

**Egyptian Journal of Chemistry** 

http://ejchem.journals.ekb.eg/



# Spectroscopic Studies of Dy<sup>3+</sup> Ion Doped Molybdenum Bismuth Borate Glasses For Optical Application

Amal Metwally,<sup>1\*</sup> Mervat M. Abdel Aal,<sup>1</sup> Asmaa Ratep,<sup>1</sup> Ismail Kashif<sup>2</sup> <sup>1</sup> Physics Department, Faculty of Women, Ain Shams University, Heliopolis, Cairo,11757, Egypt <sup>2</sup> Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo,11651, Egypt CrossMark

#### Abstract

A glass system  $45B_2O_3$ -50  $Bi_2O_3$ -50  $MoO_3$  glass system containing various proportions of  $Dy_2O_3$  was prepared by the conventional melt quenching technique. The density ( $\rho$ ) and molar volume of the prepared glass is determined. The areas of  $BO_3$  and  $BO_4$  were obtained from the FTIR spectra deconvolution. The optical absorption and emission spectra have been systematically studied and discussed. Also using Judd-Ofelt parameters to study the local structure around Dy ions. The yellow to blue intensity ratio, (Commission Internationale de l'éclairage) CIE chromaticity diagram coordinates, and color temperature values correlated were also calculated using emission spectra to evaluate the emitted light. The results obtained indicate the usefulness of glass samples for potential white LED applications.

Keywords: Molybdenum bismuth borate glasses; optical absorption; optical emission; Judd-Ofelt parameters; optical application.

## 1. Introduction

A commercial white light-emitting diode (WLED) is obtained in two ways. The first method is to use InGaN LED and YAG: Ce3 + emits blue light and yellow phosphor. The other way is to use a UV chip to come out of the RGB phosphor to produce white light [1][2]. These diodes are important solid-state light sources [3] [4] due to their pros, such as high brightness, low power consumption, and long time. It has many problems [1] [4] [5] [6] [7] [8], such as large amount of scattered light and low light extraction efficiency, low lifetime, low thermal stability, low intensity glossiness and high correlated color temperature ( 7750 K) which is complex and expensive. Otherwise, glasses doped with rare-earth ions with a specific composition are an alternative to Pc W-LEDs due to their advantages [6]. It saves electrical energy and reduces carbon emissions [1] [4] [8][9] [10] also has excellent chemical and thermal stability, low fabrication cost, and ease of forming any shape. The glasses doped with rare-earth ions form the basis of optical devices such as amplifiers, sensors, and lasers. It has good emission light in the visible, infrared, and near-infrared regions of the electromagnetic spectrum.

[11] [12] (Peng et al., 2020). (Dy+3) ion doped with glass composition is interesting because it absorbs low energy like UV or blue LED light [8][11] [15] mainly in the visible region, in the blue region of the spectrum (460-500 nm), and the yellow region (560-600 nm). The ratio between yellow and blue Y/B emission is an effective tool to probe the structural nature of the luminescent glass. The intensity of the Y/B emission depends only on the Dy3 + concentration and the type of host glasses. This ratio is an important parameter as it describes the chances of any transitions to occur via stimulated emission. [1][8][14][16][17][18][19]. The photoluminescence of Dy3+ doped borate glass was studied and concluded that, the borate glass sample contains 0.8 mol% Dy3+ has the highest luminescent intensity and is suitable for bright yellow light production [20].V. Uma et al. [21] studied the structural and optical properties of lithium tellurofluoroporate glass samples doped with Dy3+ for white light applications and observed that, the electric dipole transition in luminescence spectra was predominant compared to the magnetic dipole transition, and found that the color coordinates of prepared glasses are found in the white light region.

\*Corresponding author e-mail: <u>Amal.ahmed@women.asu.edu.eg</u>; (Amal Metwally).

Receive Date: 31 October 2021, Revise Date: 17 November 2021, Accept Date: 07 December 2021 DOI: 10.21608/EJCHEM.2021.103672.4799

<sup>©2022</sup> National Information and Documentation Center (NIDOC)

Ramteke et al. [22] tested the physical and optical properties of lithium borosilicate glass doped with dysprosium ions, and the authors concluded that the increment of density and molar volume with the addition of Dy<sub>2</sub>O<sub>3</sub>. Photometric studies have confirmed that this type of glass is likely suitable for white light applications. P. P. Pawar et al. [8] studied lithium borate glass samples containing Dy3+ ions content. It found that the stability of the glass and optical basicity increased as the optical band gap decreased with the increase of Dy3+ ions. The Photoluminescence (PL) emission spectra also show two intense blue and yellow bands and a weak red band. They found that the glass samples understudy useful in setting up pure white LEDs. Xin-Yuan Sun et al. [23] studied silicate glass doped varies concentrations of Dy3+ ions. It found that the optimum doping concentration of Dy3+ ions is 3.0 Wt% by weight. They found silicate glass is more convenient for generating the white light of blue LED chips.

The aim of this work is to focus on the preparation of modifier-free glass and study the effect of adding renewable energy on the composition and optical properties of glass samples.

#### 2. Experimental work:

Glass sample composition  $50Bi_2O_3$ - 5 MoO3- 45  $B_2O_3$ - x Dy<sub>2</sub>O<sub>3</sub> where x=0.05, 0.1, 0.3, 0.5, 0.7, 1 mol% Melt quenching was used in the preparation process. The samples melted in a porcelain meltingpot at 300oC for half an hour and then at 1000oC for an hour in an electric muffle furnace (LENTON) and it immediately poured between two copper plates.

The samples were examined using Philips Analytical X-ray diffraction system, type PW3710 based on a Cu tube anode with a wavelength K $\alpha$ 1= 1.5406 oA and K $\alpha$ 2= 1.54439 oA. The step size was 0.050, and the period per step was 2.5 seconds.

The density of the samples ( $\rho$ ) is calculated using Archimedes principal method with toluene (99.99% purity) as an immersion liquid. The density of yield:

 $\rho = ((0.865 \text{ W}_a))/((\text{W}_a-\text{W}_b)) \text{ g cm}-3$ 

where Wa and Wb are the weight of samples in air and toluene respectively, and 0.865g cm-3 is the density of toluene at room temperature.

Egypt. J. Chem. 65, No. 7 (2022)

The Infrared spectrometer (type JASCO FTIR-4100, Japan) is used to detect the FTIR absorption spectra of the prepared samples at room temperature. Infrared spectrometer range is 2000–400 cm-1 with the aid of the KBr disc technique.

The optical absorption spectra range from 190 to 2500 nm using a computerized recording spectrophotometer (type JASCO, V-570).

The emission measurements were calculated by using the (JASCO–FP-6300) Spectrofluorometer in the (200–800 nm) wavelength range.

### 3. Results and discussion:

Fig. 1. shows the X-ray diffraction (XRD) patterns of prepared glass samples. It indicates all the studied samples are amorphous.



Fig. 1. X-ray diffraction (XRD) patterns of prepared glass samples





Fig. 2. shows the infrared spectra of glass samples doped with Dysprosium ions. From fig. 2, it could be noticed the band at 1636 cm-1 is due to the stretching vibration of the [OH] group [24]. Also, fig.2 observed broad bands that indicate the overlapping of individual bands from B, Bi, and MO [11]. The stretching and bending vibration of borate groups are found in three regions [25]. Starting from the first region in the range 1200-1500 cm<sup>-1</sup> summarized the presence of the stretching of BO3 with bridging and non-bridging types, the second in region 850-1200cm<sup>-1</sup> represented the stretching of the BO4 group, and the last region in 600-800cm<sup>-1</sup> expressed the bending vibration of boron. The Bi and Mo in borate glass have a dual nature effect on the group formation and the linkage between different groups. Bismuth can be present as a former of the BiO3 group [26] [27] at 848 cm<sup>-1</sup> and as a modifier of BiO6 at 565 cm-1 and 485 cm-1. From fig 2, it observed the band at 450-530 cm<sup>-1</sup>[28] appeared at 0.05 Dy and 0.3 Dy mol% glass samples assigned to the vibrations of Bi-O-Bi bonds in the octahedral [BiO6]. The addition of MoO3 to the glass network, results in the following equivalences of Mo6 + and Mo5 + or Mo4+.[25][29] form the tetrahedral MoO4 and octahedral MoO6 groups.

MoO3 has two forms when added to glass: at low content, it acts as a network former, while at high content, it is a network modifier [25]. As the content of Mo is low (5 mol%), it probably acts as a former in the presence of samples. The bands of Mo were found at 835 and 890 cm<sup>-1</sup> and assigned to stretching vibrations of [MoO4] anions [30][31][32]. A band at 880–870 cm<sup>-1</sup> represents MoO6 octahedra [32] and a band around 600 and 450cm<sup>-1</sup> assigned to asymmetric and symmetric vibrations of Mo-O-Mo linkages [25]. It is observed that the band at~415cm<sup>-1</sup> [26], which may be due to the vibration of alkali cations (Bi+3) or/and rare-earth ions (Dy3+).



Fig.3. the relation between (density and molar volume) and the Dy2O3 concentration

Density and molar volume are the basis for studying the properties of the physical behavior of samples from the relationship between Density and molar volume as a function of Dy concentration shown in Fig.3. The

Egypt. J. Chem. 65, No. 7 (2022)

calculated areas of BO<sub>3</sub> and BO<sub>4</sub> obtained from the FTIR spectra deconvolution are shown in fig. 4.



Fig.4 the relation between (area of  $BO_3$  and  $BO_4$ ) and the  $Dy_2O_3$  concentration.



Fig.6 the differential method for Eg determination

The fraction of four-coordination boron atoms, N4, is calculated to measure the relative changes in the BO<sub>3</sub> and BO<sub>4</sub> units shown in fig.5. From Fig. 3, it is observed that the density increases with increasing Dy concentration, it attributed to the molecular weight of Dy<sub>2</sub>O<sub>3</sub>[33][34], also doping the glass samples with Dy<sub>2</sub>O<sub>3</sub> lead to increment the ratio of oxygen–boron in network and leading to a compact structure [27].

From fig. 4 observed the lowest values of  $BO_3$  area, located at 0.05 and 0.3 Dy mol% points, which mean the conversion of some borate groups to  $BiO_6$  group, and this agree with FTIR analysis.

Optical band gap is the energy required by photons to excite the electrons from the valence band to the conduction band. It derived from the derivative method according to the relation: [35]

$$\frac{d[\ln(\alpha h \upsilon)]}{d(h \upsilon)} = \frac{n}{h \upsilon - E_{opt}}$$

Where  $\alpha$  is the absorption coefficient, h is planck's constant,  $\upsilon$  is the frequency, n is the refractive index and  $E_{opt}$  is the optical bandgap energy.

Table 1. various IR peaks observed in the glass systems.

The obtained value observed in table.3 indicate the decrease of the  $E_{opt}$  value with adding Dy as the increase of Dy perform the electron localization tending to increase in the doner center [36][8]. This value is identical with other researchers [33][37]and is in agreement with the molar volume trend.

| Dy % samples |      | IR   | band positions W | ave number(cm-1) | )    |     |
|--------------|------|------|------------------|------------------|------|-----|
| 0.05         | 1442 | 1340 | 1210             | 1059             | 914  | 730 |
| 0.1          | 1440 | 1324 | 1205             | 1068             | 917  | 714 |
| 0.3          | 1425 | 1360 | 1301             | 1222             | 1046 | 886 |
| 0.5          | 1428 | 1314 | 1206             | 1045             | 896  | 779 |
| 0.7          | 1416 | 1294 | 1198             | 1061             | 911  | 737 |
| 1            | 1428 | 1306 | 1198             | 1064             | 921  | 771 |

Table 2. Vibration types of different IR wave numbers

| IR band positions Wave number(cm-1)                                   | Assignments                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1200–1500 cm-1                                                        | Asymmetric stretching BO bond of [BO3] groups                                                                                                                                                                                     |
| 1406–1490 cm–1                                                        | are assigned to the asymmetrical stretching vibrations with three NBOs of the B-O-B groups                                                                                                                                        |
| 850-1200                                                              | Stretching vibration of B-O-B linkage of tetrahedral BO4 units                                                                                                                                                                    |
| 848 cm-1<br>565 and 485 cm-1<br><650 cm-1<br>450–530 cm <sup>-1</sup> | BiO3 former<br>BiO6 modifier<br>may be due to the bond bending vibrations of Bi=O bonds in BiO6<br>octahedral units and BiO3 pyramidal units<br>assigned to the vibrations of Bi–O–Bi bonds in the octahedral [BiO <sub>6</sub> ] |
| ~ 415cm-1                                                             | may due to the vibration of alkali cation(Bi+3) or/and rare earth ions (Dy3+)                                                                                                                                                     |
| 835 & 870 cm-1<br>880-870 cm-1<br>600 cm-1<br>450 cm 1                | stretching vibrations of [MoO4] anions<br>MoO6 octahedra<br>Asymmetric vibrations of Mo-O-Mo                                                                                                                                      |

Table.3. Some Physical and optical parameters of the glass samples for different Dy<sub>2</sub>O<sub>3</sub> contents

| Dymol% | $Eg \\ \alpha hv^2$ | n     | R <sub>L</sub> | Т     | $\chi^3 * 2e.s.u$ | $\chi^1$ | R <sub>m</sub> | М     | am=Rm/2.52 |
|--------|---------------------|-------|----------------|-------|-------------------|----------|----------------|-------|------------|
| 0.05   | 2.90                | 2.424 | 0.173          | 0.704 | 2.27              | 0.388    | 30.26          | 0.380 | 12.01      |
| 0.1    | 2.95                | 2.410 | 0.171          | 0.707 | 2.15              | 0.383    | 30.44          | 0.384 | 12.07      |
| 0.3    | 2.93                | 2.416 | 0.171          | 0.706 | 2.20              | 0.385    | 30.33          | 0.382 | 12.035     |
| 0.5    | 2.93                | 2.416 | 0.171          | 0.706 | 2.20              | 0.385    | 29.91          | 0.382 | 11.86      |
| 0.7    | 2.93                | 2.416 | 0.171          | 0.706 | 2.20              | 0.385    | 31.58          | 0.382 | 12.53      |
| 1      | 2.93                | 2.416 | 0.171          | 0.706 | 2.20              | 0.385    | 29.65          | 0.382 | 11.76      |

By using the optical bandgap, the refractive index of samples using the following relation:

$$\frac{n^2 - 1}{n^2 + 2} = 1 - \sqrt{\frac{E_{opt}}{20}}$$

In continuous reflection (RL), transmission (T) and the third-order nonlinear susceptibility  $\chi^{(3)}$ 

parameters determined according to the following relations [38]

$$R_{L} = \left\lfloor \frac{n-1}{n+1} \right\rfloor^{2} \qquad T = \frac{2n}{n^{2}+1} \qquad \text{And}$$
$$\chi^{(3)} = \left[\chi^{(1)}\right]^{4} \times 10^{-10}$$

where  $\chi(1)$  is the linear optical susceptibility calculated as

718

$$\chi^{(1)} = \frac{(n^2 - 1)}{4\pi}$$

The total polarizability of material per mole through Lorenz-Lorenz equation from the relation [39]  $R_m = [(n_0^2 - 1)/(n_0^2 + 2))]V_m$ 

The metallization [40] is an important value that determined the nature of bonding in each glass sample according to the relation

$$M = 1 - \frac{R_m}{V_m}$$

The magnitude of electron cloud deformation under the application of electromagnetic wave arising from the presence of oxygen in glass with different shapes as bridging, non-bridging, or negative charge called Electronic polarizability [38][39][41] calculated according to the following relation

$$\alpha_{\rm m} = (\frac{3}{4\pi N_{\rm A}})R_{\rm m}$$

Where  $\alpha_m$  is electronic polarizability, NA represents the Avogadro's number. The obtained values are tabulated in table 3, from table many physical properties are explained, as the values of X<sup>(3)</sup> which indicate the availability of using glass in nonlinear optical applications, the values of metallization is less than unity and constant as the nonmetallic bond [42], at constant concentration of bismuth oxide, the importance of prepared glass in using as nonlinear optical application[38]



Fig. 7. UV-Vis optical absorption spectra of glasses with  $different \ Dy_2O_3 \ contents.$ 

Fig. 7. shows the optical absorption of samples under study exhibited the following resolved peaks [18][21]  $6H15/2 \rightarrow 6H11/2$  (1688nm), 6F11/2+6H9/2(1274nm), 6F9/2+6H7/2 (1090nm), 6F7/2 (900nm), 6F5/2 (806nm) and 6F3/2 (758nm). The intensity of the absorption peaks increases without any significant shift in the peak position. The

oscillator strengths in the experimental method determined according to the relation [21]

fexp=  $4.318 \times 10^{-9} \int \alpha(\nu) d\nu$ 

The oscillator strength could be determined theoretically according to the relation [21]

$$\text{fcal} = \frac{8\pi^2 \text{mc}(n^2+1)^2}{3h\lambda(2J+1)9n} \sum_{\lambda=2,4,6} \Omega_{\lambda}(\psi J \| U^{\lambda} \| \varphi' J')^2$$

Where v is the wavenumber (cm<sup>-1</sup>) of the excitation from ground state( $\psi$ J) to the excited state ( $\psi$ 'J'), c is the velocity of light in vacuum; m is the rest mass of an electron and  $\|U^{\lambda}\|^{2}$  doubly reduced matrix element.

The fit quality between the obtained Fcal and Fexp values (in table4) determine from the root-mean-square deviation based on the following equation:

$$\delta_{\rm rms} = \left[\frac{\Sigma (\rm fexp-fcal)^2}{N-3}\right]^{1/2}$$
(5)

Where N is the total number of the energy levels used in the fit.

The lowest values of  $\delta$ rms ranged from 10-6 give the high quality and validity of JO analysis. Judd-Ofelt parameters  $\Omega 2$ ,  $\Omega 4$ , and  $\Omega 6$  are interesting for investigating the local structure in a glass matrix around a rare-earth ion. From the obtained parameters,  $\Omega 2$  has a higher value than  $\Omega 4$ , and  $\Omega 6$  indicates the higher covalency and asymmetry around Dy3+ [18].

Many researchers studied the bismuth borate glass containing Dy ions and found the position of Dy in an asymmetric site with a weak bond with oxygen surrounding it [43][44][45][46][47].

Judd-Ofelt parameters are beneficial in predicting the relaxation of Dy from the metastable level 4F9/2 formed laser emission determined by the ratio  $\Omega 4/\Omega 6[43][45][46]$ . From the value of  $\Omega 4/\Omega 6$  in table 4 it is observed that the values increase with the increase of Dy concentration to reach a maximum value 1.2 at 1 Dy mol%, predicting the ability of material for the laser emission.



Fig. 8. illustrates the excitation spectra of the high concentration glass sample with 1mol% Dy by monitoring emission at 575nm. It is observed that the six bands[48][20][49] at 352, 367, 384, 429, 454, and 476nm represented the excitation from the 6H15/2 (ground level ) to 6P7/2, 6P5/2, 4I13/2, 4G11/2, 4I13/2 and 4F9/2 (an excited level ) respectively, with high intensity located at 384 nm, in accordance with the literature [50][51] [52].

|                     | 1        | 1Dy% |          | 0.7Dy% |          | 0.5Dy% |          | 0.3Dy% |  |
|---------------------|----------|------|----------|--------|----------|--------|----------|--------|--|
| λnm                 | Fexp     | fcal | fexp     | fcal   | fexp     | fcal   | fexp     | Fcal   |  |
| 1674                | 6.71     | 6.62 | 8.80     | 7.67   | 12       | 9.43   | 5.73     | 5.07   |  |
| 1276                | 44.8     | 47.8 | 42.8     | 45.8   | 50       | 53.7   | 27.5     | 29.3   |  |
| 1096                | 11.4     | 11.9 | 14       | 14.2   | 13.5     | 13     | 7.05     | 7.07   |  |
| 902                 | 7.74     | 8.96 | 8.25     | 11.6   | 7.68     | 13     | 4.96     | 6.94   |  |
| 810                 | 2.94     | 3.94 | 3.15     | 5.33   | 1.22     | 6.53   | 2.06     | 3.48   |  |
| 758                 | 0.31     | 0.74 | 0.26     | 1      | 0.42     | 1.23   |          |        |  |
| Δrms                | 3.51     |      | 4.83     |        | 6.97     |        | 3.27     |        |  |
| $\Omega 4/\Omega 6$ | 1.20E+00 |      | 9.08E-01 |        | 3.67E-01 |        | 3.96E-01 |        |  |

Table 4.Experimental and calculated oscillator strengths for Dy3+doped glass



Fig. 8. the excitation spectra of glass sample with 1mol% Dy.



Fig 9. Emission spectra of glasses with different Dy2O3 contents excitation energy at 450 nm

Fig. 9. shows the emission of glass samples doped with Dy3+ excited at 384nm. From fig 7, it could be observed that the three emission bands.[21][53] at 485nm (4F9/2 ->6H15/2) represents the blue emission and it has a magnetic dipole transition which is less efficient with the composition system. The band at 575-584nm (4F9/2-> 6H13/2) represents the yellow emission. It has electric dipole transition that is affected by the glass surrounding it and at 650nm (6H11/2) represents the red emission. From figx observed the transition  $4F9/2 \rightarrow 6H15/2$  is relatively quite weak, and 4F9/2 -> 6H13/2 transition is hypersensitive. The 4F9/2->6H13/2 transition is heavily affected by the environment around the Dy3+ion site, referring to the lower symmetry around the Dy3+ ions sites as well as the higher covalency between Dy and oxygen ligand[54][52][55]. The ratio between the electric and the magnetic dipoles [56] determining the efficiency of the white LED and the symmetry around Dy. The higher Y/B illustrates the asymmetric ligand environment [50]. From the Y/B values in table 5, the Y/B ratio increased with the Dy concentration increament up to 0.5 mol% to reach the maximum value and then decrease, which could explain the possibility of white light emission [57].

The color is a result of the ratio of the primary color[25] is beneficial in a determination by 2 points by CIE 1931 chromaticity. The measured points produced in the emission spectra and the CIE 1931 chromaticity determine the (x, y) points for each glass sample excited at 384nm shown in fig. 10. From fig. 10., the values extracted from the CIE 1931 chromaticity tabulate in table 5. The results obtained in the table and with the aid of fig.10 are observed the higher values of x,y chromaticity that represent the prepared glass samples ranged in the white region. The two-point produced by CIE 1931 choromaticity[14][19] [25] reduced to one point with the introduction of the Correlated Color Temperature (CCT). CCT important light characterization as Today the light, it is classified as the cool light used in many places such as schools, offices, and hospitals, or the warm light used in houses and restaurants. CCT determined by the following relation

 $CCT = -449n^3 + 352n^2 - 6823n + 5520.33$ Where n= (x-0.332)/(y-0.186)

and CCT

$$n = \frac{x - 0.332}{y - 0.186}$$

With the help of Judd Ofelt parameters which obtained from the absorption spectra, it can predict the radiative parameter as the transition probability from the ground state to the excited state according to the relation[58]

$$A = \frac{64\pi^4 \upsilon^3}{3h(2J+1)} \left[ \frac{\eta (n^2+2)^2}{9n} S_{ed} \right]$$

Where n is the refractive index, n is the energy of the

Egypt. J. Chem. 65, No. 7 (2022)

transition (cm-1), Sed is the electric-dipole line strength and calculated according to the following relation.

$$S_{ed} = e^{2} \sum_{\lambda=2,4,6} \Omega_{\lambda} \left\| U^{\lambda} \right\|^{2}$$

In which  $\Omega\lambda$  is the JO parameters, and  $\|U\lambda\|$  is the double squares reduced unit tensor operators for the luminescence states

The total transition probability of emission level is given by [58]:

$$A_{T} = \sum A$$

The predicted radiative lifetime (TR) [50] given by  $\tau_R = [A_T(\Psi J)]^{-1}$ 

The luminescence branching ratio  $(\beta R)$ 

[59]corresponding to the emission from the excited level (4F9/2)to a lower level that characterizes the lasing power of the potential laser transitions from the relation and it calculated as the emission transition having a luminescence branching ratio ( $\beta$ R) greater than 50%[49] is considered to have more potential for laser emission

$$\beta_{\rm R} = \frac{A_{\rm R}(\Psi J, \Psi' J')}{A_{\rm T}(\Psi J)}$$

And can be calculated experimentally from the intensities of emission bands.

The integrated absorption cross-section,  $\sigma a$  [58], for the stimulated emission for a fluorescent level is given by

$$\sigma_{\rm a} = \frac{1}{\upsilon^2} \frac{\rm A}{8\pi {\rm cn}^2}$$

All the values are calculated and tabulated in table 6.

Table 5 . J-O Intensity parameters, Y/B ratio,(X,Y) chromaticity

| Dymol%    | 0.05          | 0.1           | 0.3           | 0.5           | 0.7               | 1                 |
|-----------|---------------|---------------|---------------|---------------|-------------------|-------------------|
| Ωλ *10-20 |               |               | Ω2=28.3       | $\Omega 2=52$ | $\Omega 2 = 39.8$ | Ω2=42.7           |
|           |               |               | Ω4=2.59       | Ω4=4.5        | Ω4=9.09           | $\Omega 4 = 8.87$ |
|           |               |               | Ω6=6.54       | Ω6=12.3       | Ω6=10.01          | $\Omega 6 = 7.39$ |
| Y/B       | 6.482363      | 7.431295      | 4.702516      | 5.072605      | 4.702516          | 4.961579          |
| (X,y)     | (0.327,0.321) | (0.329,0.331) | (0.318,0.318) | (0.317,0.31)  | (0.33,0.32)       | (0.323, 0.319)    |
| CCT       | 5753          | 5652          | 6240          | 6255          | 5525              | 5966              |

Table 6 The radiative life time and branching ratio calculations

| Dyconc% |     | А      | AT=∑A  | BR calc | TR=[AT]-1 | $\sigma = A/(8\pi cn2)v2$ |
|---------|-----|--------|--------|---------|-----------|---------------------------|
| 0.3     | 485 | 188.5  | 1170.3 | 16.108  | 854.4886  | 1.0081E-19                |
|         | 576 | 981.8  |        | 83.892  |           | 7.4051E-19                |
| 0.5     | 485 | 352.6  | 2161.6 | 16.311  | 462.6273  | 1.88551E-19               |
|         | 576 | 1809.0 |        | 83.689  |           | 1.36443E-18               |
| 0.7     | 485 | 303.4  | 1758.3 | 17.253  | 568.7400  | 1.6223E-19                |
|         | 576 | 1454.0 |        | 82 747  |           | 1.00737E 18               |
| 1       | 485 | 230.1  | 1681.5 | 13.685  | 594.6912  | 1.23064E-19               |
|         |     |        |        |         |           |                           |
|         | 576 | 1451.4 |        | 86.315  |           | 1.09474E-18               |

From table 6, it is observed that the branching ratio calculated from Judd Ofelt is analogous to the values obtained from experimental results for yellow transition and has a higher value than blue emission that the relatively larger Bcal values and stimulated emission cross-sections are observed the values decrease with the increase of Dy concentrations; making them promising materials for lasing action [43] through the emission channel 4F9/2-6H13/2 with a wavelength around 576 nm.



Fig. 10. The color coordination of glass samples doped with Dy exited 450nm

#### 4. Conclusions

A glass of molybdenum-bismuth borate containing dysprosium ions was prepared. The glassy nature of the behavior of samples is confirmed using the XRD spectrum. The amorphous nature was determined from the first sight of glass samples that it appeared clear and confirmed with XRD measurement. The vibration Agroups related to molybdenum bismuth borate glasses is determined using the FT-IR technique. The highest values of  $\Omega 2$  represent covalent bonding nature. The branching ratios and emission crosssectional values reveal the availability of the glass samples understudy for the applications of yellow laser. The obtained results are reliable with the CIE chromaticity coordinates and the Y/B ratio.

#### 5. References:

- L. Mishra et al., "White light emission and color tunability of dysprosium doped barium silicate glasses," J. Lumin., vol. 169, pp. 121–127, 2016, doi: 10.1016/j.jlumin.2015.08.063.
- [2] Y. Zhou, D. Chen, W. Tian, and Z. Ji, "Impact of Eu3+ dopants on optical spectroscopy of Ce3+: Y3Al5O12-embedded transparent glassceramics," J. Am. Ceram. Soc., vol. 98, no. 8, pp. 2445–2450, 2015.
- [3] T. Emission, P. Ca, and E. Transfer, "Panlai Li, Zhijun Wang, Qinglin Guo, and Zhiping Yang," vol. 500, no. 35296, pp. 3–8, 2015, doi: 10.1111/jace.13292.
- [4] R. Ye et al., "Luminescence and energy transfer of Eu 2 + / Mn 2 + co-doped SiO 2 - Al 2 O 3 - ZnO - K 2 O glass ceramics for white LEDs," vol. 130, pp. 2385-2389, 2010, doi: 10.1016/j.jlumin.2010.07.023.
- [5] T. Glass-ceramics, "Yang Zhou, Daqin Chen, Wendong Tian, and Zhenguo Ji," vol. 2450, no. 36391, 2015, doi: 10.1111/jace.13668.

- [6] L. Ren, X. Lei, X. Du, L. Jin, W. Chen, and Y. Feng, "Effect of Eu 2 O 3 concentration on luminescent properties of Ce / Tb / Eu Ć co-doped calcium borosilicate glass for white LED," vol. 142, pp. 150–154, 2013.
- [7] C. Zhu, D. Wu, J. Liu, M. Zhang, and Y. Zhang, "Color-tunable luminescence in Ce-, Dy-, and Eudoped oxyfluoride aluminoborosilicate glasses," J. Lumin., vol. 183, pp. 32–38, 2017, doi: 10.1016/j.jlumin.2016.11.004.
- [8] P. P. Pawar, S. R. Munishwar, S. Gautam, and R. S. Gedam, "Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED," J. Lumin., vol. 183, pp. 79–88, 2017, doi: 10.1016/j.jlumin.2016.11.027.
- [9] P. Chimalawong, K. Kirdsiri, J. Kaewkhao, and P. Limsuwan, "Investigation on the Physical and Optical Properties of Dy 3 + Doped Soda-Lime-Silicate Glasses," Procedia Eng., vol. 32, pp. 690– 698, 2012, doi: 10.1016/j.proeng.2012.01.1328.
- [10] Y. Wei et al., "Luminescence and preparation of Dy2O3 doped SrCO3–WO3–SiO2 glass ceramics," J. Lumin., vol. 220, no. August 2019, 2020, doi: 10.1016/j.jlumin.2019.117021.
- [11] K. S. Shaaban, A. A. El-Maaref, M. Abdelawwad, Y. B. Saddeek, H. Wilke, and H. Hillmer, "Spectroscopic properties and Judd-Ofelt analysis of Dy3+ ions in molybdenum borosilicate glasses," J. Lumin., vol. 196, no. May 2017, pp. 477–484, 2018, doi: 10.1016/j.jlumin.2017.12.041.
- [12] A. A. El-Maaref, K. S. Shaaban, M. Abdelawwad, and Y. B. Saddeek, "Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses," Opt. Mater. (Amst)., vol. 72, pp. 169– 176, 2017, doi: 10.1016/j.optmat.2017.05.062.
- [13] S. Peng et al., "A novel type of borosilicate glass with excellent chemical stability and high ultraviolet transmission," J. Non. Cryst. Solids, vol. 528, no. October 2019, pp. 1–6, 2020, doi: 10.1016/j.jnoncrysol.2019.119735.
- [14] V. P. Tuyen et al., "An in-depth study of the Judd-Ofelt analysis, spectroscopic properties and

722

Egypt. J. Chem. 65, No. 7 (2022)

energy transfer of Dy 3+ in alumino-lithiumtelluroborate glasses," J. Lumin., vol. 210, no. November 2018, pp. 435–443, 2019, doi: 10.1016/j.jlumin.2019.03.009.

- [15] P. Van Do et al., "Energy transfer phenomena and Judd-Ofelt analysis on Sm 3+ ions in K 2 GdF 5 crystal," J. Lumin., vol. 179, pp. 93–99, 2016, doi: 10.1016/j.jlumin.2016.06.051.
- [16] S. A. Azizan, S. Hashim, N. A. Razak, M. H. A. Mhareb, Y. S. M. Alajerami, and N. Tamchek, "Physical and optical properties of Dy3+: Li2O-K2O-B2O3glasses," J. Mol. Struct., vol. 1076, pp. 20–25, 2014, doi: 10.1016/j.molstruc.2014.07.032.
- [17] C. K. Jayasankar, V. Venkatramu, S. S. Babu, and P. Babu, "Luminescence properties of Dy3+ ions in a variety of borate and fluoroborate glasses containing lithium, zinc, and lead," J. Alloys Compd., vol. 374, no. 1–2, pp. 22–26, 2004, doi: 10.1016/j.jallcom.2003.11.051.
- [18] A. Balakrishna, D. Rajesh, and Y. C. Ratnakaram, "Structural and photoluminescence properties of Dy3 doped different modifier oxide-based lithium borate glasses," J. Lumin., vol. 132, no. 11, pp. 2984–2991, 2012, doi: 10.1016/j.jlumin.2012.06.014.
- [19] S. Kaur et al., "Blue-yellow emission adjustability with aluminium incorporation for cool to warm white light generation in dysprosium doped borate glasses," J. Lumin., vol. 202, no. May, pp. 168– 175, 2018, doi: 10.1016/j.jlumin.2018.05.034.
- [20] K. V. Rao, S. Babu, G. Venkataiah, and Y. C. Ratnakaram, "Optical spectroscopy of Dy 3 + doped borate glasses for luminescence applications," J. Mol. Struct., vol. 1094, no. April, pp. 274–280, 2015, doi: 10.1016/j.molstruc.2015.04.015.
- [21] V. Uma, K. Maheshvaran, K. Marimuthu, and G. Muralidharan, "Structural and optical investigations on Dy3+doped lithium tellurofluoroborate glasses for white light applications," J. Lumin., vol. 176, pp. 15–24, 2016, doi: 10.1016/j.jlumin.2016.03.016.
- [22] D. D. Ramteke, R. S. Gedam, and H. C. Swart, "Physical and optical properties of lithium borosilicate glasses doped with Dy3+ ions," Phys. B Condens. Matter, vol. 535, no. April 2017, pp. 194–197, 2018, doi: 10.1016/j.physb.2017.07.035.
- [23] X. Sun, S. Huang, Q. Gao, Z. Ye, C. Cao, and others, "Spectroscopic properties and simulation of white-light in Dy3+-doped silicate glass," J. Non. Cryst. Solids, vol. 356, no. 2, pp. 98–101, 2010.
- [24] L. Xia, L. Wang, Q. Xiao, Z. Li, W. You, and Q. Zhang, "Preparation and luminescence properties of Eu3 +-doped calcium bismuth borate red-lightemitting glasses for WLEDs," J. Non. Cryst.

Solids, vol. 476, no. September, pp. 151–157, 2017, doi: 10.1016/j.jnoncrysol.2017.09.049.

- [25] S. M. Abo-Naf, "FTIR and UV-VIS optical absorption spectra of gamma-irradiated MoO 3doped lead borate glasses," J. Non. Cryst. Solids, vol. 358, no. 2, pp. 406–413, 2012, doi: 10.1016/j.jnoncrysol.2011.10.013.
- [26] P. Narwal, M. S. Dahiya, A. Yadav, A. Hooda, A. Agarwal, and S. Khasa, "Improved white light emission in Dy 3+ doped LiF–CaO–Bi 2 O 3 –B 2 O 3 glasses," J. Non. Cryst. Solids, vol. 498, no. November 2017, pp. 470–479, 2018, doi: 10.1016/j.jnoncrysol.2018.01.042.
- [27] Q. Chen, M. Zhang, Q. Ma, and Q. Wang, "The structure, spectra and properties of Dy2O3 modified diamagentic lead-bismuth-germanium glasses," J. Non. Cryst. Solids, vol. 507, no. December 2018, pp. 46–55, 2019, doi: 10.1016/j.jnoncrysol.2018.09.025.
- [28] N. M. Bobkova, S. A. Artem'Eva, and E. E. Trusova, "Behavior of copper oxide in silicoborate glazed glasses," Glas. Ceram. (English Transl. Steklo i Keramika), vol. 64, no. 7–8, pp. 264–266, 2007, doi: 10.1007/s10717-007-0065-9.
- [29] M. I. Sayyed, K. M. Kaky, D. K. Gaikwad, O. Agar, U. P. Gawai, and S. O. Baki, "Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi 2 O 3 /MoO 3)," J. Non. Cryst. Solids, vol. 507, no. December 2018, pp. 30–37, 2019, doi: 10.1016/j.jnoncrysol.2018.12.010.
- [30] P. S. Prasad, B. V. Raghavaiah, R. Balaji Rao, C. Laxmikanth, and N. Veeraiah, "Dielectric dispersion in the PbO-MoO3-B2O 3 glass system," Solid State Commun., vol. 132, no. 3–4, pp. 235–240, 2004, doi: 10.1016/j.ssc.2004.07.042.
- [31] N. Rajya Lakshmi and S. Cole, "Influence of MoO3 ions on spectroscopic properties of B2O3-ZnF2-CaF2-Al2O3 oxyfluoride glasses," Mater. Today Proc., vol. 5, no. 13, pp. 26346–26355, 2018, doi: 10.1016/j.matpr.2018.08.086.
- [32] L. Aleksandrov, R. Iordanova, and Y. Dimitriev, "Glass formation in the MoO3-Nd2O3-La2O3-B2O3 system," J. Non. Cryst. Solids, vol. 355, no. 37–42, pp. 2023–2026, 2009, doi: 10.1016/j.jnoncrysol.2009.05.069.
- [33] I. Khan et al., "Photoluminescence and white light generation of Dy2O3 doped Li2O-BaO-Gd2O3-SiO2 for white light LED," J. Alloys Compd., vol. 774, pp. 244–254, 2019, doi: 10.1016/j.jallcom.2018.09.156.
- [34] M. Monisha, N. Mazumder, G. Lakshminarayana, S. Mandal, and S. D. Kamath, "Energy transfer and luminescence study of Dy3+ doped zincaluminoborosilicate glasses for white light

Egypt. J. Chem. 65, No. 7 (2022)

emission," Ceram. Int., no. June, pp. 1–13, 2020, doi: 10.1016/j.ceramint.2020.08.167.

- [35] I. Kashif and A. Ratep, "Effect of copper addition on BO4, H2O groups and optical properties of lithium lead borate glass," Opt. Quantum Electron., vol. 49, no. 6, 2017, doi: 10.1007/s11082-017-1067-7.
- [36] P. Gayathri Pavani, K. Sadhana, and V. Chandra Mouli, "Optical, physical and structural studies of boro-zinc tellurite glasses," Phys. B Condens. Matter, vol. 406, no. 6–7, pp. 1242–1247, 2011, doi: 10.1016/j.physb.2011.01.006.
- [37] Y. Saleh et al., "Optical properties of lithium magnesium borate glasses doped with Dy 3 b and Sm 3 b ions," Phys. B Phys. Condens. Matter, vol. 407, no. 13, pp. 2398–2403, 2012, doi: 10.1016/j.physb.2012.03.033.
- [38] I. K. A. Ratep and G. Adel, "Polarizability, optical basicity and optical properties," Applied Physics A, vol. 0, no. 0. p. 0, 2018, doi: 10.1007/s00339-018-1904-y.
- [39] M. K. Halimah, M. F. Faznny, M. N. Azlan, and H. A. A. Sidek, "Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions," Results Phys., vol. 7, pp. 581–589, 2017, doi: 10.1016/j.rinp.2017.01.014.
- [40] S. H. Alazoumi et al., "Optical properties of zinc lead tellurite glasses," Results Phys., vol. 9, no. April, pp. 1371–1376, 2018, doi: 10.1016/j.rinp.2018.04.041.
- [41] A. Edukondalu et al., "Mixed alkali effect in physical and optical properties of Li 2O-Na 2O-WO 3-B 2O 3 glasses," J. Non. Cryst. Solids, vol. 358, no. 18–19, pp. 2581–2588, 2012, doi: 10.1016/j.jnoncrysol.2012.06.004.
- [42] T. Honma, R. Sato, Y. Benino, T. Komatsu, and V. Dimitrov, "Electronic polarizability, optical basicity and XPS spectra of Sb2O3--B2O3 glasses," J. Non. Cryst. Solids, vol. 272, no. 1, pp. 1–13, 2000.
- [43] K. Swapna, S. Mahamuda, A. Srinivasa Rao, M. Jayasimhadri, T. Sasikala, and L. Rama Moorthy, "Optical absorption and luminescence characteristics of Dy3+ doped Zinc Alumino Bismuth Borate glasses for lasing materials and white LEDs," J. Lumin., vol. 139, pp. 119–124, 2013, doi: 10.1016/j.jlumin.2013.02.035.
- [44] B. Shanmugavelu and V. V. R. K. Kumar, "Luminescence studies of Dy3+ doped bismuth zinc borate glasses," J. Lumin., vol. 146, pp. 358– 363, 2014, doi: 10.1016/j.jlumin.2013.10.018.
- [45] K. Swapna, S. Mahamuda, A. Srinivasa Rao, M. Jayasimhadri, T. Sasikala, and L. Rama Moorthy, "Visible fluorescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for optoelectronic devices," Ceram. Int., vol. 39, no.

7, pp. 8459–8465, 2013, doi: 10.1016/j.ceramint.2013.04.028.

- [46] M. Mariyappan, S. Arunkumar, and K. Marimuthu, "White light emission and spectroscopic properties of Dy3+ ions doped bismuth sodiumfluoroborate glasses for photonic applications," J. Alloys Compd., vol. 723, pp. 100–114, 2017, doi: 10.1016/j.jallcom.2017.06.244.
- [47] H. Zhang, P. J. Lin, J. L. Yuan, E. Y. B. Pun, D. S. Li, and H. Lin, "Multiplier effect of sensitization for Dy3+ fluorescence in borosilicate glass phosphor," J. Lumin., vol. 221, no. September 2019, 2020, doi: 10.1016/j.jlumin.2020.117062.
- [48] A. Ichoja, S. Hashim, S. K. Ghoshal, and I. H. Hashim, "Absorption and luminescence spectral analysis of Dy3+-doped magnesium borate glass," Chinese J. Phys., vol. 66, no. March, pp. 307–317, 2020, doi: 10.1016/j.cjph.2020.03.029.
- [49] K. Vijaya Babu and S. Cole, "Luminescence properties of Dy3+-doped alkali lead alumino borosilicate glasses," Ceram. Int., vol. 44, no. 8, pp. 9080–9090, 2018, doi: 10.1016/j.ceramint.2018.02.115.
- [50] M. V. Rao, B. Shanmugavelu, and V. V. R. K. Kumar, "Optical absorption and photoluminescence studies of Dy 3+ doped alkaline earth bismuth borate glasses," J. Lumin., vol. 181, pp. 291–298, 2017, doi: 10.1016/j.jlumin.2016.09.012.
- [51] Y. Ma et al., "Structural characterization and photoluminescence properties of B2O3--Bi2O3--SiO2 glass containing Dy3+ ions," J. Lumin., vol. 227, p. 117591, 2020.
- [52] Y. A. Lakshmi, K. Swapna, K. S. R. K. Reddy, S. Mahamuda, M. Venkateswarulu, and A. S. Rao, "Concentration dependent photoluminescence studies of Dy3+ doped Bismuth Boro-Tellurite glasses for lasers and wLEDs," Opt. Mater. (Amst)., vol. 109, p. 110328, 2020.
- [53] S. Selvi, G. Venkataiah, S. Arunkumar, G. Muralidharan, and K. Marimuthu, "Structural and luminescence studies on Dy3+ doped lead borotelluro-phosphate glasses," Phys. B Condens. Matter, vol. 454, pp. 72–81, 2014, doi: 10.1016/j.physb.2014.07.018.
- [54] G. Lakshminarayana et al., "Dy3+: B2O3– Al2O3–ZnF2–NaF/LiF oxyfluoride glasses for cool white or day white light-emitting applications," Opt. Mater. (Amst)., vol. 108, no. July, p. 110186, 2020, doi: 10.1016/j.optmat.2020.110186.
- [55] P. R. Rani, M. Venkateswarlu, S. Mahamuda, K. Swapna, N. Deopa, and A. S. Rao, "Spectroscopic studies of Dy3+ ions doped barium lead alumino

Egypt. J. Chem. 65, No. 7 (2022)

fluoro borate glasses," J. Alloys Compd., vol. 787, pp. 503–518, 2019.

- [56] S. Arunkumar and K. Marimuthu, "Concentration effect of Sm3+ ions in B2O 3-PbO-PbF2-Bi2O3-ZnO glasses - Structural and luminescence investigations," J. Alloys Compd., vol. 565, pp. 104–114, 2013, doi: 10.1016/j.jallcom.2013.02.151.
- [57] P. Narwal, M. S. Dahiya, A. Yadav, A. Hooda, A. Agarwal, and S. Khasa, "Improved white light emission in Dy3+ doped LiF–CaO–Bi2O3–B2O3 glasses," J. Non. Cryst. Solids, vol. 498, no. January, pp. 470–479, 2018, doi: 10.1016/j.jnoncrysol.2018.01.042.
- [58] A. Srinivasa Rao et al., "Spectroscopic and optical properties of Nd3+ doped fluorine containing alkali and alkaline earth zinc-aluminophosphate optical glasses," Phys. B Condens. Matter, vol. 404, no. 20, pp. 3717–3721, 2009, doi: 10.1016/j.physb.2009.06.114.

[59] V. Himamaheswara Rao et al., "Spectroscopic studies of Dy 3 + ion doped tellurite glasses for solid state lasers and white LEDs," Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 188, pp. 516–524, 2018, doi: 10.1016/j.saa.2017.07.013.