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Abstract 

Due to its biocompatibility, starch is an eco-friendly polymer for various applications, from medical 

applications to optoelectronic ones. Polymer nanocomposites based on starch, zinc oxide nanoparticles (ZnO NPs), 

and graphene oxide (GO) are synthesized using a casting technique. A UV-Vis spectrophotometer studied optical 

properties, and the nanocomposite molecular structure was determined using a Fourier transform infrared (FTIR) 

spectrometer. The starch absorption edge was shifted to the lower energy region, and it was found that starch has 

two absorption edges and hence two optical band gaps. The direct and indirect optical band gap values were 

determined for pure starch, starch/ZnO, and starch/GO nanocomposites. Incorporating 6wt.% of ZnO NPs reduces 

the indirect optical bandgap from 4.77 to 2.88 eV. Meanwhile, incorporating 2wt.% of GO reduced the bandgap to 

2.15 eV. 

Keywords: Starch; Zinc oxide; GO and UV-Vis Spectrophotometer. 

 

1. Introduction 

Human life is completely determined by machine-

driven systems supported by advanced materials with 

new functionality in the current era. Various synthetic 

approaches are applied to develop man-made materials 

for quality improvement in life [1]. Similarly, 

biomaterials made from renewable raw materials are 

also easy-to-use substances. They are considered 

perfect for applications in numerous research areas 

such as biotechnology, optoelectronics, and energy 

storage devices [2]. Materials obtained naturally are 

considered sustainable without major efficiency losses 

and are abundant [3]. Starch is a biomaterial derived 

from nature and has attracted many advanced 
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applications by connecting both the physico-chemical 

advantages and functional properties aided by reactive 

groups containing oxygen. Starch, in the form of 

granules, consists of various glucose molecules linked 

by glycosidic bonds [4]. The starch granules’ 

properties such as structure, size, and chemical 

composition depend on the initial state from which 

they are extracted. Starch contains two 

macromolecules, namely amylose and amylopectin, 

that form the basic signature. Amylose appears as a 

linear structure made up of linked 1,4-glucose units, 

while the amylopectin structure is a highly branched 

one with 1,4-chains [5]. Starch, which belongs to the 

group of polysaccharides, is suitable for the 

development of food packaging substances because of 

its environmentally pleasant nature, transparency, 

flexibility, thermoplastic nature, and affordability.  

Energy storage as a biopolymer is very common in 

nature. Green plants and algae store starch for energy. 

Starch is a major source of calories in human food, 

both direct and indirect. The first is achieved through 

the consumption of plant products, and the second is 

when used as animal feed [6]. World starch production 

currently exceeds 3,000 million metric tons [7] and is 

projected to double by 2050 to meet the nutritional 

needs of the growing world population [8]. 

Additionally, starch is utilized as a raw material in 

the industry. A breakthrough in nanotechnology has 

shown that incorporating nanoscale fillers into 

biopolymers to produce nanocomposites improves the 

biopolymer’s properties. The nanoscale fillers have a 

huge surface area, which leads to a large interface 

between the polymer matrix and the fillers [9].  

Zinc oxide (ZnO) is a semiconducting material 

whose research dates to the first quarter of the last 

century [10]. It belongs to the group of II-VI 

compounds with a broad direct bandgap (Eg ~ 3.37 eV) 

at room temperature [11]. During the past decade, the 

research interest in the nanostructures of ZnOhas been 

regenerated thanks to the synthesizing processes used. 

Several properties are obtained to produce ZnO. It has 

attracted the researcher’s attention because of its 

properties and applications in sensors, electronics, and 

biomedical fields [12]. In addition, ZnO has a high 

exciton binding energy (60 meV), making it suitable 

for many industrial applications such as optoelectronic 

devices [13,14]. Also, ZnO contains many intrinsic 

and deep extrinsic impurities that emit light in various 

colors, including blue, green, purple, red, orange, and 

yellow [15,16]. Another area of interest relates to the 

length scale of ZnO nanoparticles. When the 

semiconductor’s size is reduced to several nanometers, 

the quantum confinement effect occurs, altering its 

optical properties. Starch is an ecofriendly renewable, 

abundant resource. It consists almost entirely of two 

major polysaccharides, namely amylose and 

amylopectin [17-19].   Recently, optical properties 

among other important parameters are correlated to the 

functionality of starch [20-21]. 

Graphene and its derivatives such as graphene 

oxide (GO), reduced graphene oxide (rGO) and 

graphene quantum dots (GQD) have been shown to be 

effective fillers in nanocomposites based on polymeric 

materials. The ideal dispersibility of graphene 

derivatives(GO, rGO and GQD) in the polymer matrix 

and their unique properties [22] can be utilized in 

many applications. For similar reasons, tuning of 

charges in the nanocomposites can be utilized to tune 

the molecule’s selectivity to develop new membranes 

with superior properties [23,24]. Besides these unique 

properties, graphene also shows unique optical 

properties [25].   

Therefore, this study aims to develop a simple 

method to fabricate starch/ZnO and starch/GO 

nanocomposites and characterize them optically. The 

overall aim is to control the effect of GO on the optical 

characteristics of starch/ZnO nanocomposite.  

2. Materials and methods 

2.1.  Materials 

All chemicals were used without any further 

purification. Zinc (II) acetate dihydrate (Fisher 

chemical, 99 %), Sodium hydroxide (Fisher Chemical, 

≥ 97%). Graphite powder (Fisher Chemical), sulfuric 

acid (Scharlau, 96%), phosphoric acid (Fisher 

Chemical, 85%), potassium permanganate (Fisher 

Chemical, 99%), hydrogen peroxide (PioChem, 30%). 

Extra pure starch was acquired from Sisco Research 

Laboratories PVT.LTD, Bombay, India. Deionized 

(DI) Milli-Q water was used during this experiment. 

2.2. ZnO Nanoparticles preparation 

Zinc oxide nanoparticles were prepared using the 

co-precipitation method. In a typical method, a 100 ml 

of (1 M) zinc (II) acetatedehydrate was heated to 70C, 

followed by dropwise addition of 2 M sodium 

hydroxide with stirring. After 1 hr, the precipitate was 

collected by centrifugation at 10000 rpm, washed 

several times with DI water, then dried in an oven 

https://www.titanates.in/tetra-n-butyl-titanate-monomer-1310789.html
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overnight at 80 C, and finally calcined at 500 C for 

2 hr. 

2.3. GO preparation 

GO was prepared using the improved Hummers’ 

method. A mixture of concentrated H2SO4/H3PO4 with 

a ratio of (9:1) was added to a mixture of 1 g graphite 

powder and 6 g KMnO4 in an ice bath. The mixture 

was heated with stirring to 50 °C for 12 hrs. The 

mixture was cooled to 25 °C and added onto the ice 

with 1 ml of 30% H2O2. The precipitate was collected 

by centrifugation at 10000 rpm, washed the first time 

with 200 mL of 30% HCl, then washed several times 

with DI water, then dried in a vacuum oven overnight 

at room temperature.  

2.4. Starch/ZnO nanocomposite preparation 

50 ml of deionized water was heated using a 

magnetic stirrer at 100 oC to dissolve starch. Then 0.5 

gm of starch was added. After complete dissolution, 

the solution was stirred strongly for an additional 1 hr 

at 50 C. Different weight percentages of ZnO 

nanoparticles were added to the starch solution (2, 4, 

6, and 8 wt%) as presented in Table 1. The starch/ ZnO 

suspension was stirred for 1 hr. The homogeneous 

dispersion of ZnOwas accomplished by sonicating the 

prepared solutions for 2 hr. The solution was cast in 

plastic Petri dishes and left to dry in the air for 7 days. 

3. Characterizing techniques 

3.1. UV-Vis. measurement 

UV-visible spectra of pure starch, starch/ZnO, and 

starch/GO were collected at room temperature in the 

200–800 nm wavelength range, using a Jasco V-630 

(Japan) spectrophotometer, Spectroscopy Department, 

National Research Centre, Cairo, Egypt. 

4. Results and discussion 

 

4.1. UV-Vis. results  

To confirm the ZnO and GO nanoparticles’ 

presence in the prepared nanocomposites, the UV–vis 

absorption spectra were recorded in the range of 200-

800 nm, as depicted in Figure 1. As presented in the 

figure, a narrow absorption band centered at 368 nm 

for starch doped with different ZnO concentrations (2, 

4, 6 and 8 wt%) attributed to ZnO NPs was observed, 

confirming the strong absorption of ZnO. The 

extinction peaks at 368 nm with varying intensity 

result from variations of the particle’s size distribution. 

The absence of extinction peaks beyond 600 nm 

(flattened spectrum) confirms that the reaction is 

saturated [26,27]. This may be since the reaction gets 

saturated and the reduction of Zn2+ to Zno is complete. 

The maximum absorption peak in the starch/GO 

spectrum appears at around 239 nm due to the π-π* 

transition of GO [28]. 

4.2. Optical band gap results  

The electron excitation from the lower energy level 

to the higher one is defined by the absorption edge, 

which can be estimated by extrapolation of the linear 

part of the absorption coefficient  with photon energy 

(hʋ). The absorption coefficient can be determined 

using the following equation: 

α = (2.303* A)/d                                                      (1) 

where A, and d are the absorbance and the thickness 

of prepared samples, respectively. 

According to Tauc and Davis - Mott, the energy gap 

values and the type of electron transition between the 

valence and conduction bands can be determined using 

the following equation: 

(αhυ)r = B(hυ-Eg),                                                   (2) 

Where hυ is the energy of the incident photons, B is a 

constant, and r is a constant that depends on the type 

of transition. The constant r takes values of 2,1/2, 2/3, 

and 1/3 if, for direct allowed transition, direct 

forbidden, indirect allowed, or indirect forbidden 

transition [29,30]. The bandgap energy was calculated 

using the equation of Eg (eV) = hυ = 1240/wavelength 

(nm), where Eg is the optical energy gap, h is Planck’s 

constant, and c is the speed of light.  

Figure 2 shows the estimated optical band gap of 

pure starch from the graph of both (αh)2 and (αh)1/2 

versus the incident energy (hν). The optical band gap 

energy (Eg) is estimated by extrapolating the linear 

portion of the curve to the axis of energy (α = 0). The 

estimated direct allowed band gap value for pure 

starch was 2.58 and 5.67 eV, which means that pure 

starch has two optical absorption edges. Figure 3 

presents the dependence of the starch optical band gap 

upon the filler concentration. Both (αh)2 and (αh)1/2 

versus the incident energy are represented for 

starch/ZnO films in Figure 3. As presented in the last 

two figures, the prepared nanocomposites, in addition 

to pure starch, possess two absorption edges as two 

linear portions are present. Films of starch/ ZnO and 

starch/GO have two absorption shoulders and hence 

two band gaps [31]. However, for starch substituted 
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with GO (sample S6), the variation of (αhν)2 and 

(αhν)1/2 with the photon energy is depicted in Figure 

4. The reduction of the starch optical bandgap due to 

substitution with ZnO and GO separately refers to the 

formation of defect levels within the valence band 

during the growth of the crystals, which is directly 

proportional to the ZnO and GO percentage. This 

causes the parabola of the density of state to extend to 

the absorption band edge [32]. The bandgap values are 

tabulated in Tables 2 and 3 for direct and indirect 

allowed transitions, respectively.  

Table 2 shows that the bandgap values are 

decreased with increasing the filler concentration up to 

6wt.% and decreased at higher levels. For indirect 

allowed transitions, the optical band gap is estimated 

by taking the value of r equals 1/2 in the Davis and 

Mott relation. Table 3 shows that increasing the ZnO 

concentration beyond 4wt.% causes the second 

absorption shoulder to disappear and hence the band 

gap to increase. This may be due to the aggregation of 

ions, which reduces mobility and conductivity. Since 

the values of the optical band gaps for allowed direct 

transition are higher than those of indirect ones, it was 

concluded that the transition type in starch/ZnO and 

starch/GO NPs is the direct transition, which reflects 

the crystallinity of the prepared films. 

Table 1 Composition of starch/ZnO nanocomposites. 

Sample Starch (gm) ZnO (gm) GO(gm) 

S1 0.50 0.00 0.00 

S2 0.49 0.01 0.00 

S3 0.48 0.02 0.00 

S4 0.47 0.03 0.00 

S5 0.46 0.04 0.00 

S6 0.49 0.00 0.01 

 

Table 2 Direct allowed optical band gap for pure starch, 

starch/ ZnO and starch/GO films. 

Sample Eg1 (eV) Eg2(eV) 

S1 2.65 5.67 

S2 3.21 5.21 

S3 3.21 4.85 

S4 3.18 3.38 

S5 3.23 3.39 

S6 1.99 5.24 

 

Table 3 Indirect allowed optical band gap for pure starch, 

starch/ ZnO and starch/GO films. 

Sample Eg1(eV) Eg2(eV) 

S1 1.33 4.77 

S2 2.79 3.27 

S3 1.25 2.94 

S4 - 2.88 

S5 - 3.04 

S6 - 2.15 
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Fig. 1. UV–Vis absorption spectra of pristine starch (S1), 

starch with 2 wt.% of ZnO (S2), starch with 4 wt.% of ZnO 

(S3), starch with 6 wt.% of ZnO (S4), starch with 8.wt % of 

ZnO (S5), and starch with 2wt.% GO (S6). 
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Fig. 2. Variation of (αhυ)2 and (αhυ)1/2 with photon energy 

(hυ) for pure starch. 
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Fig. 3. Variation of (αhυ)2 and (αhυ)1/2 with photon energy (hυ) for starch/ZnO with different concentrations of ZnO(2wt.% 

(sample S2), 4wt.% (sample S3), 6wt.% (sample S4) and 8wt.% (sample S5) respectively). 
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Fig. 4. Variation of (αhυ)2 and (αhυ)1/2 with photon energy (hυ) for starch / 2wt.% GO nanocomposites. 

5. Conclusion 

This work prepared a starch-based polymer 

nanocomposite with a small bandgap using the 

solution casting technique. The absorbance spectra for 

the nanocomposite films were recorded and showed a 

strong absorbance in the UV region of the 

electromagnetic spectrum. An absorption peak was 

observed at 368 nm for starch/ZnO films, attributed to 

ZnO nanoparticles. It was found that a relatively large 

shift from the absorption limit towards lower photonic 

energies is associated with the complexation between 

starch, ZnO, and GO. The starch has two direct and 

indirect optical band gaps, and they decreased due to 

the incorporation of ZnO NPs and GO. This reduction 

confirms the complexation between the starch chain 

and ZnO and GO, forming multiple trapping sites 

within the bandgap (i.e., between the valence and 

conduction bands).  
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