs for the treatment of many diseases. In Ayurveda, the leaves and bark are considered vulnerary, and the leaves are highly recommended for treating skin diseases. The leaf juice possesses insecticidal properties and is applied

cardiac debility, rheumatism, and hyperdipsia. The plant is also used in the treatment of chronic rheumatism, cough, and asthma [15, 35-37].

*Stigmaphyllon emarginatum* bark is used to reduce stress, while the stems and leaves of *Stigmaphyllon sinuatum* are crushed and used for hair cleaning. As a contraceptive, the seed is swallowed.

*Tetrapterys mucronata* is a plant used in the preparation of ayahuasca in various parts of Brazil. A narcotic drink is made from its bark. *Tristellateia australasiae* is the last species on the list, and its pounded leaves are used to cure inflammation and edoema [15]

## 5. Phytochemical constituents

Due to the presence of several secondary metabolites, Malpighiaceae is well known for its therapeutic importance. Extensive and in-depth investigations of various genus have resulted in the isolation and characterization of various secondary metabolites belonging to alkaloids, triterpenoids, anthocyanins, steroids, flavonoids, isoflavonoids, volatile constituents, phenols, and phytosterols and tannins [38-40], which are listed in **Table 1** along with their chemical structures (**Fig. 1-6**).

## Volatile constituents and fatty acids (Fig. 1, 2):

The main volatile constituents identified in the essential oil (EO) of Acridocarpus orientalis stem methyl 8-pimaren-18-oate (43.8 were %). octacosane (5.8 %), heptacosane (4.6 %) and hexacosane (4.1 %), methyl dehydroabietate (3.9 %) and methyl pimar-8(14)-en-18-oate (3.6 %), while tetracosane (16.6 %), heptacosane (16.4 %), docosane (13.9 %), hentriacontane (13.5 %), heneicosane (10.9 %) and  $\alpha$ -pinene (7.7 %) were all found in abundance in the EO of leaves [41]. Hexadecanoic acid (39.43%), (E)-nerolidol (10.51%),triacontane (9.08%), heptacosane (5.49%) and linalool (3.23%) were found in the essential oil of Banisteriopsis campestris flowers, along with other constituents such as myristic acid, palmitic acid, and linoleic acid, whereas the leaves had palmitic acid (22.98%), phytol (22.98%), and triacontane (14.88%) and the stem contained

palmitic (49.79%), linoleic (11.63%), oleic (4.83%), and palmitoleic (4.15%) fatty acids; in the root included palmitic acid (57.39%), linoleic (10.38%), and oleic acids (5.47%) [42, 43].

Phytochemicals such as 4H-Pyran-4-one, 2,3dihydro-3,5-dihydroxy-6-methyl, 1H-pyrrole-2,5-2-furancarboxaldehyde,5-(hydroxymethyl), dione, 1-nonadecene. 3-eicosense. 2-furanmethanol, 9,12,15-octadecanoic acid, methyl ester and nhexadecanoic acid were found in the fruits of Bunchosia armeniaca [44]. Lauric acid, linolenic acid, docosadienoic acid, myristic acid, cerotic acid, myristoleic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, arachidonic acid, and behenic acid were identified in the pulp and seed of the Bunchosia glandulifera fruit. The pulp has higher concentration of fatty acids than the seed. Palmitic acid was the most prevalent. Stearic acid was also present in high concentrations. This acid was found in higher concentration in the seed than in the pulp [45].

phytochemical А analysis of **Byrsonima** gardneriana leaf extract revealed that pyroglutamic acid, octanoic acid, and other acids such as hexadecanoic and heptanoic acids predominated. Pyroglutamic acid (90.77%) and octanoic acid (76.22%) were the most common compounds found in the extract [46]. The volatile fraction acerola (Malpighia punicifolia) was studied to identify 31 compounds in the mature (red) fruits, such as acethyl-methyl-carbinol, 2-methyl-propyl-acetate, limonene, E-Z-octenal, ethyl hexanoate, isoprenyl butirate and acetofenone; 23 in the intermediate (yellow), such as, methyl hexanoate, 3-octen-1-ol and hexyl butirate; and 14 in the immature (green) fruit, such as methyl-propyl-ketone, E-Z-hexenylacetate 1-octadecanol [47]. and

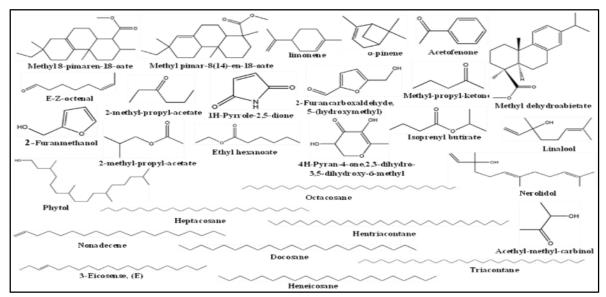



Fig. (1): Chemical structures of some volatile constituents of different genera of family Malpighiaceae

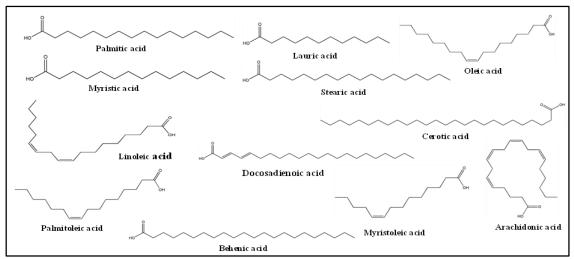



Fig. (2): Chemical structures of some fatty acids of different genera of family Malpighiaceae

### Phenolic compounds (Fig. 3, 4):

Morin and morin-3-O-D-glucopyranoside were isolated through extraction and separation from leaves and aerial parts of Acridocarpus orientalis [24, 48]. The phenolic substances flavonoids and proanthocyanidins were abundant in the ethanolic extract, ethyl acetate fraction (EAF), and butanol fraction (BF) of Banisteriopsis argyrophylla leaves. Some of these compounds, such as catechin, quercetin-hexoside, quercetin-pentoside, and quercetin-3-O-L-rhamnose, have been identified by ESI-MS/MS in both EAF and BF due to solvent polarity similarities. However, only the EAF yielded kaempferol-3-O-L-rhamnse, quercetin-3-O-(2"-galloyl)-L-rhamnose, or quercetin-3-O-(3"-

galloyl)-L-rhamnose. Only the BF had quinic acid, the procyanidin dimer, the procyanidin dimer monogallate, and dihydroxy benzoic acid pentoside [49, 50]. Epicatechin and procyanidin B2, two known proanthocyanidines, were found in aqueous extracts of stem and stem bark Banisteriopsis caapi [29, 51]. By capillary electrophoresis and nuclear magnetic resonance of 1H and 13C, Bunchosia afforded a mixture of flavonoid armeniaca constituents, quercetin  $\alpha$ -L-rhamnopyranosyl- $(1\rightarrow 6)$ - $\beta$ -D-glucopyranose) (rutin), kaempferol 3-O-α-L-rhamnopyranoside (afzelin) and quercetin 3-O- $\beta$ -D-glucopyranoside (isoquercitrin) [52]. As shown in the Table (1), many phenolic acids and flavonoids have been extracted from several Malpighiaceae species.

Egypt. J. Chem. 65, No. 11 (2022)

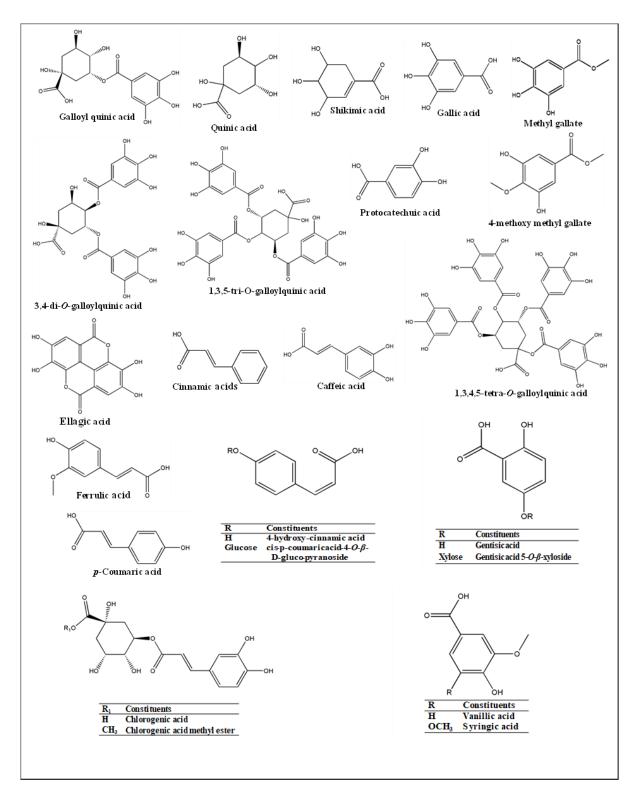



Fig. (3): Chemical structures of some phenolic acids of different genera of family Malpighiaceae

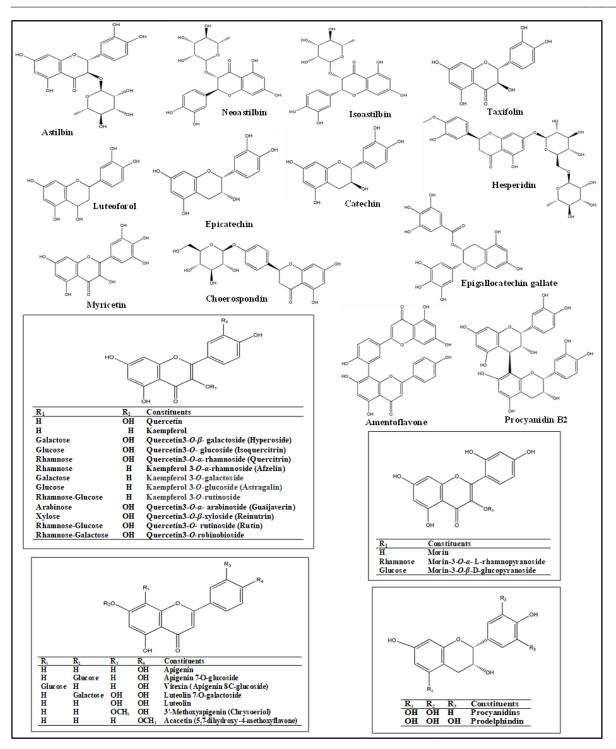



Fig. (4): Chemical structures of some flavonoids of different genera of family Malpighiaceae

## Steroids and terpenoids (Fig. 5):

Steroids and lupane-type triterpenoids such as  $\beta$ sitosterol,  $\beta$ -sitosterol-3-O- $\beta$ -D-glucopyranoside, betulin, betulinic acid isolated from methanolic extract and dichloromethane fraction of *Acridocarpus orientalis* [48, 49]. Spasmogenic bioassay-guided fractionation of methanol extract of *Byrsonima crassifolia* leaves yielded mixtures of identified triterpenes: betulin, betulinic acid, and ursenaldehyde [50]. The potent antitubercular substances alkane dotriacontane, triterpenoids as bassic acid,  $\alpha$ -amyrin acetate, a mixture of lupeol,  $\alpha$ - amyrin,  $\beta$ -amyrin and a mixture of lupeol, and acetates of  $\alpha$ - and  $\beta$ -amyrin were isolated from the chloroform extract of *Byrsonima fagifolia* leaves using bioassay-guided fractionation [51]. Two triterpenoids (friedelin and friedelanes), two steroids ( $\beta$ -sitosterol and sitosterol- $\beta$ -D-glucoside) were isolated from the ethyl acetate fraction of leaves of *Flabellaria paniculate* [52].

#### Alkaloids (Fig. 6):

Harmic amide, acetyl norharmine, and ketotetrahydronorharmine, banistenoside A, banistenoside B, and their acetate, tetrahydroharmine, harmaline, and harmine were isolated from *Banisteriopsis caapi* [28, 29, 53, 54]. The extraction and purification of bark of *Tetrapterys mucronate* revealed the presence of alkaloid compounds as mucronatine B, 5-hydroxy-N, Ndimethyltryptamine (bufotenine), 5-methoxy -Nmethyl-tryptamine, 5-methoxy-N, N di-methyltryptamine, trans-N feruloyl-tyramine, and 2methyl-6-methoxy-1,2,3,4-tetrahydro- $\beta$ -carboline [55, 56].

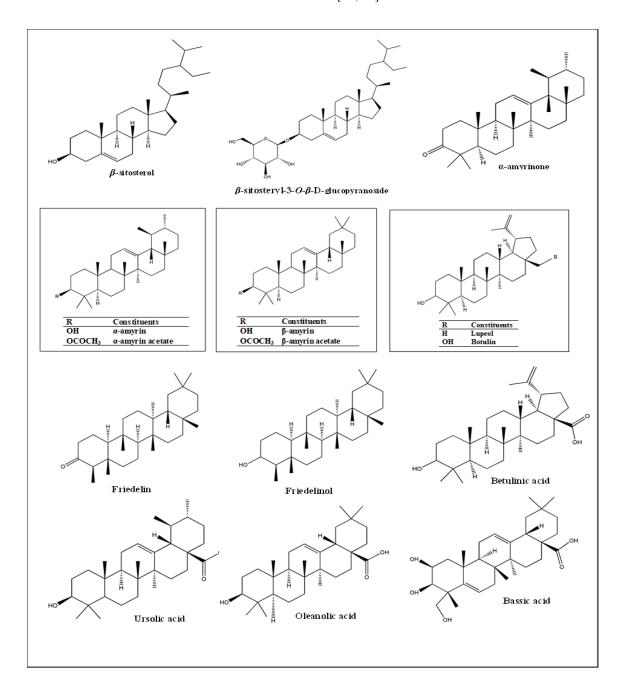



Fig. (5): Chemical structures of some steroids and triterpenoids of different genera of family Malpighiaceae

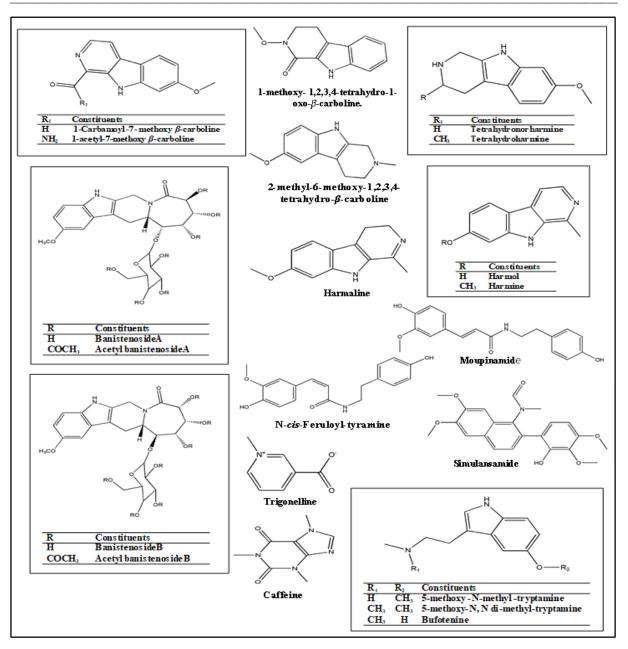



Fig. (6): Chemical structures of some alkaloids of different genera of family Malpighiaceae

## 5. Pharmacological activities

In various Malpighiaceae species, a diverse range of biological activities has been reported. Malpighiaceae have been discovered to have a wide range of biological actions, including antioxidant, antiinflammatory, antidiabetic, anticancer, antilipid peroxidation, antibacterial, hepatoprotective, neuroprotective, anxiolytic, and antidepressant properties, according to the literature. A summary of the curative activity assessments performed on this family has been represented in Table 1. These findings endorse the traditional uses of plants with respect to the pharmacological actions.

## Antioxidant activity

The antioxidant potential of the plants of family Malpighiaceae most probably is attributed to the presence of phenols and flavonoids [57]. The ethyl acetate fraction of *Acridocarpus orientalis* stem had a greater antioxidant effect than the leaves using DPPH (1,1-Diphenyl-2 picrylhydrazyl) radical scavenging activities. This is probably due to the high flavonoid and phenolic content [27]. The methanolic extract of *Aspidopterys indica* (wild.) aerial parts exhibited high DPPH scavenging antioxidant activity, but while aqueous and chloroform extracts showed a moderate effect. The ethanolic extract of *Banisteriopsis argyrophylla* 

<sup>259</sup> 

leaves exhibited the lowest  $IC_{50}$  value in the DPPH free-radical sequestration assay, comparable to the positive BHT and ascorbic acid controls. In the ORAC (oxygen radical absorbance capacity test), the EE had a strong antioxidant activity. According to both antioxidant activity techniques (DPPH, and ORAC), the ethyl acetate fraction and *n*-butanol fraction displayed high antioxidants, with similar values to the ethanolic extract and controls [58].

Bunchosia armeniaca leaf ethyl acetate and nbutanol fractions displayed strong antioxidant activity. This implies that the scavenging action of free radicals with DPPH is mainly attributed to the presence of flavonoids content [59]. Bunchosia armeniaca methanolic fruit extract demonstrated a significant free radical scavenging efficacy comparable to butylated hydroxytoluene (BHT). The antioxidant activity of the fruit extract was higher than BHT on average. As a result of *in-vitro* investigation, Bunchosia armeniaca fruit can be considered a substantial source of antioxidant constituents [44]. Ferric ion Reducing Antioxidant Potential (FRAP), 2,2'-Azinobis-(3-Ethylbenzothiazoline-6-Sulfonic Acid (ABTS), DPPH, and electrochemical techniques were used to assess the total antioxidant capacity of Bunchosia glandulifera extracts. The antioxidant capacity of root and leaf ethanolic extracts was very high, followed by bark, fruit pulp, and seed extracts, which had lower values. The presence of phenolic compounds is mainly responsible for antioxidant activity [60].

The DPPH reduction assay revealed that methyl gallate and methyl *m*-trigallate fractions of leaf extract of Byrsonima bucidaefolia had higher antioxidant activity than vitamin C [61]. The fruit extract of Murici (muByrsomina crassifolia can interfere with brain electrophysiological parameters, demonstrating a novel strategy for combating the effects of ageing in the brain. Murici contains improved significant chemicals that have antioxidant actions while also increasing protection from free radicals. It was reported that Murici extract may be useful in preventing aging-related damage, such as reactive species production [62]. The combination of Byrsonima crassifolia (L.) Kunth and Spondias mombin L. can act synergistically in the improvement of the antioxidant capacity in the beverage's development. In the DPPH, ABTS, and FRAP techniques, Spondias mombin L had higher antioxidant capacity than Byrsonima crassifolia, however there was no significant difference in ORAC [63]. In the phosphomolybdenum, DPPH, and Thiobarbituric Acid Reactive Substances (TBARS) assays, leaves of Byrsonima duckeana revealed high polyphenol

content and antioxidant capacity. The ethyl acetate fraction has high antioxidant capability, including free radical scavenging and lipid peroxidation inhibition, which might benefit for pain relief. In addition, chemical analysis of the ethyl acetate fraction revealed that ethyl gallate is a prominent ingredient, which could explain the high antioxidant activity detected [64].

Hydroethanolic extract of Diplopterys pubipetala leaves and stems demonstrated antioxidant activity. The stem extract had moderate antioxidant activity, whereas leaves had higher activity. The phytochemical investigation of D. pubipetala revealed the presence of flavonoids, alkaloids, and terpenes, as well as prenylated xanthones and glycoside flavonoids, all of which contribute to the medicinal potential of the plant, which is mostly antioxidant [65]. The phosphomolybedum assay was used to evaluate ethanol, aqueous, and chloroform extracts of Flabellaria paniculata leaf and root for free radical scavenging against DPPH and hydroxyl radicals, ex vivo lipid peroxidation, ferrous ion chelating activity, reducing power, and total antioxidant capacity. They had high hydroxyl radical scavenging capacity and reduced lipid peroxidation. The leaf and root extracts inhibited lipid peroxidation and scavenged hydroxyl radicals significantly. The extracts also exhibited moderate chelating properties, which could explain their affinity for iron (Fe) and thus their antioxidant properties [66].

The antioxidant activity of methanolic extracts of Galphimia glauca bark and leaf was investigated using DPPH Free Radical Scavenging (DFRS), Ferric ion Reducing Antioxidant Potential (FRAP), and Ferric Reducing Power (FRP) assays. Using three assays, methanolic extract of bark had somewhat better antioxidant activity than methanolic leaf extract [67]. The methanolic extract of Malpighia glabra .L leaves showed higher antioxidant activity towards DPPH radical with IC50 = 49.8(mg/ml) [68]. Immature Malpighia emarginata fruit alcoholic extract had stronger DPPH and ABTS scavenging activity than mature fruit one. There were strong relationships between antioxidant potential and its ascorbic acid concentration [69].

## Antidiabetic activity

In  $\alpha$ -glucosidase enzyme inhibition assay, *n*-hexane, chloroform, *n*-butanol, and aqueous fractions obtained from stem of *Acridocarpus* orientalis exhibited significant inhibition. In comparison to the standard inhibitor Acarbose, the leaf aqueous fraction demonstrated modest inhibition. These findings revealed crucial details about the fractions that contain active components,

which are responsible for enzyme inhibition [27]. Along with ethanolic extract, ethyl acetate fraction and *n*-butanol fraction from *Banisteriopsis argyrophylla* leaves had higher inhibitory actions of  $\alpha$ -amylase,  $\alpha$ -glucosidase, and pancreatic lipase. The presence of phenolic substances, catechin, procyanidins, and glycosylated flavonoids produced

from quercetin, kaempferol, and megastigmane glycosides can explain remarkable actions found [58]. Hexane and chloroform extracts from *Byrsonima* 

crassifolia fruits and seeds raised superoxide dismutase (SOD), glutathione (GSH), oxidized glutathione (GSSG), and catalase (CAT) levels, as well as hepatic glycogen content, glucose-6phosphatase (G6Pase), and plasma insulin levels. They also reduced the levels of glucokinase (GK) and TBAR (thio- barbituric acid assay). After four hours of a single oral dose, Byrsonima crassifolia has considerable antihyperglycemic effects and can also improve streptozotocin-induced diabetic rats with hyperlipidemia and hyperinsulinemia. Both extracts inhibited the production of AGEs (advanced glycation end products) with IC<sub>50</sub> values ranging from 94.3 to 138.7 µg/ml. [70]. Sesquiterpene lactone dimeric guaianolides Byrsonina A and Byrsonina B, which were isolated from hexane extracts of Byrsonima crassifolia seeds, have antioxidant, hypoglycemic, and hypolipidemic properties, and play a key role in blood glucose control in STZ-induced hyperglycemia by improving pancreatic islet function, increasing glycolysis, and decreasing gluconeogenesis. The mechanism of antidiabetic activity may involve an antioxidant effect, improvement in insulin resistance, and an effect on pancreatic  $\beta$ -cells to secret insulin [71].

In alloxan-induced diabetic rats, the methanolic leaves extract of Hiptage bengalensis reduced blood glucose levels significantly at doses of 100 and 200 mg kg<sup>-1</sup>and had a positive effect on the lipid profile. These findings revealed that a methanolic extract of Hiptage bengalensis provided antihyperglycemic action in rats that was dose dependent [72]. The lipid and lipoprotein levels were significantly improved after administration of the ethanolic extract of Hiptage bengalensis and its fractions orally for 21 days. The extracts and fractions restored lipid and lipoprotein levels to normal levels, possibly due to its potent antidiabetic activity. After Streptozotocin (STZ) diabetic rats were treated with ethanolic extract, their urea and creatinine levels were significantly reduced, and serum total protein and albumin levels were significantly higher than normal [73].

Egypt. J. Chem. 65, No. 11 (2022)

## Antimicrobial activity

Chaetomium globosum was mildly inhibited by nhexane and aqueous fractions of Acridocarpus orientalis, while Fusarium oxysporum mold was stimulated by *n*-hexane, chloroform, *n*-butanol, and aqueous fractions. In the case of Aspergillus niger, none of the plant fractions impeded the fungal growth [27]. Bunchosia glandulifera leaves ethanolic extract had antibacterial efficacy against Klebsiella pneumonia. The extract was tested for antimicrobial activity using the agar well diffusion method in Muller Hinton Agar (MHA) plates [74]. B. armeniaca crude hydroalcoholic leaves extract showed high antibacterial activity against S. aureus and moderate activity against E. coli and P. aeruginosa. The activity of a flavonoid compound mixture containing rutin, afzelin, and isoquercitrin was also investigated, and it exhibited remarkable activity against all the microorganisms tested [59]. Four components of the methanolic extract of leaves from Byrsonima crassa, a Brazilian medicinal plant, quercetin, methyl gallate, epigallocatechin gallate, and quercetin-3-O-(2"galloyl)-α-L-arabinopyrano-side, evoked considerable antibacterial activity against tested pathogenic strains of oxacillin-resistant S. aureus, coagulase-negative S. saprophyticus, E. coli (two different strains), Proteus mirabilis and P. aeruginosa (two different strains) [75]. The pure triterpene bassic acid with potent antitubercular activity was obtained by bioassay-directed separation of the chloroform extract of Byrsonima fagifolia leaves. The Microplate Alamar Blue Assay (MABA) was used to test antimycobacterial activity, and spectroscopy was used to determine the structures of interesting compounds [51].

The crude extract of Flabellaria Paniculata possesses antimicrobial properties. S. aureus > P. aeruginosa > K. pneumoniae > E. coli were the most susceptible to the extract in that order. The chloroform fraction had the highest antibacterial activity, while petroleum ether was absolutely inactive [76]. The antibacterial activity of a methanolic extract of Hiptage benghalensis (L) Kurz. was investigated using the disc diffusion method, which measured the zone of inhibition and compared it to a standard antibiotic of 10 µg tetracycline. The extract is efficacious against K. pneumonia. E. coli, Micrococcus luteus, and P. aeruginosa. On the four test organisms, the varied concentrations of the extract exhibited a zone of inhibition. The extract gave MIC value 0.625mg/ml on K. pneumonia, M. luteus and P. aeruginosa and 0.3125 mg/ml on E. coli [77].

Microdilution techniques were used to determine the antimicrobial activity of 3,4,6-tetra-*O*-(3nitropropanoyl)-*O*-D-glucopyranoside isolated from roots of Heteropteris aphrodisiaca against Grampositive and Gram-negative bacteria, as well as Sabouraud dextrose broth for Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) against Bacillus subtilis and Staphylococcus aureus were 125 and 250 ug/ml and 250 and 500 ug/ml. The antifungal activity respectively. was significantly greater than the antibacterial activity, as seen by the MIC. The latter was 125 µg/ml, while the minimum fungicidal concentration (MFC) against all Candida species was 250 µg/ml [78]. Plaque reduction assays in cell culture were used to assess the antiviral activity of the aliphatic nitro compound (NC) isolated from Heteropteris aphrodisiaca against poliovirus type 1 (PV-1) and bovine herpes virus type 1 (BHV-1). In HEp-2 (human larynx carcinoma) cells, the NC had moderate antiviral activity against PV-1 and BHV-1, with 50 % inhibitory concentrations (IC  $_{50})$  of 22.01  $\mu$ g/ml and 21.10  $\mu$ g/ml, respectively [79]. The antihuman immunodeficiency virus (HIV) activity of a methanolic extract from Heteropterys brachiata was investigated using a non-radioactive colorimetric method that targets HIV-1 reverse transcriptase as an enzymatic target. The anticandidal effect of the extract was assessed using a standardized yeast microdilution test methodology employing the Candida albicans strain. The methanolic extract of Heteropterys brachiata has a high anticandida and moderate antiHIV impact, suggesting that the plant extract could be evaluated as a viable HIV/AIDS therapeutic candidate [80]. 1,3,4,5-tetragalloyl quinic acid was extracted from methanolic extract of Hiraea reclinata leaves and demonstrated antiHIV action [81]. Using an agar well diffusion assay, the methanolic extract of Galphimia glauca bark (GGB) and leaves (GGL) demonstrated considerable antibacterial activity against clinical and standard methicillin-resistant Staphylococcus aureus (ATCC 33591) (MRSA) strains. The antibacterial spectrum of both extracts (GGB and GGL) was assessed using an agar welldiffusion technique to estimate the Zone of Inhibition (ZI) against clinical and standard MRSA. ZI value for the extracts - GGB and GGL against the clinical MRSA strain was  $16 \pm 2$  mm and  $15 \pm 2$ 1.5 mm respectively, while against the standard MRSA strain was  $15.3 \pm 0.57$  mm and  $14 \pm 1$  mm respectively, at 10 mg/ml [67]. Malpighia glabra methanolic leaf extract is effective against Bacillus subtilis, but have no effect on Staphylococcus Escherichia coli, Pseudomonas aureus. aeuroginosa, Aspergillus flavus, and Candida albicans [82].

#### Cytotoxic activity

Morin and morin-3-O-D-glucopyranoside were identified in the ethyl acetate fraction of Acridocarpus orientalis. When a 100-ppm concentration of morin was administered to the human hepatoma cancer cells (HepG2), colorectal adenocarcinoma (HT29, and HCT116), the viability of the cancer cells was reduced to 63.8 %, 64.5 %. 45.3 respectively. Morin-3-O-Dand %. glucopyranoside, on the other hand, reduced the viability of HepG2, HCT116, and HT29 cell lines when compared to control [24]. The treatment of colorectal adenocarcinoma (HT29 and HCT116) cell lines with chloroform and *n*-hexane fractions of Acridocarpus orientalis reduced cancer cell viability compared to other extracts at concentrations of 500 and 1000 g/mL. Only the chloroform fraction was found to be effective against proliferating cancer cells in human hepatoma (HepG2) cancer cells when compared to the other fractions [27]. Obcordatas A-I polyoxypregnane glycosides isolated from Aspidopterys obcordata Hemsl vines showed significant cytotoxicity against HuH-7 cells, and exhibited moderate cytotoxicity against the AGS and SW480 cell lines [17].

*Byrsomina crassifolia* oil had a cytoprotective effect in HepG2 cells after 72 hours of treatment, where the longer exposure time encouraged cell proliferation and prevented cell death, effectively reducing the oxidative stress induced by H<sub>2</sub>O<sub>2</sub> [83]. At 100 and 1000 µg/mL and 10 to 1000 µg/mL, chloroform, and ethyl acetate fractions of Byrsonima duckeana revealed decreased cell viability on the HT29 line respectively. The same fractions displayed hemolytic activity, implying that the ethanol extract's more polar elements are more closely associated to its toxicity [84]. The 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) test was used to evaluate and estimate the IC<sub>50</sub> value for antiproliferative and cytotoxic effects of methanolic extract of Galphimia glauca bark (GGB) and leaf (GGL). At 24 hours, IC<sub>50</sub> value for the GGB against cancer cell proliferation (A549, SW480), and normal cell line (HEK293) was  $157.8 \pm 2.44 \ \mu g/ml$ ,  $136.6 \pm 2.73$  $\mu$ g/ml, and 388.67 ± 6  $\mu$ g/ml, respectively, while IC<sub>50</sub> value for the GGL against A549, SW480, and HEK293 was  $194 \pm 4.64 \ \mu g/ml \ 178 \pm 3.1 \ \mu g/ml$ , and  $317.2 \pm 9.4 \,\mu\text{g/ml}$ , respectively [67].

The anticancer activity of *Hiptage benghalensis* methanolic leaves extract was assessed against three cancer cell cultures: human cervical carcinoma (HeLa), human breast cancer (MCF-7) and human neuroblastoma (IMR-32) cells using the MTT assay, which is based on the reduction of MTT at

Egypt. J. Chem. 65, No. 11 (2022)

different concentrations (10, 30, 100, 300, and 500  $\mu$ g/ml). The extract improved the percentage inhibition of MCF7, HeLa, and IMR32 cells. Furthermore, the extract's apoptotic activity increased the production of ROS and caspase-3 activity in all cancer cell lines in a dose-dependent manner [85]. *Malpighia glabra* methanolic leaves extract significantly reduced cell viability in breast (MCF-7) and colon cell lines (HCT-116). *M. glabra* revealed no significant difference from standard doxorubicin (0.1  $\mu$ g/mL), indicating that it has potent anticancer activity against colon cell line [82].

## Analgesic and antiinflammatory activities

The hydroalcoholic extract of Bunchosia armeniaca leaves at a dose of 200 mg/kg displayed strong antiinflammatory effect, resulting in a considerable reduction in inflammation as measured by leukocyte count and myeloperoxidase enzyme activity, comparable to dexamethasone standard at 0.5 mg/kg [59]. The presence of ethyl gallate, quinic acid, gallic acid, catechin, epicatechin, quercetrin, and quercetin in the leaves of Byrsonima duckeana reduced leukocyte migration in a carrageenaninduced peritonitis by 43% and licking time in a formalin test by 57%. The chloroform (FCL) and ethyl acetate (FEA) fractions were the most active samples in the acetic acid-induced writhing test. The hot plate test was conducted with FEA, and all the dosages tested (5, 50, and 200 mg/kg) exhibited considerable analgesic efficacy [64]. It has been observed that the stem bark of Byrsonima japurensis has significant and safe antiinflammatory effect, which is strongly related to its potent antioxidant activity, confirming its widespread use as an antiinflammatory drug in Amazonas State (Brazil). Only the dose of 400 mg/kg of aqueous extract showed antihyperalgesic effect in both phases of the carrageenan-induced inflammatory response, with more activity than the positive control [34].

Galphimines nor-seco-triterpenoids are with anxiolytic activities that are found in the aerial parts of Galphimia glauca. Anxiolytic activity of galphimines has been demonstrated in preclinical and clinical studies, and this combined with antiinflammatory activity, suggests that standardized extracts or fractions obtained from this plant could be effective for the treatment of degenerative disorders that have an inflammatory component, such as anxiety and Alzheimer's disease [86]. In Lipopolysaccharide LPS-stimulated RAW 264.7 macrophages, the antiinflammatory activity of triterpenes and steroids derivatives isolated from the chloroform stem bark fraction of Hiptage benghalensis was investigated, which resulted in a significant reduction in NO and PGE2 production,

## Anxiolytic and antidepressant activities

Using recombinant human brain MAO-A and B enzymes, aqueous extracts of fresh and dried large branches of Banisteriopsis caapi and isolated compounds demonstrated significant inhibitory effects against MAO-A and slight effect against MAO-B. Inhibition of MAO-B activity by  $\beta$ carbolines harmine and harmaline, in addition to potent MAO-A inhibition responsible for antidepressant action, protects against neurodegeneration and could be used to treat Parkinson's disease [53]. When compared to controls, the avahuasca (decoction of Psychotria viridis and Banisteriopsis caapi plants) and fluoxetine groups demonstrated a significant decrease in locomotion in the open field and elevated plus-maze tests. The ayahuasca-treated animals swam more than the controls in the forced swimming test, a behaviour that was not observed in the fluoxetine group. All brain regions involved serotoninergic neurotransmission revealed in increased neuronal activity in treated mice. Although there was some brain damage because of this, no permanent impairment was discovered. These findings show that high doses of avahuasca have antidepressant properties in Wistar females, an effect that should be explored further [28].

In the forced swimming test (FST) in mice, the methanolic extract standardized on flavonoids content of Byrsonima crassifolia possesses potential antidepressant-like effects and might be deemed rather safe toxicologically when orally supplied. The flavonoids rutin, hesperidin, and quercetin may be implicated in the antidepressant effects [88]. The elevated plus-maze, light-dark test, and forced swimming paradigm were used to assess the anxiolytic and antidepressant-like effects of Galphimia glauca methanolic extract (standardised on galphimine B content) on ICR albino mice. It's impossible to rule out the possibility that the anxiolytic-like effects of G. glauca's methanolic extract are due in part to GB's activity via a mechanism involving ionic channels or the regulation of the GABAA receptor in a different area than that of benzodiazepines [89]. To examine the sleep wakefulness cycle, electroencephalogram (EEG), and visual evoked potentials (VEP) in DBA/2J mice, an ethanolic extract of Heteropterys glabra fruits was used. The ethanolic extract reduced motor activity and altered EEG and VEP characteristics, indicating that it may perform as an anxiolytic/sedative agent [90]. In the forced

as well as protein expressions of iNOS and COX-2. In LPS-stimulated RAW264.7 macrophages, they similarly found that IB protein expression increased while p-p65 protein expression and NF-B transcriptional activity decreased [87].

swimming test in mice, the methanolic extract of *Heteropterys cotinifolia* shows a dose-dependent antidepressant effect at doses range from 31 to 310 mg/kg, with no reduction in mice locomotion [91].

### Hepatoprotective activity

The liver marker enzymes serum alanine transaminase (ALT) and aspartate transaminase (AST) were significantly reduced in almost all concentrations after pretreatment with Acridocarpus orientalis ethanolic extract. Furthermore, serum reduced glutathione (GSH) levels in A. orientalis medicated mice groups were considerably higher. At a dose of 250 mg/kg BW, a reduction in liver weights in pretreated mice with A. orientalis indicated substantial weight loss and the histological liver study revealed a near-normal repair of liver architecture [26]. Hiptage benghalensis methanolic leaves extract (MEHB) showed hepatoprotective efficacy in rats against carbon tetrachloride-induced liver damage that was comparable to the standard medication silvmarin (50 mg/kg). The markers of high serum liver damage enzymes such as aspartate transaminase, alanine transaminase, total bilirubin, and alkaline phosphatase were considerably reduced (p 0.01) after methanolic extract administration (200 mg & 400 mg / kg). MEHB also displayed strong antioxidant effects by increasing glutathione levels, as well as free radical scavenging activities, according to the studies [92]. The dose of 800 mg/kg of Malpighia glabra methanolic leaves extract had the greatest hepatoprotective effect, lowering elevated serum levels of ALT, AST, NO, and TNF-a liver content by 26, 24, 23, and 42 %, respectively, while also significantly increasing serum catalase levels by 102 %. When compared to silymarin, all doses tested (200, 400, and 800 mg/kg) demonstrated a greater reduction in serum TNF- $\alpha$ , indicating their significant antiinflammatory activity. The leaves of *M. glabra* were shown to be a rich source of secondary metabolites and to have considerable hepatoprotective properties [93].

#### Gastroprotective activity

*Byrsonima fagifolia* methanolic leaf extract effectively reduced stomach lesions generated by ethanol and HCl/ethanol, and endogenous mucosal sulphydryl groups contributed efficaciously to BF gastro-protection. *B. fagifolia* inhibited the progression of the inflammatory process and possesses antidiarrheal properties. With negligible toxicity, this extract expedited the healing of gastric ulcerated mucosa by activating proliferative factors and enhancing gastric mucus production [94]. The methanolic extract of *Byrsonima intermedia* (MBI) leaves completely prevented gastric and duodenal

lesions (69%) and completely repaired gastric (49%) and duodenal lesions (45%) on 7 and 14 days. Endogenous sulfhydryl compounds, vanilloid receptors, and an elevation in GSH level are all involved in B. intermedia's gastroprotective action, resulting in effective gastric and duodenal protection. MBI had antidiarrheal effects that were both curative (42%) and preventative (49%) when opiate receptors were involved [95]. Byrsonima intermedia ethyl acetate (EtOAc) and water (AcoAq) both reduced gastric lesions, but AcoAq was more effective than EtOAc in terms of antiHelicobacter pylori activity, as well as protecting the gastric mucosa from ethanol, nonsteroidal antiinflammatory drugs (NSAIDs), and cysteamine-induced duodenal mucosal damage. After acetic acid damage, both partitions were linked to a considerable increase in gastric and duodenal repair, as well as increased stomach mucosal GSH content. However, after 6 days of treatment, EtOAc was more efficient than AcoAq in reducing stomach damage following the start of the gastric I/R, which was accompanied by a significant decrease in gastric mucosal MPO, IL-1, and TNFalpha activity, as well as an increase in IL-10 and GSH content [96]. In indomethacin and pylorus ligation-induced ulcer models, the methanolic extract of Flabellaria paniculata and the ethyl acetate fraction from this extract showed significant gastroprotective effects [52].

## Miscellaneous activities

## Anti-Alzheimer activity

In aged rats, treatment with standardized root extract of *Heteropterys aphrodisiaca* for 7 days or longer improves learning and memory deficits. The memory deficits in the passive avoidance test were restored after treatment with standard extract for 7 days (50 mg/kg) or 26 days (100 mg/kg). However, after acute administration of standard extract (100 mg/kg) to aged rats, there was no improvement in memory [97]. The ethanolic extract of the bark of *Tetrapterys mucronate* exhibited *in-vitro* acetylcholinesterase (AChE) inhibition in TLC bioautography assay [55].

## Antilipid peroxidation

When assayed with the Thiobarbituric Acid Reactive Substance (TBARS) Test, the crude extract, and fractions of *Acridocarpus orientalis* leaves revealed a higher proportion of oxidative degradation of lipids than the stem extract and other fractions. Aqueous and chloroform fractions of leaves showed higher inhibition of 60.6% and 49.9%, respectively. In case of TBARS bioassay of stem, ethyl acetate (34.5%) and chloroform (34.2%)

#### Antiprotozoal activity

Using arginase (ARG) from Leishmania amazonensis as a molecular target, leishmanicidal compounds from Byrsonima coccolobifolia leaf and stem ethanolic extracts were identified as flavonoids. They inhibited the enzyme with  $IC_{50}$ values ranging from 0.9 to 4.8 µM and were discovered to be non-competitive ARG inhibitors with dissociation constants (Ki) ranging from 0.24 to 3.8 µM, indicating high affinity. Studies of the structural characteristics of flavonoids linked to ARG action revealed significant commonalities [98]. Quercetin was only substance isolated from methanolic extract of Galphimia glauca aerial parts that had antiprotozoal activity, and it was weak. The IC50 values were 14 µM against Plasmodium falciparum K1, 13.2 µM against Trypanosoma brucei, and 63.8 µM against Leishmania donovanii [99].

fractions revealed higher percentages of lipid

peroxidation than the other fractions [27].

#### Antiobesity activity

For 40 days, rats were given ethanolic extract of *Hiptage madablota* root orally at doses of 100, 200, and 400 mg/kg, which resulted in a significant decrease in food intake, body weight, lee index, serum lipids, atherogenic index, and coronary risk index, as well as an inverse increase in brain serotonin. As a result of its hypophagic and hypolipidemic actions, *Hiptage madablota* root extract was found to have strong antiobesity efficacy and to increase brain serotonin levels in rats fed a high-fat diet [100].

### Wound healing activity

Flabellaria paniculala methanol leaf extract resulted in sic wound contraction and a shorter epithelisation duration. On day 14, which extract, and chloroform fraction achieved 100 % wound contraction in non-infected and Staphylococcus aureus groups, whereas on day 18, Pseudomonas aeruginosa group obtained 100% wound contraction. The extract had antiinfective and wound-healing properties, justifying the plant's usage in the treatment of skin illnesses and sores on a local level. When compared to the aqueous fraction, the chloroform fraction revealed extremely significant wound healing characteristics in the noninfection group. The proportion of wound contraction of the chloroform fraction in the Staphylococcus aureus infected group is like that of the reference drug, as evidenced by epithelization times of 16 days and 17 days for the reference drug and chloroform fraction, respectively. The Pseudomonas aeruginosa infected group's data revealed that the chloroform fraction was also significantly more potent than controls [101, 102].

#### Conclusion

As previously stated, the Malpighiaceae family appears to contain a wide range of active constituents, alkaloids including (harmine. harmaline, caffeine, and tetrahydroharmine), Flavonoids (rutin, vitexin, quercitrin, Isoquercitrin, catechin, epicatechin, quercetin and kaempferol), vitamine C, and terpenoids ( $\alpha$ -amyrin,  $\beta$ -amyrin and their acetates, lupeol, oleanolic acid, ursolic acid and  $\alpha$ -amyrinone). Pharmacologically, Malpighiaceae has the most potent effect on neurodegenerative disorders including Parkinson's Disease through MAO inhibition and antioxidant actions, as well as cytotoxic and inhibitory effects on NO generation. Also, they are medicinally used as antileshimina, antimicrobial, antiulcerogenic, antitubercular, antioxidant, antidepressant, wound healing, spasmogenic, antidiabetic, CNS stimulants and antiinflammatory properties. As a result, for the first time, this article presents a study of Malpighiaceae plants that contain a variety of active compounds that are effective against a variety of diseases. Hopefully, we will be able to use these plants in medicinal therapies in the future.

#### **Conflict of interest**

The author declare no conflict of interest

#### References

- Rates S.M.K., Plants as source of drugs. *Toxicon*, 39(5), 603-613 (2001). Doi: 10.1016/S0041-0101(00)00154-9.
- Anderson C., The identity of two water-dispersed species of Heteropterys (Malpighiaceae): *H. leona* and *H. platyptera. Contr. Univ. Michigan Herb.*, 23, 35-47 (2001).
- 3. Lawrence G.H.M., Taxonomy of vascular plants, 1951, Macmillan, New York, p. 823 (2017).
- 4. Anderson W.R., Byrsonimoideae, a new sub-family of Malpighiaceae. *Biotropica*, **7**, 5-18 (1977).
- Davis C.C., Anderson W.R., and Donoghue M.J., Phylogeny of Malpighiaceae: evidence from chloroplast *ndhF* and *trnL- F* nucleotide sequences. *American journal of botany*, **88**(10), 1830-1846 (2001). Doi: 10.2307/3558360.
- 6. Group A.P., An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Botanical*

Plants of Malpighiaceae have long been used as ayeuvedic treatment of many illnesses, this article gives collective information concerning the pharmacological activities of these plants, giving scientific evidence for their use in management of various diseases, as well as their phytochemical constituents. Hopefully, these plants will be more profoundly used in medicinal treatments in the future.

*Journal of the Linnean Society*, **161**(2), 105-121 (2009). Doi: 10.1111/j.1095-8339.2009.00996.x.

- 7. USDA N. USDA plants database. URL: http://plants. usda. gov/java/. 2014.
- 8. Awoerson W.R., The origin of the Malpighiaceae-The evidence from morphology. *Mem. N. Y. Bot. Gard.*, **64**, 210-224 (1990).
- 9. Gates B., Banisteriopsis, Diplopterys (Malpighiaceae). *Flora Neotropica*, **30**, 1-237 (1982).
- Makino-Watanabe H., Melhem T., and Barth O., Morfologia dos grãos de pólen de espécies brasileiras de Janusia. *Adr. Juss. e Schwannia Endl.*. *Hoehnea*, 20, 79-86 (1993).
- Karunasena G., Chandrajith V., and Nawaratne S., Physicochemical Characteristics of Pea Nut Butter Fruit (Bunchosia armeniaca). International Journal of Food Science and Nutrition, 3(3), 46-51 (2018b).
- Da Silva Nunes R., Silva Kahl V.F., Da Silva Sarmento M., Richter M.F., Abin- Carriquiry J.A., Martinez M.M., De Barros Falcão Ferraz A., and Da Silva J., Genotoxic and antigenotoxic activity of acerola (*Malpighia glabra* L.) extract in relation to the geographic origin. *Phytotherapy Research*, 27(10), 1495-1501 (2013). Doi: 10.1002/ptr.4896.
- Lombello R.A. and Forni-Martins E.R., Malpighiaceae: correlations between habit, fruit type and basic chromosome number. *Acta Botanica Brasilica*, **17**(2), 171-178 (2003). Doi: 10.1590/S0102-33062003000200001.
- Heywood V.H., Brummitt R., Culham A., and Seberg O., Flowering plant families of the world, Vol. 88, Firefly Books, Ontario, p. 424 (2007).
- Quattrocchi U., CRC world dictionary of medicinal and poisonous plants: common names, scientific names, eponyms, synonyms, and etymology, 5 Volume Set. CRC press, Taylor & Francis group, London, NewYork, p. 3960 (2012).
- Leon M.E., Catalog of useful species of Malpighiaceae family in the state of Mexico and surrounding areas, *Undergraduate Thesis*, Faculty of Higher Iztacala, Mexico (2005).
- Hu M., Li Y., Sun Z., Huo X., Zhu N., Sun Z., Liu Y., Wu H., Xu X., and Ma G., New polyoxypregnane glycosides from *Aspidopterys obcordata* vines with antitumor activity. *Fitoterapia*, 129, 203-209 (2018). Doi: 10.1016/j.fitote.2018.07.003.
- Li Y., Ma G., Lv Y., Su J., Li G., and Chen X., Efficacy of obcordata A from *Aspidopterys* obcordata on kidney stones by inhibiting NOX4 expression. *Molecules*, 24(10), 1957 (2019). Doi: 10.3390/molecules24101957.
- Rui W., Qi Y., Nengyu C., and Guolin Z., Study on the chemical constituents of *Aspidopterys obcordata* Hemsl. *Natural Product Research Development*, 13(1), 14-16 (2001).
- Yihang L., Guang L., Meifang S., Xuelan L., Xia Z., Juan L., and Xi C., Acute toxicity study of *Aspidopterys obcordata* aqueous extract in Sprague-Dawley rats. *Journal of Traditional Chinese Medicine*, **36**(3), 377-381 (2016). Doi: 10.1016/S0254-6272(16)30052-8.

- Kale O., Awodele O., and Akindele A., Acridocarpus smeathmannii (DC.) Guill. & Perr. Root enhanced reproductive behavior and sexual function in male wistar rats: Biochemical and pharmacological mechanisms. Journal of ethnopharmacology, 230, 95-108 (2019). Doi: 10.1016/j.jep.2018.10.024.
- Van Andel T., Croft S., Van Loon E., Quiroz D., Towns A., and Raes N., Prioritizing West African medicinal plants for conservation and sustainable extraction studies based on market surveys and species distribution models. *Biological Conservation*, **181**, 173-181 (2015). Doi: 10.1016/j.biocon.2014.11.015.
- Catarino L., Havik P.J., and Romeiras M.M., Medicinal plants of Guinea-Bissau: Therapeutic applications, ethnic diversity and knowledge transfer. *Journal of ethnopharmacology*, **183**, 71-94 (2016). Doi: 10.1016/j.jep.2016.02.032.
- Hussain J., Ali L., Khan A.L., Rehman N.U., Jabeen F., Kim J.-S., and Al-Harrasi A., Isolation and bioactivities of the flavonoids morin and morin-3-*O*-β-D-glucopyranoside from *Acridocarpus orientalis*—a wild Arabian medicinal plant. *Molecules*, **19**(11), 17763-17772 (2014). Doi: 10.3390/molecules191117763.
- 25. Ksiksi T. and Hamza A.A., Antioxidant, lipoxygenase and histone Deacetylase inhibitory activities of *Acridocarpus orientalis* from Al Ain and Oman. *Molecules*, **17**(11), 12521-12532 (2012). Doi: 10.3390/molecules171112521.
- Lotfy M., Al-Hammadi R., Palakkott A.R., Yasin J., Al-Hammadi S., and Ksiksi T., Hepatoprotective potentials of *Acridocarpus orientalis* in mice. *Clinical Phytoscience*, 6(38), 1-9 (2020a). Doi: 10.1186/s40816-020-00184-x.
- Rehman N.U., Mabood F., Khan A.L., Ali L., Gillani S.A., Abbas G., Khan A., Al-Harrasi A., and Hussain J., Evaluation of biological potential and physicochemical properties of *Acridocarpus orientalis* (Malpighiaceae). *Pak. J. Bot.*, **51**(3), 1099-106 (2019b). Doi: 10.30848/PJB2019-3(8).
- Pic-Taylor A., Da Motta L.G., De Morais J.A., Junior W.M., Santos A.D.F.A., Campos L.A., Mortari M.R., Von Zuben M.V., and Caldas E.D., Behavioural and neurotoxic effects of ayahuasca infusion (*Banisteriopsis caapi* and *Psychotria viridis*) in female Wistar rat. *Behavioural processes*, **118**, 102-110 (2015). Doi: 10.1016/j.beproc.2015.05.004.
- Wang Y.-H., Samoylenko V., Tekwani B.L., Khan I.A., Miller L.S., Chaurasiya N.D., Rahman M.M., Tripathi L.M., Khan S.I., and Joshi V.C., Composition, standardization and chemical profiling of *Banisteriopsis caapi*, a plant for the treatment of neurodegenerative disorders relevant to Parkinson's disease. *Journal of ethnopharmacology*, **128**(3), 662-671 (2010). Doi: 10.1016/j.jep.2010.02.013.
- Bouso J.C., González D., Fondevila S., Cutchet M., Fernández X., Ribeiro Barbosa P.C., Alcázar-Córcoles M.Á., Araújo W.S., Barbanoj M.J., and Fábregas J.M., Personality, psychopathology, life attitudes and neuropsychological performance

among ritual users of ayahuasca: a longitudinal study. *journals.plos.org.*, **7**(8), (2012). Doi: 10.1371/journal.pone.0042421.

- Politi M., Friso F., Saucedo G., and Torres J., Traditional use of *Banisteriopsis caapi* alone and its application in a context of drug addiction therapy. *Journal of Psychoactive Drugs.*, 53(1), 76-84 (2021). Doi: 10.1080/02791072.2020.1820641.
- Giraldi M. and Hanazaki N., Uso e conhecimento tradicional de plantas medicinais no Sertão do Ribeirão, Florianópolis, SC, Brasil. Acta botanica brasilica, 24(2), 395-406 (2010).
- 33. Oliveira R.L.C.D., Scudeller V.V., and Barbosa R.I., Use and traditional knowledge of *Byrsonima crassifolia* and *B. coccolobifolia* (Malpighiaceae) in a Makuxi community of the Roraima savanna, northern Brazil. *Acta Amazonica*, 47(2), 133-140 (2017). Doi: 10.1590/1809-4392201600796
- Guilhon-Simplicio F., De Souza Pinheiro C.C., Conrado G.G., Dos Santos Barbosa G., Dos Santos P.A., De Meneses Pereira M., and Lima E.S., Antiinflammatory, anti-hyperalgesic, antiplatelet and antiulcer activities of *Byrsonima japurensis* A. Juss.(Malpighiaceae). *Journal of ethnopharmacology*, **140**(2), 282-286 (2012). Doi: 10.1016/j.jep.2012.01.018.
- Bobbarala V., Katikala P.K., Naidu K.C., and Penumajji S., Antifungal activity of selected plant extracts against phytopathogenic fungi Aspergillus niger F2723. Indian Journal of Science and Technology, 2(4), 87-90 (2009). Doi:10.17485/ijst%2F2009%2Fv2i4%2F2943.
- Parrotta J.A., Healing plants of peninsular India, CABI publishing, Rio Piedras, Puerto Rico, p. 917 (2001).
- Chatterjee A. and Pakrashi S.C., Treatise on Indian medicinal plants, Publications & Information Directorate, Vol. 3, New Delhi (1991).
- De Frias U.A., Costa M.C.M., Takahashi J.A., and Oki Y., *Banisteriopsis* species: a source of bioactive of potential medical application. *International Journal of Biotechnology for Wellness Industries*, 1, 163-171 (2012).
- Liu J.-Q., Deng Y.-Y., Li T.-Z., Han Q., Li Y., and Qiu M.-H., Three new tetranorditerpenes from aerial parts of acerola cherry (*Malpighia emarginata*). *Molecules*, **19**(2), 2629-2636 (2014). Doi: 10.3390/molecules19022629.
- Vendramini A.L.A. and Trugo L.C., Phenolic compounds in acerola fruit (*Malpighia punicifolia*, L.). *Journal of the Brazilian Chemical Society*, 15(5), 664-668 (2004). Doi: 10.1590/S0103-50532004000500009
- Rehman N.U., Alsabahi J.N., Alam T., Khan A., Rafiq K., Khan M., and Al-Harrasi A., Chemical Constituents and Carbonic Anhydrase II Activity of Essential Oil of *Acridocarpus orientalis* A. Juss. in Comparison With Stem and Leaves. *Journal of Essential Oil Bearing Plants*, 24(1), 68-74 (2021). Doi: 10.1080/0972060X.2021.1873195.
- Rocha E., Cunha L., Silva M., Freitas T., Nascimento E., Silva L., Aquino F., Martins C., Chang R., and Morais S., Composição química e atividade antimicrobiana do óleo essencial das flores

de Banisteriopsis campestris (A. Juss.) Little. Revista Virtual de Quimica, 10(5), 1562-1577 (2018). Doi:

10.2174/1573407216666200129101433.

- Rocha E.D.O., Chang R., Do Nascimento E.A., Martins M.M., De Morais S.A., De Aquino F.J.T., Cunha L., Silva L.D.O., Martins C.H., and Teixeira T.L., Chemical Composition and Bioactive Potential of Essential Oils from *Banisteriopsis campestris*. *Current Bioactive Compounds*, 16(8), 1205-1214 (2020). Doi: 10.2174/1573407216666200129101433.
- 44. Premathilaka R. and Silva M., Bioactive Compounds and Antioxidant Activity of Bunchosia armenica. World Journal of Pharmacy and Pharmaceutical Sciences, 5(10), 1237-1247 (2016). Doi: 10.20959/wjpps201610-7783.
- Blank D.E., Fraga S., Bellaver M., Santos C.E.I.D., Costa L., and Moura N., Proximate Composition, Nutrient Mineral and Fatty Acid of the *Bunchosia* glandulifera Fruit. Journal of Food and Nutrition Research, 5(8), 575-578 (2017). Doi: 10.12691/jfnr-5-8-7.
- De Souza-Melo W.O., Figueiredo-Júnior E.C., Freire J.C.P., Costa B.P., Lira A.B., Freires I.A., Cavalcanti Y.W., Lopes W.S., Tavares J.F., and Pessôa H.D.L.F., Phytochemistry, antifungal and antioxidant activity, and cytotoxicity of *byrsonima* gardneriana (A. Juss) extract. Archives of Oral Biology, **123**, 104994 (2021). Doi: 10.1016/j.archoralbio.2020.104994.
- 47. Vendramini A.L. and Trugo L.C., Chemical composition of acerola fruit (*Malpighia punicifolia* L.) at three stages of maturity. *Food chemistry*, **71**(2), 195-198 (2000). Doi: 10.1016/S0308-8146(00)00152-7.
- Jamshidi-Adegani F., Vakilian S., Rehman N.U., Al-Broumi M., Al-Kindi J., Alam K., Mozafarinahavandi P., Hasan A., Al-Riyami H., and Hussain J., Secondary metabolites from *acridocarpus orientalis* inhibits 4T1 cells and promotes mesenchymal stem cells (MSCs) proliferation. *Molecular Biology Reports*, 47(7), 5421-5430 (2020). Doi: 0.1007/s11033-020-05632y.
- Rehman N.U., Hussain H., Ali L., Khan A., Mabood F., Shinwari Z.K., Hussain J., and Al-Harrasi A., Chemical constituents of *acridocarpus orientalis* and their chemotaxonomic significance. *Chemistry of Natural Compounds*, 55(3), 586-588 (2019a). Doi: 10.1007/s10600-019-02752-1.
- Bejar E., Amarquaye A., Che C.-T., Malone M.H., and Fong H.H., Constituents of *Byrsonima* crassifolia and their spasmogenic activity. *International journal of pharmacognosy*, 33(1), 25-32 (1995). Doi: 10.3109/13880209509088143.
- Higuchi C.T., Sannomiya M., Pavan F.R., Leite S., Sato D., Franzblau S., Sacramento L.V.S.D., Vilegas W., and Leite C.Q.F., *Byrsonima fagifolia* Niedenzu apolar compounds with antitubercular activity. *Evidence-Based Complementary and Alternative Medicine*, 2011, (2011). Doi: 10.1093/ecam/nen077.
- 52. Sofidiya M.O., Taiwo E., Awolola V., Habila J., and Koorbanally N.A., Gastroprotective Effect and

Egypt. J. Chem. 65, No. 11 (2022)

Chemical Constituents of *Flabellaria paniculata* (Malpighiaceae). *Natural Product Communications*, **14**(7), 1934578-19860342 (2019). Doi: 10.1177/1934578X19860342.

- 53. Samoylenko V., Rahman M.M., Tekwani B.L., Tripathi L.M., Wang Y.-H., Khan S.I., Khan I.A., Miller L.S., Joshi V.C., and Muhammad I., *Banisteriopsis caapi*, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson's disease. *Journal of ethnopharmacology*, **127**(2), 357-367 (2010). Doi: 10.1016/j.jep.2009.10.030.
- 54. Santos K.T., Almeida C.A., Souza L.R., De Paula A.M.B., De Oliveira D.A., and De Andrade Royo V., *In vitro* Antitumor Effect on Melanoma Cell Line and Chemical Composition of *Diplopterys pubipetala* (A. Juss) WR Anderson and C. Davis. *Pharmacognosy Reviews*, **14**(28), 146-154 (2020). Doi: 10.5530/phrev.2020.14.18.
- 55. Queiroz M.M.a.F., Queiroz E.F., Zeraik M.L., Ebrahimi S.N., Marcourt L., Cuendet M., Castro-Gamboa I., Hamburger M., Da Silva Bolzani V., and Wolfender J.-L., Chemical composition of the bark of *Tetrapterys mucronata* and identification of acetylcholinesterase inhibitory constituents. *Journal of natural products*, **77**(3), 650-656 (2014). Doi: 10.1021/np401003p.
- Queiroz M.M.F., Marti G., Queiroz E., Marcourt L., Castro- Gamboa I., Bolzani V.D.S., and Wolfender J.L., LC–MS/MS quantitative determination of *Tetrapterys mucronata* alkaloids, a plant occasionally used in Ayahuasca preparation. *Phytochemical Analysis*, **26**(3), 183-188 (2015). Doi: 10.1002/pca.2548.
- Chandrika P.U. and Sunitha K., Pharmacognostic Evaluation, Estimation of Phenolic, Flavonoid Composition and Antioxidant Activity of *Aspidopterys indica* (Willd.) W. Theob: An Endemic Plant to Peninsular India. *Annals of the Romanian Society for Cell Biology*, 25(4), 13884-13891 (2021).
- 58. Quaresma D.M., Justino A.B., Sousa R.M., Munoz R.A., De Aquino F.J., Martins M.M., Goulart L.R., Pivatto M., Espindola F.S., and De Oliveira A., Antioxidant compounds from **Banisteriopsis** argyrophylla leaves as  $\alpha$ -amylase,  $\alpha$ -glucosidase, lipase, and glycation inhibitors. Bioorganic Chemistry. 105. 104335 (2020).Doi: 10.1016/j.bioorg.2020.104335.
- 59. Queiroz G.S., Flavonoides de *Bunchosia armeniaca* e derivados de 2-arilideno-1-a-tetralona: obtenção e atividades biológicas. (2012).
- De Menezes Peixoto C.R., Fraga S., Da Rosa Justim J., Gomes M.S., Carvalho D.G., Jarenkow J.A., and De Moura N.F., Voltammetric determination of total antioxidant capacity of *Bunchosia glandulifera* tree extracts. *Journal of electroanalytical chemistry*, **799**, 519-524 (2017). Doi: 10.1016/j.jelechem.2017.07.003.
- 61. Castillo-Avila G.M., García-Sosa K., and Peña-Rodríguez L.M., Antioxidants from the leaf extract of *Byrsonima bucidaefolia*. *Natural product*

Egypt. J. Chem. 65, No. 11 (2022)

*communications*, **4**(1), 83-86 (2009). Doi: 10.1177/1934578X0900400118.

- Sousa M.S.B. and De Souza Buarque D., Murici (Byrsonima crassifolia (L.) Kunth): Antioxidant effects and application to aging, Aging, Elsevier, Chap. 25, p. 259-265 (2020).
- Aniceto A., Montenegro J., Cadena R.D.S., and Teodoro A.J., Physicochemical Characterization, Antioxidant Capacity, and Sensory Properties of Murici (*Byrsonima crassifolia* (L.) Kunth) and Taperebá (*Spondias mombin* L.) Beverages. *Molecules*, 26(2), 332 (2021). Doi: 10.3390/molecules26020332.
- Verdam M.C.D.S., Guilhon-Simplicio F., Andrade K.C.D., Fernandes K.L.M., Machado T.M., Da Silva F.M.A., Souza M.P.D., Koolen H.H.F., Paula C.D.S., and Hirota B.C.K., Analgesic, antiinflammatory, and antioxidant activities of *Byrsonima duckeana* WR Anderson (Malpighiaceae). *The Scientific World Journal*, 2017, (2017). Doi: 10.1155/2017/8367042.
- Sacramento V.D.M., Santos K.T., Rocha D.F.D.O., Cabral E.C., Eberlin M.N., Mercadante-Simões M.O., Fonseca F.S.a.D., Melo Junior A.F., Menezes E.V., and Oliveira D.a.D., Chemical profile and antioxidant activity in *Diplopterys pubipetala* (Malpighiaceae). *Natural Product Research*, 1-5 (2020). Doi: 10.1080/14786419.2020.1855644.
- 66. Sofidiya M.O. and Familoni O., Antioxidant activities of different solvent extracts of leaves and root of *Flabellaria paniculata* Cav.(Malpighiaceae). UNILAG Research Repository, 6(31), 4682-4690 (2012). Doi: 10.5897/JMPR12.395.
- 67. Gupta R. and Jeevaratnam K., A Comparative Evaluation of *In Vitro* Phytochemical Analysis, Antioxidant, Antibacterial and Anticancer Activity of Methanolic (MeOH) Crude Extract of Bark (GGB) and Leaf (GGL) of *Galphimia glauca*, 6(6), (2019).
- Fekry A., Elsabbagh W., Abu Bakr M., El-Ghazaly M., and Mohamed A.E.-S., Antioxidant activity of *Malpighia glabra* L., leaves extract. *Azhar International Journal of Pharmaceutical Medical Sciences*, 1(2), 88-93 (2021). Doi: 10.21608/aijpms.2021.59935.1042
- Xu M., Shen C., Zheng H., Xu Y., Xue C., Zhu B., and Hu J., Metabolomic analysis of acerola cherry (*Malpighia emarginata*) fruit during ripening development via UPLC-Q-TOF and contribution to the antioxidant activity. *Food Research International*, **130**, 108915 (2020). Doi: 10.1016/j.foodres.2019.108915.
- Perez-Gutierrez R.M., Muñiz-Ramirez A., Gomez Y.G., and Ramírez E.B., Antihyperglycemic, antihyperlipidemic and antiglycation effects of *Byrsonima crassifolia* fruit and seed in normal and streptozotocin-induced diabetic rats. *Plant foods for human nutrition*, **65**(4), 350-357 (2010). Doi: 10.1007/s11130-010-0181-5.
- 71. Gutiérrez R.M.P. and Ramirez A.M., Hypoglycemic Effects of sesquiterpene lactones from *Byrsonima* crassifolia. Food science and biotechnology, **25**(4),

1135-1145 (2016). Doi: 10.1007/s10068-016-0182-8

- Maheshwari P., Baburao B., and Ch P.K., Antidiabetic activity of methanolic extract of *Hiptage bengalensis* leaves in alloxan induced diabetic models. *Pakistan journal of biological sciences: PJBS*, 16(17), 844-851 (2013). Doi: 10.3923/pjbs.2013.844.851.
- Nadh A.R.S., Rao P.R., and Rani A.P., Antidiabetic activity of *Hiptage Benghalensis* in chemicalinduced diabetic rats. *International Journal of Advanced Research Ideas and Innovations in Technology (IJARIIT)*, 4(2), 1092-1098 (2018).
- Lozano C.M., Vasquez-Tineo M.A., Ramirez M., and Jimenez F., *In vitro* antimicrobial activity screening of tropical medicinal plants used in Santo Domingo, Dominican Republic. Part I. *Pharmacognosy Communications*, 3(2), 64-69 (2013). Doi: 10.5530/pc.2013.2.13.
- Sannomiya M., Michelin D., Rodrigues C., Santos L.C.D., Salgado H., Hiruma-Lima C., Brito A., and Vilegas W., *Byrsonima crassa* Niedenzu (IK): antimicrobial activity and chemical study. *Revista de Ciências Farmacêuticas Básica e Aplicada*, 26(1), 71-75 (2005b).
- Abo K. and Olugbuyiro J., Phytochemical and antibacterial studies of extracts of *Flabellaria* paniculata. African Journal of Biomedical Research, 7(1), 35-36 (2004). Doi: 10.4314/ajbr.v7i1.54064.
- Lalnundanga L.N. and Thanzami K., Antimicrobial Activity of Methanol Extract of Root Bark of *Hiptage benghalensis* (L) Kurz. *Journal of Pharmacognosy and Phytochemistry*, 3(6), 119-121 (2015).
- Júnior W.a.R., Cardoso M.L.C., Vilegas W., Nakamura C.V., Dias Filho B.P., and De Mello J.C.P., A new antimicrobial from the roots of *Heteropteris aphrodisiaca*. Acta Farm Bonaerense, 24(4), 543-5 (2005).
- Melo F.L., Benati F.J., Junior W.a.R., De Mello J.C.P., Nozawa C., and Linhares R.E.C., The *in vitro* antiviral activity of an aliphatic nitro compound from *Heteropteris aphrodisiaca*. *Microbiological Research*, 163(2), 136-139 (2008). Doi: 10.1016/j.micres.2006.03.011.
- Huerta-Reyes M., Sánchez-Vargas L.O., Villanueva-Amador G.S., Gaitán-Cepeda L.A., and Health P., Anti-HIV and Anti-Candidal Effects of Methanolic Extract from *Heteropterys brachiata*. *International Journal of Environmental Research*, 18(14), 7270 (2021). Doi: 10.3390/ijerph18147270
- Hussein A.A., Gomez B., Ramos M., Heller M., Coley P.D., Solis P.N., and Gupta M.P., Constituents of *Hiraea reclinata* and their anti-HIV activity *Revista Latinoamericana de Quimica*, 1, 5-8 (2003).
- El-Hawary S.S., Mousa O.M., El-Fitiany R.A., and El Gedaily R.A., Cytotoxic, antimicrobial activities, and phytochemical investigation of three peach cultivars and acerola leaves. *Journal of Reports in Pharmaceutical Sciences*, 9(2), 221 (2020). Doi: 10.4103/jrptps.JRPTPS\_88\_19.
- 83. Pires F.C.S., Oliveira J.C.D., Menezes E.G.O., Ferreira M.C.R., Siqueira L.M.M., Almada-Vilhena

Egypt. J. Chem. 65, No. 11 (2022)

A.O., Pieczarka J.C., Nagamachi C.Y., and Carvalho Junior R.N.D., Bioactive Compounds and Evaluation of Antioxidant, Cytotoxic and Cytoprotective Effects of Murici Pulp Extracts (*Byrsonima crassifolia*) Obtained by Supercritical Extraction in HepG2 Cells Treated with H2O2. *Foods*, **10**(4), 737 (2021). Doi: 10.3390/foods10040737

- Verdam M.C.D.S., Guilhon-Simplicio F., Paula C.D.S., De Oliveira V.B., Miguel M.D., Campelo P.M.S., and Miguel O.G., Cytotoxicity of *Byrsonima duckeana* WR Anderson (malpighiaceae) on colon cancer cells. *International Journal of Pharmacy and Pharmaceutical Sciences*, 6(11), 5719-23 (2013).
- Bhukya B.R. and Yellu N.R., Evaluation of anticancer activity of methanolic extract of *Hiptage* benghalensis (L.) Kurz on Cancer Cell Lines. *Pharmacognosy Research*, **10**(3), (2018). Doi: 10.4103/pr.pr\_102\_17.
- González-Cortazar M., Herrera-Ruiz M., Zamilpa A., Jiménez-Ferrer E., Marquina S., Álvarez L., and Tortoriello J., Anti-inflammatory activity and chemical profile of *Galphimia glauca*. *Planta medica*, **80**(01), 90-96 (2014). Doi: 10.1055/s-0033-1360150.
- Hridi S.U., Ferdous N., Majumder F.U., and Hannan J.A., Phytochemical Screening and Investigation of the Central and Peripheral Analgesic and Anti-Inflammatory Activity of Ethanol Extract of *Hiptage benghalensis* (L) Kurz. *Journal of Pharmaceutical Research International*, 3(4), 1045-1057 (2013b). Doi: 10.9734/BJPR/2013/4454
- Herrera-Ruiz M., Zamilpa A., González-Cortazar M., Reyes-Chilpa R., León E., García M., Tortoriello J., and Huerta-Reyes M., Antidepressant effect and pharmacological evaluation of standardized extract of flavonoids from *Byrsonima crassifolia*. *Phytomedicine*, **18**(14), 1255-1261 (2011). Doi: 10.1016/j.phymed.2011.06.018.
- Herrera-Ruiz M., Jiménez-Ferrer J., De Lima T., Avilés-Montes D., Pérez-García D., González-Cortazar M., and Tortoriello J., Anxiolytic and antidepressant-like activity of a standardized extract from *Galphimia glauca*, *Phytomedicine*. **13**(1-2), 23-28 (2006). Doi: 10.1016/j.phymed.2005.03.003.
- Galietta G., Giuliani G., Loizzo A., Amat A.G., Fumagalli E., De Feo V., Quaranta E., Paladino L., and Capasso A., Neurophysiological studies of *Heteropteris glabra* Hok. & Arn.(Malpighiaceae) in DBA/2J mice. *Journal of Ethnopharmacology*, **97**(3), 415-419 (2005). Doi: 10.1016/j.jep.2004.12.003.
- Huerta-Reyes M., Zamilpa A., Álvarez-Chimal R., Luna-Manzanares J.Á., León-Velasco M.E., Aguilar-Rojas A., Jiménez-Estrada M., and Campos-Lara M.G., *Heteropterys cotinifolia*: A neuropharmacological and phytochemical approach with possible taxonomic implications. *The Scientific World Journal*, **2013**, (2013b). Doi: 0.1155/2013/870468.
- 92. Maheshwari P., Baburao B., Reddy A.R.N., and Methods, Hepatoprotective activity of methanolic extract of *Hiptage bengalensis* leaves against CCl4induced hepatotoxicity in rats. *Toxicology*

*mechanisms*, **22**(6), 483-487 (2012). Doi: 10.3109/15376516.2012.674068.

- El- Hawary S.S., El- Fitiany R.A., Mousa O.M., Salama A.A., and El Gedaily R.A., Metabolic profiling and *in vivo* hepatoprotective activity of *Malpighia glabra* L. leaves. *Journal of Food Biochemistry*, **45**(2), e13588 (2021). Doi: 10.1111/jfbc.13588.
- 94. Lima Z.P., Dos Santos R.D.C., Torres T.U., Sannomiya M., Rodrigues C.M., Dos Santos L.C., Pellizzon C.H., Rocha L.R.M., Vilegas W., and Brito A.R.M.S., *Byrsonima fagifolia*: an integrative study to validate the gastroprotective, healing, antidiarrheal, antimicrobial and mutagenic action. *Journal of ethnopharmacology*, **120**(2), 149-160 (2008). Doi: 10.1016/j.jep.2008.07.047.
- 95. Santos R.C., Kushima H., Rodrigues C.M., Sannomiya M., Rocha L.R.M., Bauab T.M., Tamashiro J., Vilegas W., and Hiruma-Lima C.A., *Byrsonima intermedia* A. Juss.: gastric and duodenal anti-ulcer, antimicrobial and antidiarrheal effects in experimental rodent models. *Journal of Ethnopharmacology*, **140**(2), 203-212 (2012). Doi: 10.1016/j.jep.2011.12.008.
- 96. Dos Santos R.D.C., Bonamin F., Périco L.L., Rodrigues V.P., Zanatta A.C., Rodrigues C.M., Sannomiya M., Dos Santos Ramos M.A., Bonifácio B.V., and Bauab T.M., *Byrsonima intermedia* A. Juss partitions promote gastroprotection against peptic ulcers and improve healing through antioxidant and anti-inflammatory activities. *Biomedicine & Pharmacotherapy*, **111**, 1112-1123 (2019). Doi: 10.1016/j.biopha.2018.12.132.
- Galvão S., Marques L., Oliveira M., and Carlini E., *Heteropterys aphrodisiaca* (extract BST0298): a Brazilian plant that improves memory in aged rats. *Journal of Ethnopharmacology*, **79**(3), 305-311 (2002). Doi: 10.1016/S0378-8741(01)00402-0.
- De Sousa L.R.F., Ramalho S.D., Burger M.C.D.M., Nebo L., Fernandes J.B., Da Silva M.F.T.D.G.a.F., Iemma M.N.R.D.C., Correa C.J., Souza D.H.F.D., and Lima M.I.S.S., Isolation of arginase inhibitors from the bioactivity-guided fractionation of *Byrsonima coccolobifolia* leaves and stems. *Journal* of natural products, **77**(2), 392-396 (2014). Doi: 10.1021/np400717m.
- 99. Del Rayo Camacho M., Phillipson J.D., Croft S.L., Marley D., Kirby G.C., and Warhurst D.C., Assessment of the Antiprotozoal Activity of *Galphimia glauca* and the Isolation of New Norsecofriedelanes and Nor-friedelanes. *Journal of natural products*, 65(10), 1457-1461 (2002). Doi: 10.1021/np010419i.
- 100. Retnasamy G. and Adikay S., Effect of *Hiptage* madablota Gaertn. on High Fat Diet--Induced Obese Rats. Jordan Journal of Biological Sciences, **7**(2), 113-118 (2014).
- 101. Abo A., Olugbuyiro J., and Famakinde S., Antiinfective and wound healing properties of *Flabellaria paniculata*. African Journal of Biomedical Research, 7(2), (2004). Doi: 10.4314/ajbr.v7i2.54075

- 102. Olugbuyiro J.A., Abo K., and Leigh O., Wound healing effect of *Flabellaria paniculata* leaf extracts. *Journal of ethnopharmacology*, **127**(3), 786-788 (2010). Doi: 10.1016/j.jep.2009.10.008.
- 103. Lotfy M., Ksiksi T.S., Palakkot A.R., D'souza C.M., Mohsin S., and Adeghate E.A., Anti-diabetic Effect of Acridocarpus Orientalis. The Open Medicinal Chemistry Journal, 14(1), 132-144 (2020b). Doi: 10.2174/1874104502014010132.
- 104. Sun P., Cao D.-H., Xiao Y.-D., Zhang Z.-Y., Wang J.-N., Shi X.-C., Xiao C.-F., Hu H.-B., and Xu Y.-K., Aspidoptoids A–D: Four New Diterpenoids from *Aspidopterys obcordata* Vine. *Molecules*, 25(3), 529 (2020). Doi: 10.3390/molecules25030529.
- 105. Oliveira D.M., Silva T.F., Martins M.M., De Morais S.A., Chang R., De Aquino F.J., Da Silva C.V., Teixeira T.L., Martins C.H., and Moraes T.S., Antifungal and cytotoxicity activities of *Banisteriopsis argyrophylla* leaves. *Journal of Pharmacy Pharmacology*, **70**(11), 1541-1552 (2018). Doi: 10.1111/jphp.12996.
- 106. O'connell F., Isolation of caffeine fromBanisteriopsis inebrians (Malpighiaceae). *Naturwissenschaften*, 56(3), 139-140 (1969).
- 107. Hashimoto Y. and Kawanishi K., New alkaloids from *Banisteriopsis caapi. Phytochemistry*, **15**(10), 1559-1560 (1976). Doi: 10.1016/S0031-9422(00)88936-0.
- 108. Santos B.W.L., Oliveira R.C.D., Sonsin-Oliveira J., Fagg C.W., Barbosa J.B.F., and Caldas E.D., Biodiversity of  $\beta$ -Carboline Profile of *Banisteriopsis caapi* and Ayahuasca, a Plant and a Brew with Neuropharmacological Potential. *Plants*, **9**(7), 870 (2020). Doi: 10.3390/plants9070870.
- 109. Coe F.G. and Anderson G.J., Snakebite ethnopharmacopoeia of eastern Nicaragua. *Journal of ethnopharmacology*, **96**(1-2), 303-323 (2005). Doi: 10.1016/j.jep.2004.09.026.
- 110. Karunasena G., Chandrajith V., and Navaratne S., Antioxidant capacity and total phenol content of peanut butter fruit (*Bunchosia armenica*). *journal of Pharmacognosy and Phytochemistry*, 7(4), 343-346 (2018a).
- 111. Croda M.F., Carvalho D., Fraga S., Espindola J.D.S., and Fernandes De Moura N., Compostos bioativos em suco misto de *Euterpes edulis* e *Bunchosia glandulifera. Brazilian Journal of Food Technology*, **20**, e2016147 (2017). Doi: 10.1590/1981-6723.14716.
- 112. Blank D.E., Justen D., Fraga S., Peixoto C.R., and De Moura N.F., Chemical Composition and Antioxidant Activity of *Bunchosia glandulifera* Fruit at Different Ripening Stages. *Food and Nutrition Sciences*, **9**(10), 1147-1159 (2018b). Doi: 10.4236/fns.2018.910083
- 113. Blank D.E., Bellaver M., Fraga S., Lopes T.J., and De Moura N.F., Drying kinetics and bioactive compounds of *Bunchosia glandulifera*. *Journal of Food Process Engineering*, **41**(4), e12676 (2018a). Doi: 10.1111/jfpe.12676.
- 114. Silva S.D.F., Blank D.E., Peixoto C.R., De Jesus Da Silveira Moreira J., and Fernandes De Moura N., Bioactive compounds and antioxidant activity of

*Bunchosia glandulifera. International Journal of Food Properties*, **19**(2), 467-473 (2016). Doi: 10.1080/10942912.2015.1033547.

- 115. Agra M.D.F., Silva K.N., Basílio I.J.L.D., Freitas P.F.D., and Barbosa-Filho J.M., Survey of medicinal plants used in the region Northeast of Brazil. *Revista brasileira de farmacognosia*, **18**(3), 472-508 (2008).
- 116. De Araújo Rodrigues P., De Morais S.M., Aguiar L.A., Vila-Nova N.S., and Benjamin S.R., Effect of *Byrsonima sericea* DC. leaf extracts on mice gastrointestinal tract. *Toxicology reports*, 6, 1182-1187 (2019). Doi: 10.1016/j.toxrep.2019.10.018.
- 117. Arantes V., Sato D., Vilegas W., Santos L., and Leite C.Q.F., Plantas do cerrado brasileiro com atividade contra *Mycobacterium fortuitum*. *Revista de Ciências Farmacêuticas Básica e Aplicada*, 26(3), 195-198 (2005).
- 118. Sannomiya M., Fonseca V.B., Da Silva M., Rocha L., Dos Santos L., Hiruma-Lima C., Brito A.S., and Vilegas W., Flavonoids and antiulcerogenic activity from *Byrsonima crassa* leaves extracts. *Journal of Ethnopharmacology*, **97**(1), 1-6 (2005a). Doi: 10.1016/j.jep.2004.09.053.
- 119. Cardoso C.R.P., De Syllos Cólus I.M., Bernardi C.C., Sannomiya M., Vilegas W., and Varanda E.A., Mutagenic activity promoted by amentoflavone and methanolic extract of *Byrsonima crassa* Niedenzu. *Toxicology*, **225**(1), 55-63 (2006). Doi: 10.1016/j.tox.2006.05.003.
- 120. Higuchi C.T., Pavan F.R., Leite C.Q.F., Sannomiya M., Vilegas W., Leite S.R.D.A., Sacramento L.V.S., and Sato D.N., Triterpenes and antitubercular activity of *Byrsonima crassa*. *Química nova*, **31**(7), 1719-1721 (2008). Doi: 10.1590/S0100-40422008000700023
- 121. Bonacorsi C., Raddi M.S.G., Carlos I.Z., Sannomiya M., and Vilegas W., Anti-Helicobacter pylori activity and immunostimulatory effect of extracts from Byrsonima crassa Nied.(Malpighiaceae). BMC Complementary and Alternative Medicine, 9(1), 1-7 (2009). Doi: 10.1186/1472-6882-9-2.
- 122. Gutiérrez R.M.P. and Ramirez A.M., Hexane extract of the seeds of *Byrsonima crassifolia* accelerates wound healing in streptozotocin-induced diabetic rats. *Chinese journal of integrative medicine*, 1-7 (2013). Doi: 10.1007/s11655-013-1556-x.
- 123. Muniz-Ramirez A., Perez-Gutierrez R.M., Garcia-Baez E., and Mota-Flores J.M., Antimicrobial activities of diterpene labdane from seeds of *Byrsonima crassifolia*. *Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas*, 13(1), 31-37 (2014).
- 124. Andrade B., Matias R., Corrêa B., Oliveira A., Guidolin D., and Roel A., Phytochemistry, antioxidant potential and antifungal of *Byrsonima crassifolia* on soil phytopathogen control. *Brazilian Journal of Biology*, **78**(1), 140-146 (2017). Doi: 10.1590/1519-6984.166532.
- 125. Irías-Mata A., Jiménez V.M., Steingass C.B., Schweiggert R.M., Carle R., and Esquivel P., Carotenoids and xanthophyll esters of yellow and red nance fruits (*Byrsonima crassifolia* (L.) Kunth) from Costa Rica. *Food Research International*, **111**,

Egypt. J. Chem. 65, No. 11 (2022)

708-714 (2018). 10.1016/j.foodres.2018.05.063.

- 126. Sobrinho A.C.G., Rogez H.L.G., Do Nascimento V.H.A., Teixeira B.J.B., De Sousa Dias A.L., and De Souza J.N.S., Determinação de compostos bioativos e capacidade sequestradora de radicais livres em extratos de folhas de *Byrsonima crassifolia* e *Inga edulis. Brazilian Journal of Development*, **6**(6), 34954-34969 (2020). Doi: 10.34117/bjdv6n6-147.
- 127. Do Nascimento V.H.A., Sobrinho A.C.G., De Oliveira Souza C., De Souza J.N.S., and Sousa C.L., Determination of Phenolic Compounds with Antimicrobial Activity of *Byrsonima Crassifolia* and *Inga Edulis* Leaves Extracts. *Ensaios e Ciência C Biológicas Agrárias e da Saúde*, **25**(1), 21-28 (2021). Doi: 10.17921/1415-6938.2021v25n1p21-28.
- 128. Sannomiya M., Cardoso C.R., Figueiredo M.E., Rodrigues C.M., Dos Santos L.C., Dos Santos F.V., Serpeloni J.M., Cólus I.M., Vilegas W., and Varanda E.A., Mutagenic evaluation and chemical investigation of *Byrsonima intermedia* A. Juss. leaf extracts. *Journal of ethnopharmacology*, **112**(2), 319-326 (2007). Doi: 10.1016/j.jep.2007.03.014.
- 129. Orlandi L., Vilela F.C., Santa-Cecília F.V., Dias D.F., Alves-Da-Silva G., and Giusti-Paiva A., Antiinflammatory and antinociceptive effects of the stem bark of *Byrsonima intermedia* A. Juss. *Journal of Ethnopharmacology*, **137**(3), 1469-1476 (2011). Doi: 10.1016/j.jep.2011.08.032.
- 130. Moreira L.Q., Vilela F.C., Orlandi L., Dias D.F., Santos A.L.A., Da Silva M.A., Paiva R., Alves-Da-Silva G., and Giusti-Paiva A., Anti-inflammatory effect of extract and fractions from the leaves of *Byrsonima intermedia* A. Juss. in rats. *Journal of ethnopharmacology*, **138**(2), 610-615 (2011). Doi: 10.1016/j.jep.2011.10.006.
- 131. Zanatta A.C., Vilegas W., and Edrada-Ebel R., UHPLC-(ESI)-HRMS and NMR-based metabolomics approach to access the seasonality of *Byrsonima intermedia* and *Serjania marginata* from Brazilian Cerrado flora diversity. *Frontiers in chemistry*, 9, 534 (2021). Doi: 10.3389/fchem.2021.710025.
- 132. Saldanha A.A., De Siqueira J.M., Castro A.H.F., De Azambuja Ribeiro R.I.M., De Oliveira F.M., De Oliveira Lopes D., Pinto F.C.H., Silva D.B., and Soares A.C., Anti-inflammatory effects of the butanolic fraction of *Byrsonima verbascifolia* leaves: Mechanisms involving inhibition of tumor necrosis factor alpha, prostaglandin E2 production and migration of polymorphonuclear leucocyte *in vivo* experimentation. *International immunopharmacology*, **31**, 123-131 (2016a). Doi: 10.1016/j.intimp.2015.12.031.
- 133. Saldanha A.A., Do Carmo L.F., Do Nascimento S.B., De Matos N.A., De Carvalho Veloso C., Castro A.H.F., De Vos R.C., Klein A., De Siqueira J.M., and Carollo C.A., Chemical composition and anti-inflammatory activity of the leaves of *Byrsonima verbascifolia. Journal of natural medicines*, **70**(4), 760-768 (2016b). Doi: 10.1007/s11418-016-1011-3.

Doi:

- 134. De Barros G.L.R.R., Sanches M.a.R., Barcia M.T., Rodrigues D., and Pertuzatti P.B., Murici (*Byrsonima verbascifolia*): A high bioactive potential fruit for application in cereal bars. *LWT -Food Science and Technology*, **160**, 113279 (2022). Doi: 10.1016/j.lwt.2022.113279.
- 135. Mendes C.C., Cruz F.G., David J.M., Nascimento I.P., and David J.P., Triterpenes esterified with fatty acid and triterpene acids isolated from *Byrsonima microphylla*. *Química Nova*, **22**(2), 185-188 (1999). Doi: 10.1590/S0100-40421999000200007
- 136. De Souza T.P., De Almeida P.D.O., Alex P., Ohana D.T., Lima E.S., and De Meneses Pereira M., Antioxidant activity of a standardized extract of *Byrsonima japurensis* A. Juss.(Malpighiaceae) stem bark. *Journal of Medicinal Plants Research*, 7(26), 1926-1930 (2013). Doi: 10.5897/JMPR12.1133.
- 137. De Siqueira-Jaccoud R., *Contribuição para o estudo* farmacognóstico do Cabi Paraensis Ducke: I.(1959).
- 138. Shenkute B., Hassen A., Assafa T., Amen N., and Ebro A., Identification and nutritive vale of potential fodder trees and shrubs in the mid Rift Valley of Ethiopa. *Journal of Animal & Plant Sciences*, 22(4), 1126-1132 (2012).
- Motta L.B., Furlan C.M., Salatino A., and Salatino M.L., Flavonoids and the taxonomy of *Camarea* (Malpighiaceae). *Biochemical Systematics and Ecology*, **37**(3), 201-205 (2009). Doi: 10.1016/j.bse.2009.03.005.
- 140. De on Costa M., Santos K.T., Almeida C.A., Da Fonseca F.S., Angolini C.F., De Oliveira D.A., De Melo Júnior A.F., Menezes E.V., and Royo V.D.A., Chemical Composition of *Diplopterys pubipetala* (Malpighiaceae). *European Journal of Medicinal Plants*, **31**(15), 43-48 (2020). Doi: 10.9734/EJMP/2020/v31i1530323.
- 141. Orozco-Martínez J., Lira-Saade R., Jiménez-Estrada M., Ávila-Acevedo J.G., Serrano-Parrales R., and Hernández-Delgado T., Medicinal plants of Oaxaca, Mexico: ethnobotany and antibacterial activity. *Bol. latinoam. Caribe plantas med. aromát*, **19**(2), 221-235 (2020). Doi: 10.37360/blacpma.20.19.2.14.
- 142. Fayemi Scott O. and Osho A., Comparison of antimicrobial effects of *Mezoneuron benthamianum*, *Heliotropium indicum* and *Flabellaria paniculata* on *Candida* species. *Journal of Microbiology Research*, 2(1), 18-23 (2012). Doi: 10.5923/j.microbiology.20120201.04.
- 143. Sofidiya M.O., Agufobi L., Akindele A.J., Olowe J.A., and Familoni O.B., Effect of *Flabellaria paniculata* Cav. extracts on gastric ulcer in rats. *BMC complementary and alternative medicine*, **12**(1), 1-6 (2012).
- 144. Akindele A.J., Adeneye A.A., Salau O.S., Sofidiya M.O., and Benebo A.S., Dose and time-dependent sub-chronic toxicity study of hydroethanolic leaf extract of Flabellaria paniculata Cav.(Malpighiaceae) in rodents. Frontiers in pharmacology, 78 (2014).Doi: 5. 10.3389/fphar.2014.00078.
- 145. Dorsch W., Bittinger M., Kaas A., Müller A., Kreher B., and Wagner H., Antiasthmatic effects of

*Galphimia glauca*, gallic acid, and related compounds prevent allergen-and platelet-activating factor-induced bronchial obstruction as well as bronchial hyperreactivity in guinea pigs. *International archives of allergy and immunology*, **97**(1), 1-7 (1992). Doi: 10.1159/000236088.

- 146. Tortoriello J. and Ortega A., Sedative effect of galphimine B, a nor-seco-triterpenoid from *Galphimia glauca. Planta medica*, **59**(5), 398-400 (1993). Doi: 10.1055/s-2006-959717.
- 147. Garige B.S.R., Keshetti S., and Vattikuti U.M.R., CNS Depressant effects and muscle relaxant activity of *Galphimia glauca* leaf methanol extract. *International Journal of PharmTech Research*, **9**(6), 230-240 (2016).
- 148. Chordiya S., Pimprikar R., Yeshwante S., Tanvir S., Patil P., Kale M., and Firke B., Anthelmintic Activity of *Hiptage benghalensis* (L) Kurz Leaves. *Research Journal of Pharmacognosy and Phytochemistry*, **1**(3), 234-235 (2009).
- 149. Kumudhavalli M., Jayakar B., Chandira R.M., Kumar M., and Saravanan C., Phytochemical and Pharmacological studies on leaves of *Hiptage* bengalensis (L) Kurz. International Journal of Pharm Tech Research, 2(1), 1017-1020 (2010).
- 150. Amudha P. and Shanthi P., Antioxidant activity of some rare medicinal plants. *Journal of Pharmacy Research*, **4**(3), 698-699 (2011).
- 151. Murugan M. and Mohan V., Evaluation of phytochemical analysis and antibacterial activity of *Bauhinia purpurea* L. and *Hiptage benghalensis* L. Kurz. Journal of Applied Pharmaceutical Science, 1(9), 157 (2011).
- 152. Ngente L., Nachimuthu S.K., and Guruswami G., Insecticidal and repellent activity of *Hiptage benghalensis* L. Kruz (Malpighiaceae) against mosquito vectors. *Parasitology research*, **111**(3), 1007-1017 (2012). Doi: 10.1007/s00436-012-2925-7.
- 153. Yadav S. and Kumar P., Production, isolation and identification of flavonoids from aerial parts of *Hiptage benghalensis*. *International Journal of Life Science and Pharma Research*, 2(3), 1-5 (2012).
- 154. Hridi S.U., Ferdous N., Majumder F.U., and Hannan J., Phytochemical screening and anti-diabetic efficacy of stem of *Hiptage benghalensis* (L) Kurz. *Journal of Scientific and Innovative Research*, 2(4), 736-744 (2013a).
- 155. Hsu C.-L., Fang S.-C., Huang H.-W., and Yen G.-C., Anti-inflammatory effects of triterpenes and steroid compounds isolated from the stem bark of *Hiptage benghalensis. Journal of functional foods*, 12, 420-427 (2015). Doi: 10.1016/j.jff.2014.12.009.
- 156. Huerta-Reyes M., Herrera-Ruiz M., Gonzalez-Cortazar M., Zamilpa A., Leon E., Reyes-Chilpa R., Aguilar-Rojas A., and Tortoriello J., Neuropharmacological in vivo effects and phytochemical profile of the extract from the aerial of Heteropterys parts brachiata (L.) DC.(Malpighiaceae). Journal of Ethnopharmacology, 146(1), 311-317 (2013a). Doi: 10.1016/j.jep.2012.12.049.

- 157. Júnior H.M.S., Campos V.A., Alves D.S., Cavalheiro A.J., Souza L.P., Botelho D.M., Chalfoun S.M., and Oliveira D.F., Antifungal activity of flavonoids from *Heteropterys byrsonimifolia* and a commercial source against *Aspergillus ochraceus: In silico* interactions of these compounds with a protein kinase. *Crop Protection*, **62**, 107-114 (2014). Doi: 10.1016/j.cropro.2014.04.012.
- 158. Bobach C., Schurwanz J., Franke K., Denkert A., Van Sung T., Kuster R., Mutiso P.C., Seliger B., and Wessjohann L.A., Multiple readout assay for hormonal (androgenic and antiandrogenic) and cytotoxic activity of plant and fungal extracts based on differential prostate cancer cell line behavior. *Journal of ethnopharmacology*, **155**(1), 721-730 (2014). Doi: 10.1016/j.jep.2014.06.008.
- 159. Stermitz F.R., Hnatyszyn O., Bandoni A.L., Rondina R.V., and Coussio J.D., Screening of Argentine plants for aliphatic nitro compounds: hiptagin from *Heteropteris angustifolia*. *Phytochemistry*, **14**(5-6), 1341-1345 (1975). Doi: 10.1016/S0031-9422(00)98622-9.
- 160. Marques L.C., Pieri C.D., Roman-Júnior W.A., Cardoso M.L., Milaneze-Gutierre M.A., and Mello J.C., Pharmacognostic analysis of the roots of *Heteropteris aphrodisiaca* O. Mach.(Malpighiaceae). *Revista Brasileira de Farmacognosia*, **17**(4), 604-615 (2007). Doi: 10.1590/S0102-695X2007000400021
- 161. Monteiro J.C., Predes F.S., Matta S.L., and Dolder H., *Heteropterys aphrodisiaca* infusion reduces the collateral effects of cyclosporine A on the testis. *The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology*, **291**(7), 809-817 (2008). Doi: 10.1002/ar.20709.
- 162. Gomes M.L., Monteiro J.C., Freitas K.M., Sbervelheri M.M., and Dolder H., Association of the infusion of *Heteropterys aphrodisiaca* and endurance training brings spermatogenetic advantages. *Biological Research*, 44(3), 235-241 (2011). Doi: 10.4067/S0716-97602011000300004.
- 163. Monteiro J.C., Gomes M.L., Tomiosso T.C., Nakagaki W.R., Sbervelheri M.M., Ferrucci D.L., Pimentel E.R., and Dolder H., More resistant tendons obtained from the association of *Heteropterys aphrodisiaca* and endurance training. *BMC complementary and alternative medicine*, **11**(1), 1-11 (2011).
- 164. Galvão S.M.P., Mendes F.R., Oliveira M.G.M.D., Mattei R., Mello J.C.P.D., Roman Júnior W.A., and Carlini E.D.A., Memory retrieval improvement by *Heteropterys aphrodisiaca* in aging rats. *Brazilian Journal of Pharmaceutical Sciences*, 47(4), 825-832 (2011). Doi: 10.1590/S1984-82502011000400020
- 165. Freitas K.M., Monteiro J.C., Gomes M.L., Taboga S.R., and Dolder H., *Heteropterys tomentosa* (A. Juss.) infusion counteracts Cyclosporin a side effects on the ventral prostate. *BMC complementary and alternative medicine*, **13**(1), 1-9 (2013).
- 166. Paula-Freire L.I., Mendes F.R., Molska G.R., Duarte-Almeida J.M., and Carlini E.A., Comparison of the chemical composition and biological effects of the roots, branches and leaves of *Heteropterys*

*tomentosa* A. Juss. *Journal of ethnopharmacology*, **145**(2), 647-652 (2013). Doi: 10.1016/j.jep.2012.12.004.

- 167. Bezerra A.G., Negri G., Duarte-Almeida J.M., Smaili S.S., and Carlini E.A., Phytochemical analysis of hydroethanolic extracts from powdered roots of *Panax ginseng* C. A. Meyer and *Heteropterys tomentosa* A. Juss and evaluation of their effects on astrocyte cell death. *Química Nova*, **39**(5), 581-587 (2016). Doi: 10.5935/0100-4042.20160069.
- 168. Pirovani J.C.M., Gomes M.L., and Fernando O., *Heteropterys tomentosa* Improves the Endurance Capacity of Skeletal Muscles in Trained Rats. *IOSR Journal of Pharmacy and Biological Sciences*, **11**(4), 39-45 (2016). Doi: 10.9790/3008-1104033945.
- 169. Farias D.M., Ostetto M.S., Colleti R., Barbosa T., Barros J.A., Machado S., Murillo-Rodríguez E., Moreno S.E., and Veras A.B., Effect of *Heteropterys aphrodisiaca* on Anxiety and Male Exposure of Female Mice with Advanced Age. *Current clinical pharmacology*, **12**(2), 106-112 (2017). Doi: 10.2174/1574884712666170622085129.
- 170. Fraga G.A., Balogun S.O., Pascqua E.D., De Oliveira R.G., Botelho G., Pavan E., Da Rosa Lima T., Avila E.T.P., De Medeiros Amorim Krueger C., and Filho V.C., *Heteropterys tomentosa* A. Juss: toxicological and adaptogenic effects in experimental models. *Nutrition health*, 23(4), 289-298 (2017). Doi: 10.1177/0260106017729908.
- 171. De Rosso V. and Mercadante A., Carotenoid composition of two Brazilian genotypes of acerola (*Malpighia punicifolia* L.) from two harvests. *Food Research International*, **38**(8-9), 1073-1077 (2005). Doi: 10.1016/j.foodres.2005.02.023.
- 172. Da Silva Nunes R., Kahl V.F.S., Da Silva Sarmento M., Richter M.F., Costa-Lotufo L.V., Rodrigues F.a.R., Abin-Carriquiry J.A., Martinez M.M., Ferronatto S., and Ferraz A.D.B.F., Antigenotoxicity and antioxidant activity of Acerola fruit (*Malpighia* glabra L.) at two stages of ripeness. *Plant foods for human nutrition*, **66**(2), 129-135 (2011). Doi: 10.1007/s11130-011-0223-7.
- 173. Almeida I., Düsman E., Heck M., Pamphile J., Lopes N., Tonin L., and Vicentini V., Cytotoxic and mutagenic effects of iodine-131 and radioprotection of acerola (*Malpighia glabra* L.) and beta-carotene *in vitro. Genetics and Molecular Research*, **12**(4), 6402-6413 (2013). Doi: 10.4238/2013.December.10.1.
- 174. Tremonte P., Sorrentino E., Succi M., Tipaldi L., Pannella G., Ibanez E., Mendiola J.A., Di Renzo T., Reale A., and Coppola R., Antimicrobial effect of *Malpighia punicifolia* and extension of water buffalo steak shelf- life. *Journal of food science*, **81**(1), M97-M105 (2016). Doi: 10.1111/1750-3841.13141.
- 175. Nascimento E.M., Rodrigues F.F., Costa W.D., Teixeira R.N., Boligon A.A., Sousa E.O., Rodrigues F.F., Coutinho H.D., Da Costa J.G.M.J.F., and Toxicology C., HPLC and *in vitro* evaluation of antioxidant properties of fruit from *Malpighia glabra* (Malpighiaceae) at different stages of

maturation. *Food and Chemical Toxicology*, **119**, 457-463 (2018). Doi: 10.1016/j.fct.2017.11.042.

- 176. De Oliveira S.D., Araújo C.M., Borges G.D.S.C., Dos Santos Lima M., Viera V.B., Garcia E.F., De Souza E.L., and De Oliveira M.E.G., Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (*Malpighia emarginata* DC) and guava (*Psidium guajava* L.) fruit by-products fermented with potentially probiotic lactobacilli. *LWT-Food Science and Technology*, **134**, 110200 (2020). Doi: 10.1016/j.lwt.2020.110200.
- 177. Motohashi N., Wakabayashi H., Kurihara T., Fukushima H., Yamada T., Kawase M., Sohara Y., Tani S., Shirataki Y., and Sakagami H., Biological activity of barbados cherry (acerola fruits, fruit of *Malpighia emarginata* DC) extracts and fractions. *Phytotherapy Research.* **18**(3), 212-223 (2004). Doi: 10.1002/ptr.1426.
- 178. Righetto A., Netto F., and Carraro F., Chemical composition and antioxidant activity of juices from mature and immature acerola (*Malpighia emarginata* DC). Food Science and Technology International, **11**(4), 315-321 (2005). Doi: 10.1177/1082013205056785.
- 179. Hanamura T., Mayama C., Aoki H., Hirayama Y., and Shimizu M., Antihyperglycemic effect of polyphenols from Acerola (*Malpighia emarginata* DC.) fruit. *Bioscience, biotechnology, biochemistry*, **70**(8), 1813-1820 (2006). Doi: 10.1271/bbb.50592.
- 180. De Rosso V.V., Hillebrand S., Montilla E.C., Bobbio F.O., Winterhalter P., and Mercadante A.Z., Determination of anthocyanins from acerola (*Malpighia emarginata* DC.) and açai (*Euterpe* oleracea Mart.) by HPLC–PDA–MS/MS. Journal of Food Composition and Analysis, **21**(4), 291-299 (2008). Doi: 10.1016/j.jfca.2008.01.001.
- 181. Mezadri T., Villaño D., Fernández-Pachón M., García-Parrilla M., and Troncoso A., Antioxidant compounds and antioxidant activity in acerola (*Malpighia emarginata* DC.) fruits and derivatives. *Journal of Food Composition and Analysis*, **21**(4), 282-290 (2008). Doi: 10.1016/j.jfca.2008.02.002.
- 182. Delva L., Goodrich- Schneider R., and Technology, Antioxidant activity and antimicrobial properties of phenolic extracts from acerola (*Malpighia emarginata* DC) fruit. *International Journal of Food Science*, **48**(5), 1048-1056 (2013). Doi: 10.1111/ijfs.12061.
- 183. Leffa D.D., Rezin G.T., Daumann F., Longaretti L.M., Dajori A.L.F., Gomes L.M., Silva M.C., Streck E.L., and De Andrade V.M., Effects of acerola (*Malpighia emarginata* DC.) juice intake on brain energy metabolism of mice fed a cafeteria diet.

*Molecular neurobiology*, **54**(2), 954-963 (2017). Doi: 10.1007/s12035-016-9691-y.

- 184. Barros B.R., Barboza B.R., Ramos B.A., Moura M.C., Coelho L.C., Napoleao T.H., Correia M.T.S., Paiva P., Maria G., and Cruz I.J.D., Saline extract from *Malpighia emarginata* DC leaves showed higher polyphenol presence, antioxidant and antifungal activity and promoted cell proliferation in mice splenocytes. *Anais da Academia Brasileira de Ciências*, **91**(1), e20180358 (2019). Doi: 10.1590/0001-3765201920180358.
- 185. Da Silva Barros B.R., Do Nascimento D.K.D., De Araújo D.R.C., Da Costa Batista F.R., De Oliveira Lima A.M.N., Da Cruz Filho I.J., De Oliveira M.L., and De Melo C.M.L., Phytochemical analysis, nutritional profile and immunostimulatory activity of aqueous extract from *Malpighia emarginata* DC leaves. *Biocatalysis Agricultural Biotechnology*, 23, 101442 (2020). Doi: 10.1016/j.bcab.2019.101442.
- 186. Russo H.M., Queiroz E.F., Marcourt L., Rutz A., Allard P.-M., De Almeida R.F., Carvalho N.M., Wolfender J.-L., and Da Silva Bolzani V., Phytochemical analysis of the methanolic leaves extract of *Niedenzuella multiglandulosa* (Malpighiaceae), a plant species toxic to cattle in Brazil. *Phytochemistry Letters*, **37**, 10-16 (2020). Doi: 10.1016/j.phytol.2020.02.005.
- 187. Iyekowa O., Edema M., and Igbe I., Antimalarial Potential of Methanol Extract of *Stigmaphyllonovatum* in *Plasmodium falciparum* Infected Mice. *FUW Trends in Science & Technology Journal*, 6(1), 239 – 242 (2021).
- 188. Nieto-Argüello A., Medina-Cruz D., Pérez-Ramírez Y.S., Pérez-García S.A., Velasco-Soto M.A., Jafari Z., De Leon I., González M.U., Huttel Y., and Martínez L., Composition-Dependent Cytotoxic and Antibacterial Activity of Biopolymer-Capped Ag/Au Bimetallic Nanoparticles against Melanoma and Multidrug-Resistant Pathogens. *Nanomaterials*, **12**(5), 779 (2022). Doi: 10.3390/nano12050779.
- 189. David J.M., Santos F.A., Guedes M.L.D.S., and David J.P., Flavonóide e triterpenos de Stigmaphyllom paralias. Química Nova, 26(4), 484-487 (2003). Doi: 10.1590/S0100-40422003000400007
- 190. Mo A.M., A Chemical Study on the Constituents of Stephania Rotunda and Tristellateia Australasiae, *M. Thesis* (1996).
- 191. Randrianarivelojosia M., Rasidimanana V.T., Rabarison H., Cheplogoi P.K., Ratsimbason M., Mulholland D.A., and Mauclère P., Plants traditionally prescribed to treat *tazo* (malaria) in the eastern region of Madagascar. *Malaria Journal*, 2(1), 1-9 (2003).