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Abstract 

Polymeric nanofibers can simply be fabricated through an electrospinning technique. The electrospinning process is 

one of the best usually utilized approaches to achieve continuous fibers in the nanosized form. Electrospinning has extended 

attractiveness because of its ease of use, simplicity and various applications. The electrospun fibers properties could be 

controlled via adjusting each procedure variables such as solution flow rate, applied voltage, as well as space between charged 

capillary and collector) or the properties of polymeric solution for example (e.g., molecular weight, concentration, surface 

tension, surface charge density, viscosity, solvent volatility, and conductivity). Furthermore, the used polymeric solution can be 

a polymeric melt, aqueous, or an emulsion, which give opportunity to diverse sorts of nanofiber construction. Also, by polarity 

inversion and by varying the collector design the properties of nanofiber can be improved. Moreover, polymeric fibers can be 

modified by incorporated through blending, surface modification or emulsion formation. The nanofibers were modified to 

provide manifold drugs, as well as multilayer polymer coating lets continuous release of the combined active moiety. 

Electrospun nanofibers fabricated from different polymers are utilized to realize anticancer agents and antibiotic, DNA, RNA, 

as well as growth factors. The current review delivers a collecting of some work concerning the usage of electrospun fibers in 

drug delivery with a special emphasis on electrospun nanofibers impregnated with nanoparticles also electrospun nanofibers in 

biomedical applications such as wound dressings prevents infection and speeds up the healing process. 
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1. Nanotechnology 

The nanotechnology branch has experienced 

tremendous growth during the previous century. And 

nowadays, nanotechnology is involved in a variety of 

development projects, either directly or indirectly. 

Nanotechnology is described as the procedure of 

creating, manufacturing, evaluating, and applying 

materials and devices by altering their size and form at 

the nanoscale. The suffix "nano" is used as a 

catchphrase in each and every broadcast, as well as in 

commercial promotion. Apparently, the term "nano" 

comes from the Greek word "nanos" or the Latin word 

"nanus," which meaning "dwarf." It combines 

biosciences, chemistry, solid state, physics, , and 

materials science. As a result, mastery in a single area 

will not suffice; knowledge of solid state, physics, 

biosciences, chemistry, and material science will be 

obligatory. Nanotechnology is finding applications in 

nearly every branch of science and technology. 

Nanotechnology is a fast emerging scientific subject 

that studies and expands things and materials with 

unique identifiers of less than 100 nanometers [1].  

Nanofibers manufactured from both 

synthetic and natural polymers have gotten a lot of 

interest recently because of their simplicity of 

production and ability to regulate their compositional, 

structural, and functional characteristics [2, 3]. 

Although there are a variety of processing techniques 

for making nanofibers, including template synthesis, 

drawing, self-assembly, phase separation, and 

electrospinning. The electrospinning process has been 

proven to be among the highest efficient, facile, and 

adaptable ways because of its comparatively easy with 

cost effective [4, 5]. Polymer nanofibers can be made 

by applying a high electrical field between a ground 

target and a polymeric solution pushed from a closed 
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chamber thru a tiny capillary aperture in 

electrospinning. Fibers being collected as a non-

woven mesh or membranes on a collector plate that 

works as such a counter electrode. 

The diameter of the fibers is less than 1 

thousand nm based on the viscosity, molecular weight, 

conductivity and surface tension of the whole 

polymer’s solution. The electrospun nanofibers can be 

formed with a variety of in fibers diameter. Creating 

fibers with exceptionally small diameters has several 

advantages, including high a surface area, high 

porosity, and excellent mechanical efficiency [6]. 

Furthermore, fiber functions may have been governed 

by molecules at the fiber's surface, enabling fiber 

characteristics to be tailored by altering fiber surface 

composition and morphology. Nanofibers have been 

used in medical implants, wound healing, dental 

applications, drug delivery, biosensors, and tissue 

engineering [7, 8], military protective clothing, 

filtration media, and other industrial applications as a 

result of this [9].  

2.  Fabrication of Nanofibers via Electrospinning  

Rayleigh described electrospinning as a 

manufacturing method in 1897, Zeleny investigated it 

in further depth in 1914 [10],, and Formhals patented 

it in 1934 [11].. However, it wasn't until the 

development of nanotechnology in the 1990s that 

large-scale industrial use became possible. Since that 

day, electrospinning has grown in popularity as 

research has revealed that a wide range of polymers 

can be electrospun. At the present time, several firms 

of electrospun nanofibers are effectively create with 

wholesale significant quantities, and difficulties 

related to scaling–up process are being resolved. As a 

result of the minimal energy usage, the method is very 

cost–effective. 

The electrospinning of biopolymers is 

accompanied by significant challenges considering the 

fact of biopolymers frequently have dispersed 

molecular weights or sophisticated chemical 

structures. Additional studies are required to be able to 

contribute effectively to the production of effective 

nanofibers on a wide scale utilizing biopolymers that 

are ecologically friendly. 

Because of their inexpensive cost, great 

abundance, and broad range of distinct molecular and 

efficient properties, synthetic polymers are selected 

for the manufacturing of nanofibers. A solvent suited 

for producing a polymer solution must be chosen 

based on the polymer. This selection is vital because 

the solvent can affect the surface tension, viscosity, 

and conductivity, all of which are important factors in 

the electrospinning process. When compared to 

naturally occurring biopolymer fibers, manufactured, 

water-insoluble nanofibers exhibit enhanced 

mechanical characteristics or better preserve structural 

integrity when exposed to watery conditions [12]. 

Furthermore, synthetic polymers have more well-

defined chemical characteristics allowing enable more 

consistent electrospinning performance. 

Comprehensive reviews have been published 

on the production of nanofibers from synthetic 

polymers including such poly-caprolactone (PCL), 

polyglycolic acid, polylactic acid, polyethylene 

glycol, polyethylene oxide, and polyvinylacetate. [13]. 

Biocompatible polymers are of considerable interest in 

a variety of sectors because they are (a) benign, 

digestible, and edible, (b) biodegradable, and (c) 

sustainable and renewable, allowing for a larger use, 

particularly in biomedical sciences and related 

disciplines. Furthermore, despite recent improvements 

in electrospinning and nanofiber manufacturing, Due 

to a variety of technical challenges, the production of 

nanofibrous membranes from biopolymers has 

moderate effectiveness. Firstly, before 

electrospinning, biologically-derived polymers 

generally require extensive, complex, and expensive 

purification procedures. Secondly, due to their 

comparatively high crystallinity or polarity, 

biopolymers are far less soluble in very many organic 

solvents. Thirdly, numerous biopolymers have a 

proclivity for producing hydrogen bonds that are 

strong, resulting in forming a solution with high 

viscous gel. Furthermore, biopolymer fibers' 

mechanical characteristics and processability are 

generally poor. 

 

3.  Set of Electrospinning process 

Figure 1 depicts a schematic diagram of a 

typical electrospinning process. In this design, a 

syringe with a blunt-ended stainless-steel capillary is 

used to pump the dispersed polymer solution. The 

syringe is inserted into a syringe pump, which allows 

for exact control and modification of the solution flow 

rates. However vertical configurations have been 

documented, the syringe is generally aligned 

horizontally [14].  

 
Figure 1: Schematic illustration of  (A) photographic 

picture and  (B) laboratory-scale electrospinning 

apparatus [14]. 
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3.1. Electrospinning mechanism  

A definite polymer solution contained in a 

syringe is subjected to a high electrical field. When 

pressure force is supplied to the polymer surface at the 

capillary's end, a drop occurs. The drop surface and 

shape are preserved in the absence of an electric field 

via a balance of power that includes gravity and 

surface tension. The presence of an electrical field in 

electrospinning brings extra pressures into this 

complicated scenario, which can result in a number of 

outcomes. The simultaneous charge repulsion of the 

polymer and the solvent used results in a force which 

is precisely in opposition to the surface tension and 

attracts the board electrode [15]. As a consequence, the 

solution's hemispherical surface at the capillary's tip is 

deformed into a conical shape termed as a Taylor cone, 

as seen in Figure 2 [16]. 
 

 
Figure 2: Schematic representation of the Taylor 

cone formation [16]. 

 

A charged polymer solution jet is expelled 

from the tip of the Taylor cone when the electrical field 

reaches a critical value, exceeding the shape-

maintaining surface forces. The electrical field 

accelerates this jet towards the grounded collector. 

Charges collect on the jet's surface as it passes thru the 

electrical field. The jet may whip or bend as a result of 

these charges being improperly dispersed. As a 

consequence, the solvent could evaporate quickly, 

whereas the polymer chains in the jet expand and spin. 

The polymer molecules are subsequently placed on the 

collecting plate [3].  by a narrow jet [16]. It It's worth 

mentioning that the jet may not stay whole and instead 

split up into tiny droplets depending on the solution 

and process circumstances, resulting in particles rather 

than fibers being dumped on the collection plate. 

 

4. Nanofibers production: advantages and 

drawbacks 

Nanofibers have a significant surface area to 

volume ratio, almost twice greater than nanoparticles 

of the same diameter depending on the same quantity 

of material. Nanofibers offer a number of benefits over 

nanoparticles in terms of performance. They are more 

easily separated from the solution medium, allowing it 

to be reused. Nanofibers can also have tiny diameter 

size, porosity, connectivity, microscale interstitial 

space, small interfibrous holes, and greater mechanical 

characteristics. Most of these properties demonstrate 

that nanofibers are versatile materials that may be used 

in a various applications [17, 18]. Nanofibers may be 

made using a variety of techniques. Nevertheless, it is 

critical to highlight the method's features in order to 

determine which of these is best for each material and 

application, taking into account process variables, 

manufacturing costs, and production rates. 

As a result, new nanofiber manufacturing 

techniques have evolved, as detailed throughout this 

topic, and some of them may be better suited to the 

development of chitosan-based nanofibers. The best 

method for creating nanofibers is electrospinning 

(Figure 3).  

 
Figure 3:  Basic scheme of electrospinning technique 

[19]. 

 

Furthermore, the solution's viscosity should 

be adequate, since low viscous solutions are unable to 

withstand the Rayleigh instability and usually break up 

to droplets, which would be unfavorable. The 

electrospun fibers' morphology is influenced by a 

number of variables, including solution 

characteristics, processing factors, and ambient 

circumstances. Of these solution characteristics, 

molecular weight of the polymer, surface tension, 

conductivity, and viscosity. The electric field intensity 

used, diameter of spinneret  distance between the 

spinneret and the collecting substrate, and rate of 

solution feeding are all processing conditions [20–22]. 

Electrospinning has the benefit of producing 

nanofibers of diverse materials in a variety of fibrous 

assembly with thicknesses ranging from 100 

nanometers to 5 nanometers [17, 18, 23]. 

The solution blowing method is a relatively 

new nanofiber spinning technique (Figure 4). The 

technology was created to eliminate the disadvantages 

of electrospinning, such as the necessity for high-
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dielectric-constant solvents or even a huge electric 

field. 

 Furthermore, the solution blowing process 

shares certain characteristics with industrial fiber 

manufacturing processes, allowing for scale-up [24]. 

The pressurized gas accelerates the polymer solution, 

causing it to distort into a conical shape, comparable 

to the Taylor cone mostly during electrospinning 

process [25].  

 

 
Figure 4: Basic scheme of solution blowing 

technique [19] 

 

As a result, more research is needed to 

enhance the spinnability of chitosan. Electrospinning's 

scale-up difficulty was also addressed using 

centrifugal jet spinning. When compared to 

electrospinning, it was intended to produce nanofibers 

on a bigger scale by increasing the rotating speed to 

obtain greater efficiency and cheaper costs [26, 27].  

By reality, its fiber synthesis is predicted to 

be around 500 times greater than that of the traditional 

electrospinning method [28]. Furthermore, centrifugal 

spinning does not need high voltage, which alleviates 

safety issues. Optimizing centrifugal force, as well as 

viscoelastic and mass transfer fluid characteristics, is 

the basis of the technique. 

The technique's basis is the transfer fluid 

properties. As the jet overcomes the surface tension, 

the polymer-solvent combination is injected into a 

spinning spinneret and subsequently expelled (Figure 

5). polyethylene oxide  [29] poly(L-lactic acid) [26], 

polycaprolactone [30], ethyl cellulose/polyvinyl 

pyrrolidone [31], and PCL/gelatin [32] are among the 

polymers utilized in the centrifugal spinning of 

nanofibers. 

 
Figure 5: Basic scheme of centrifugal jet spinning 

technique [28]. 

 

5. Polymers used for electrospinning   

5.1.  Chitosan nanofibers 

Chitosan is a copolymer of (1→ 4)-2-amino-

2-deoxy—D-glucan and (1→ 4)-2-acetamido-2-

deoxy—D-glucan [33] with substantial intra- and 

intermolecular hydrogen bonds fashioned by 

deacetylation of chitin. Figure 6 depicts the 

architectures of chitin and chitosan. Molecular weight,  

deacetylation degree,  acetylation sites dibonsutitri, as 

well as pH and ionic strength of solution, all influence 

the properties of chitosan [34]. The charge density is 

determined by the degree of deacetylation or even the 

proportion of the monomer units inside this chain, as 

only the deacetylated amino groups can lose or acquire 

protons [35]. In acidic solution, chitosan acts as a 

cationic polyelectrolyte with such a high charge 

density. Owing to the variation in molecular 

configurations, it may be very viscous as a 

polyelectrolyte, depending on polymer concentration, 

pH and media ionic strength [36].  

 

Figure 6: Chemical structures of (A) chitin and (B) 

chitosan [34]. 

Nontoxicity, biodegradability, 

biocompatibility, biofunctionality, metal chelating, 

and antibacterial capabilities are all attributes of 

chitosan [37, 38]. It possesses a strong mechanical 

strength and a strong affinity for proteins. A wide 

range of possible biomedical uses have been described 

as a result of its biological activity [39]. Nonetheless, 

by mixing chitosan with other polymers such as PEO 

[40] or PVA [41] in acetic, acrylic, or other acids, 

various research groups have succeeded in producing 

chitosan-based composite fibers. The co-spinning 

agent's outstanding fiber forming capabilities are used 

in this situation. Chitosan also has been effectively 

combined with some other natural biopolymers that 

seem to be easier to electrospun, including such 

collagen [42]. It possesses a strong mechanical 

strength and a strong affinity for proteins. A broad 

range of possible uses in biomedical and 

pharmaceutical sectors were extensively explained as 

the result of its biological activity [39]. Due to its 

broad spectrum of antibacterial action against diverse 

microbiological species, its application as a food 

preservative is of particular interest [43]. 
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5.2.  Cellulose nanofibers 

Cellulose is among the most common 

polysaccharides in nature and is the major structural 

component of plant cell walls [44–47]. Cellulose is a 

broadly applied sustainable and renewable basic 

compound in order to produce biopolymer-derived 

industries, and the utilization of this derived 

biopolymer is very affordable due to its broad 

accessibility. Cellulose is biocompatible and has 

excellent thermal and mechanical characteristics [48]. 

Due to its crystallinity and strong hydrogen bonding, 

cellulose has a limited solubility in common organic 

and aqueous solvent, making fiber synthesis by 

electrospinning from the solution problematic. For the 

electrospinning of cellulose to be effective, the proper 

solvent must be carefully selected. As a result, only a 

few experiments have been reported in which cellulose 

has been effectively electrospun. In order to make 

completely dissolved cellulose solution of diverse 

sources varying in (DP ranges from 940 to 140), Frey 

and coauthors used combinations of ethylenediamine 

and different thiocyanate salts [49].  

5.3.  Cellulose acetate nanofibers 

Many studies have been performed on the 

electrospinning of cellulose derivatives including such 

cellulose acetate [46, 50–59] due to the challenges 

associated with cellulose as described above [60]. Liu 

created cellulose acetate nanofibers from cellulose 

acetate, which were then deacetylated to become 

cellulose fibers [61]. Electrospinning polymer blends 

including cellulose derivatives are another method for 

producing cellulosic nanofibers. Electrospun 

nanofibers with new characteristics and topologies 

were created using a binary combination of CA and 

PEO [62].  

5.4.  Polyvinyl alcohol (PVA) nanofibers   

PVA (polyvinyl alcohol) is a widely used 

synthetic polymer that is water soluble and can be 

produced in large quantities economically [45]. Due to 

its high chemical resistance, physical characteristics, 

and biodegradability, PVA is one of the most often 

utilized polymers for ultrafine electrospun fiber 

manufacturing. Numerous different types of 

functional composite nanofibers based on PVA have 

been developed over the last years [63]. Electrospun 

PVA fibers have a wide range of uses, including such 

reinforcing materials, filtration, tissue scaffolding, 

wound dressings, and as a carrier for drugs [64].  

However, one of the most significant issues 

limiting the use of electrospun PVA nanofibers is their 

strength, which is related to the fact that as-spun fibers 

are frequently gathered as randomly arranged 

structures in the form of non-woven mats. Fabricating 

aligned electrospun PVA nanofibers is a viable and 

easy way to solve this problem. Producing composite 

nanofibers is another viable way to increase the 

strength of electrospun PVA nanofibers. Carbon 

nanotubes (CNTs) have previously been the subject of 

several studies as an effective reinforcement for 

nanocomposites. For many years, CNT/PVA 

composite fibers have piqued people's curiosity [65, 

66]. 

5.5.  Poly (vinyl pyrrolidone) (PVP) 

Poly (vinyl pyrrolidone) (PVP) is a common 

synthetic polymer (Figure 7). PVP was chosen 

because it has a long history of usage as a carrier of 

pharmacological molecules in drug delivery systems 

[67]. PVP has also been approved by the FDA in the 

United States as a safe polymer to be used in the health 

fields. Numerous studies have extensively done for the 

production of PVP nanofibers for a variety of 

applications [67, 68]. 

 
Figure 7: Chemical structure of poly (vinyl 

pyrrolidone). 

The incorporation of GME into PVP 

nanofibers had no effect on the fiber shape, and 

relatively homogenous and regular nanofibers were 

produced. The addition of emodin to PVP fibers up to 

a concentration of 0.2 % w/v had no effect on the 

production of regular fibers [67].  As a result, the 

concentration of the polymer is one of the variables 

that influence the production of fibers by 

electrospinning. The polymer concentrations in the 

electrospinning precursor solution should be high 

enough to allow polymer chains to bind and produce 

fibers. Figure 8 depicts the diameter distribution of 

nanofibers. 

 
Figure 8: SEM pictures of nanofibers based on (a) 

PVP and (b) PVP-GME [69]. 
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5.6.  Polyurethane nanofibers 

Polyurethanes (PU) are a common polymer 

utilized in wound healing, biomedical, protective 

clothing, filtration, sensor, composites, and actuator 

applications [70, 71]. As a result, it's crucial in order 

to explore at the spinnability and characteristics of the 

nanofibers based on polyurethane. 

There is numerous researches work on the 

manufacture of polyurethane nanofibers using needle 

electrospinning, but there has been relatively little 

research on roller electrospinning. The rheological 

behavior of thermoplastic polyurethane solutions was 

studied by Vlad and Oprea. They discovered that when 

the shear rate increases, the viscosity of polyurethane 

reduces [72]. Demir et al. investigated the 

electrospinning of polyurethane (PU) and discovered 

that viscosity, concentration, and temperature are the 

most important determinants of fiber shape [73]. 

According to Khil et al., PU nanofibrous that formed 

produced by electrospinning enhanced the fluid 

outflow to be used as a wound dressing for efficient 

healing the infected wounds [74]. 

The mechanical behavior of electrospun 

polyurethane was also studied by Pedicini and Farris. 

They examined the stress-strain behavior of PU in bulk 

and nanofibers forms and they discovered the 

electrospun fibers' molecular orientation causes a 

decrease in electrospun mat elongation to failure [75]. 

Lee and Obendarf have created a polyurethane-based 

protective textile material for agricultural laborers. 

They used electrospun polyurethane nanofibers to 

enhance the material's barrier properties [76]. SEM 

images of different polyurethane nanofibers with 

TEAB concentrations of 0.3, 0.87, and 1.82 wt%, 

respectively. Fiber diameter rises with increasing 

TEAB salt content, as demonstrated in these pictures 

(Figure 9).  

Figure 9: SEM images of nanofiber samples of PU 

includes TEAB with different % of salt and 27 % of 

RH  [77] 

Whereas other PU are thermosetting 

polymers (Figure 10a) [78, 79], PU melt while heating 

(Figure 10b) and are convenient to employ in 

industrial operations. The characteristics of PUs may 

be changed in a wide range by changing their structure 

[80]. Polyisocyanates react with hydroxyl-containing 

substances to generate PU. Selecting the kind of 

isocyanate and polyols, or a mix of isocyanates and 

polyols, can customize desired characteristics [80]. 

Polyurethanes are ideal for a range of 

applications in adhesives and coatings, as well as 

elastomers, foams, and medical applications, due to 

their high biocompatibility [81].  

 

Figure 10: (a) Urethane group, (b) thermoplastic 

polyurethane general formula [82]. 

 

Because of its excellent barrier 

characteristics and oxygen permeability, it is widely 

utilized in wound dressing research. It has been 

claimed that wound healing is aided by semipermeable 

dressings, several of which are made of PU [83]. Melt 

electrospinning might potentially be used to produce 

degradable and biocompatible aliphatic PU scaffolds 

[84]. Aside from these biomedical uses, 

electrospinning was used to make PU nanofiber filters 

based on using 3D particle filtration modeling, some 

theoretical filtration efficacy estimations were 

generated [85, 86]. 

.Akçakoca Kumbasar et al., utilized dimethyl 

formamide (DMF) for the dissolution of  PU and 

investigated the effect of PU concentration represented 

in Figure 11 and  12 [82]. Their findings revealed that 

for smooth nanofibers, 6% of PU concentration is too 

low and 14 percent is too high, and that nanofiber 

diameter grew as PU concentration rose, as predicted. 
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Figure 11: (a) 6%, (b) 8%, (c) 10%, (d) 12%, and (e) 14% w/w PU nanofibers [82]. 
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Figure 12: SEM images of the PU nanofibers at tip-to collector distance: (a) 8, (b) 10, (c) 12, and (d) 15 cm [82]. 

5.7.  Polycaprolactone (PCL) nanofibers  

As previously stated, several natural and 

synthetic biocompatible polymers have been 

electrospun and altered to fulfill diverse applications 

in accordance with the particular demands of various 

tissues [87, 88]. Polycaprolactone (PCL) as shown in 

)Figure 13( is  biocompatible and biodegradable 

polymer has been formed in a fibrous structure and 

used for drug delivery, wound dressing, and tissue 

regeneration using the electrospinning method [89]. 

However, certain very hazardous solvents, including 

such chloroform, DMF, THF, and mixtures thereof, 

have been employed in the electrospinning of PCL in 

order to achieve bead-free nanoscale fibers [39, 90].  

Indeed, Gholipour Kanani et al., [91] 

proposed the potential power of the fabricated PCL 

nanofibers that formed from the dissolution of PCl in 

90% of glacial ethanoic acid. They overlooked the fact 

that when PCL was immediately dissolved in % acetic 

acid, the ester link of PCL would cleave in the aqueous 

acidic medium [92]. PCL degradation can result in 

uncontrolled polymer molecular weight and solution 

characteristics, which can affect repeatable process 

conditions. 

 
Figure 13: Chemical structure of PCL 

Figure 14 shows the morphologies of PCL 

fiber webs. Optical microscopy photos could quickly 

define the coarse characteristics of the fibers, but SEM 

images were required to establish the precise 

diameters and morphologies [93]. Large beads with 

widths of approximately 15 m are randomly dispersed 

in fibrous webs with average diameters of about 211 

nm at a concentration of 17 wt % (Figure 14). 

Low conductivity generates a tiny net charge 

on the surface of the droplets, making the jet stretch 

less effectively throughout electrospinning, and the 

shape of the fibers is then determined by the 

competition amongst surface tension and viscosity 

[93].  

As a result, when the PCL concentration was 

less than 19 wt%, big beads formed due to surface 

tension dominance. Thick microfibers resulted in a 

significant viscosity when the PCL content was more 

than 21 wt %. 
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Figure 14: Optical images of fibers with different PCL concentrations: (a) 17 wt %, (b) 19 wt %, (c) 21 wt %, (d) 

23 wt %. SEM images and fiber size histograms of fibers for (A) 17 wt %, (B) 21 wt % [94]. 

6.  Morphology of Nanofibers 

The morphology features deposited from the 

capillary onto the collection plate might vary 

significantly. Nanofibers with consistent diameters 

and smooth surfaces should be produced in the ideal 

case, permitting for homogeneous mass transfer across 

wide surface areas (Figure 15). Microphase separation 

of the polymer blends, however, may result in porous 

fibers depending on the process parameters and 

solution composition. Because the utilized solvent in 

electrospinning evaporates quickly, the surfaces may 

not be smooth, and if the solvents are not entirely 

evaporated, the fibers may fuse together, resulting in 

3D networks with sponge like structures. Particulates 

or combinations of fibers and particles can also be 

deposited structures, as previously noted. One of the 

most important components of electrospinning is 

controlling the surface morphology. 

 
Figure 15:  High magnification SEM image of 

chitosan/polyethylene oxide nanofibers [95] 
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7. Nanofiber Characteristics  

Because of their high surface area-to-volume 

ratio and small fiber diameter, nanofibers stand out; 

this can vary from 40 nm to 2 µm. As a result, the 

usefulness of electrospun fibers is determined by 

surface characteristics rather than bulk qualities, 

resulting in a wide range of novel characteristics that 

are particularly useful in the biomedical fields. Thin 

porous nanofibers are also more accessible to reactive 

chemicals and have a lower diffusion barrier, make 

them an attractive system for adsorbents and catalysis, 

nanoreactors. Because of the shape of the final fiber 

deposit, utilized or wasted fibers may be easily 

recovered from the reaction medium. It is known that 

the finer fibers have greater strength properties and 

Young's moduli than larger diameter fibers, but bead 

flaws on the fiber surface degrade the microstructure 

and reduce mechanical properties. Furthermore, 

nanofibers made up of compounds which are 

susceptible to crystallization could have lower 

crystallinities because the solvent evaporates and cools 

quickly enough to keep the material amorphous. When 

compared to solution cast polymers, crystallization 

and recrystallization procedures increase the 

complexity of the nanofibrous structure and result in 

markedly different thermal and mechanical 

characteristics. 

 

8.  Nanomaterials  

The difference among both nanoscience and 

nanotechnology is that nanoscience is concerned with 

the arrangement of atoms as well as their fundamental 

features at the nanoscale, whilst nanotechnology is 

concerned with the technology being utilized an 

regulate matters at the atomic level in order to 

synthesize completely new nanomaterials with unique 

applications [60, 96]. Nanotechnology is gaining 

attention in nearly all technical fields, but the general 

public is unaware of its existence in everyday life. 

Despite this, its widespread use in health, engineering, 

the environment, electronics, military, and security 

continues to grow (Figure 16). Even though this 

technology has been used for a lot of things, there is 

still room for new innovative nanomaterials to be 

developed in many sectors for the advancement of 

mankind. In terms of size, capacity, and expense, the 

researchers are enthralled and striving for the 

advancement of knowledge. As a result, significant 

attention is being paid to the shrinking of devices with 

low cost, primarily in the fields of health and 

electronics. Nanotechnology will govern humans in 

the areas of living, working, and communicating in the 

future. As a result, interest in the issue grows, leading 

to a debate of the fundamental and significant aspects 

of nanotechnology. 

 
Figure 16:The role of nanoscience and 

nanotechnology in science and engineering [96]. 

 

The physicochemical characteristics of 

nanoparticles differ from those of bulk materials, 

which are intrinsically dependent on their size and 

form. Remarkably, by altering the form and size at the 

nanoscale level, nanomaterials generate a distinct 

character with new traits and capabilities. 

Nanomaterials come in a variety of forms, such as 

nanorods, nanoparticles, and nanosheets, and can be 

classified according to their dimensionality. The 

physical characteristics of two or more particles will 

change as a result of their contact. Bulk or three-

dimensional nanomaterials are these particles made up 

of several components. 

They are categorized as follows based on nanoscale 

dimensions (less than 100 nm): 

(1) Nanomaterials with zero dimensions, (2) One-

dimensional nanomaterial, (3) Two-dimensional 

nanomaterials and, (4) Bulk nanomaterials: These 

nanomaterials are not even in the nanoscale range 

in any dimension. 

That is, they are >100 nm scale in three randomly 

selected dimensions. Nanocomposites, core shells, 

multi nanolayers, nanowire bundles, and nanotube 

bundles are among them [97]. Thus, nanomaterials 

are classified according to their shape, size, 

characteristics, and constituents.  

8.1. Types of nanomaterials  

8.1.1.  Carbon based nanomaterials 

Carbon is the most important component in 

this sort of nanomaterial. This class includes carbon 

nanotubes and fullerenes. Graphene sheets are inserted 

in the CNTs, which are then rolled into a tube. These 
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are more and more durable than steel and can be used 

to improve structural integrity. There are two types of 

CNTs: single-walled and multi-walled. Fullerenes are 

carbon atoms arranged in a hollow cage structure 

containing sixty or more carbon atoms (carbon 

allotropes). It has a hollow football-like structure with 

pentagonal and hexagonal carbon units arranged in a 

regular manner. They have great strength, excellent 

electrical conductivity, and electron affinity [96]. 

8.1.2. Metal based nanomaterials 

Divalent and trivalent metal ions are the 

starting ingredients for metal nanostructures. Metal 

nanoparticles may be produced in a variety of ways, 

including chemical and photochemical techniques. 

Metal ions are converted to metal nanoparticles 

utilizing reducing agents. These have a large surface 

area and are effective in adsorbing small compounds. 

They're often utilized in a variety of scientific fields, 

including environmental and bioimaging assessments. 

It is possible to size regulate not only a single 

nanoparticle but also a mixture of two or more 

nanoparticles. Even rare earth metals can have their 

main element properties changed by doping other 

metals. Various elements are doped in different 

constitutions, and their characteristics change as a 

result [98, 99]. 

 

8.1.3.  Semiconductor nanomaterials 

Metallic and nonmetallic characteristics that 

exist in semiconductor nanoparticles display broad 

band gaps and various characteristics. Group II-VI 

semiconductor materials encompass CdTe [100], ZnO 

[101], CdSe [102], and ZnS [103]. Recent research has 

focused on semiconductor grapheme nanocomposites. 

The physical and chemical characteristics of the 

semiconductor can be improved with graphene. 

Graphene composite materials with piezoelectric 

properties can be used for gas sensing sensitivity [86]. 

8.1.4.  Nanocomposites 

The three types of nanocomposites are 

Polymer Matrix nanocomposites, Ceramic Matrix 

nanocomposites, and Metal Matrix nanocomposites. 

In recent days, the polymer composite of graphene-

based composites has developed to a significant extent 

in them. The carbon moiety makes up graphene. 

Carbon atoms in a single layer organized in a 

hexagonal matrix [96, 104]. It has a zero band gap, and 

electrons are almost massless particles that make up an 

excellent electrical medium in two dimensions 

[105].Graphene oxide (GO) is a precursor to graphene 

with a very low electrical conductivity [106]. As a 

result, converting graphene oxide (GO) to reduced 

graphene oxide (rGO) produces superior outcomes 

with higher conductivity. 

To convert GO to rGO, several techniques 

such as chemical reduction [107, 108], CVD [96, 109], 

exfoliation, thermal reduction [110, 111],  and 

multistep reduction approach [112, 113] have been 

used. Ametal oxide/grapheme nanocomposites and 

metal chalcogenide/grapheme nanocomposites are 

two forms of semiconductor graphene family 

nanocomposites. Metal oxides have a broad range of 

applications. They exhibit photocatalytic, gas sensors 

[96, 114], drug delivery [115], photovoltaic, batteries, 

antibacterials  and cytotoxicity activities [116] in 

MnO2 [117], In2O3 [118], TiO2 [119], ZnO [120, 121], 

Fe2O3 [122] . The interaction of matter with its 

environment plays a crucial role in various 

applications. 

 

9.  Synthesis of nanomaterials 

Nanoparticles can be synthesized using three 

distinct methods as mentioned below: 

(1) Chemical techniques 

(2) Biological approaches 

(3) Physical techniques 

(4) Biological approach is simple and 

straightforward, usually requiring just one step and is 

environmentally benign. In this case, we may employ 

microbes as well as various plant components to 

make nanomaterials [123]. 

 

9.1.  Synthesis of nanomaterials using 

microorganisms 

Various microorganisms, including such 

algae, bacteria and fungus can be utilized to make 

various nanomaterials using aqueous metal salt 

solutions. 

 

9.1.1.  Synthesis of nanoparticles using bacteria 

Living organisms will participate in the 

biomineralization process by utilizing a protein to 

synthesize nanoparticles. Magnetotactic bacteria 

employ magnetosomes, that are protein-coated for the 

creation of nanosized magnetic iron oxide crystals, to 

produce magnetic particles as a pointer for the 

direction of their preferred habitat under anaerobic 

circumstances [124]. In vitro studies can create 

homogenous particles with a core diameter of 20–45 

nm [125].. Despite this, magnetosomes demonstrate 

good magnetic characteristics in medicinal uses such 

as hyperthermia [126].  

Photosynthetic bacteria such as 

Rhodopseudomonas capsulata are used. He et al. 

created gold nanoparticles (AuNPs) with a diameter of 

10–20 nm outside of the cell. The bacterial enzyme; 

Nicotinamide Adenine Dinucleotide Hydride 

(NADH)-dependent reductase plays a vital role in the 

reduction of gold ions to AuNPs. The form and 

morphology of nanoparticles are controlled by the pH 
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of the growing media, according to the researchers 

[127]. On the other hand, Schluter et al. demonstrated 

the extracellular synthesis of palladium nanoparticles 

utilizing Pseudomonas bacteria from the alpine 

location [128]. 

9.1.2.  Synthesis of nanoparticles using fungi 

The extracellular silver nanoparticles were 

made using the Fusarium oxysporum fungus. Due to 

the enzymatic activity of NADH-reductase, these 

nanoparticles are long-lasting. In comparison to 

bacterial cells, fungal cells secrete a greater quantity 

of protein [129].  

9.1.3.  Synthesis of nanoparticles using algae 

The extracellular gold nanoparticles 

production from Sargassum wightii algae was 

proposed by Singaravelu et al, [130], 95% output was 

reached after only 12 hours of incubation. There hasn't 

been much research on the synthesis of nanoparticles 

using algae. The drawbacks of this technique are that 

some bacteria, fungus, and algae are harmful, 

necessitating the development of safety precautions. 

 

9.2. Preparation of nanomaterials using different 

plant parts 

The nanoparticles were also made with the 

help of plants and plant extracts. The phytochemicals 

found in plants help to decrease metal nanoparticles. 

Phytochemicals including such flavones, organic 

acids, and quinones function as natural reducing 

agents in the production of nanoparticles. Gold 

nanoparticles of various shapes are generated from the 

biomass of the Medicago sativa (alfalfa) plant 121] 

and the leaves of Pelargonium graveolens (Geranium) 

plant [131]. Azadirachta indica (neem) leaves are used 

to make bimetallic Au, Ag, and bimetallic Au core-Ag 

shell nanoparticles. This plant's sugars and/or 

terpenoids are reducing agents [132]. Aloe vera leaf 

extract [124] is used to create gold nanotriangles. 

Plants such as Indian mustard [133],  and Roselle calyx 

extract [134] have also been used to manufacture 

nanoparticles of copper, silver, cobalt, nickel, and 

zinc. 

9.3.  Synthesis of nanomaterials using Physical 

routes 

There are two types of physical techniques, 

namely, top-down and bottom-up approaches. 

Mechanical milling is used to disintegrate the bigger 

materials to smaller particles in a "top-down" 

methodology. The difficulty in obtaining the 

appropriate particle size and shape is the primary 

drawback of this technique [135]. Whenever 

compared to normal particles of the same size, the 

generated samples by milling procedure show a 

divergence in magnetic properties owing to flaws in 

lattice parameters produced during the milling 

operation [136]. Meanwhile, nanoparticles that are 

formed through the ‘‘bottom-up” approach in either a 

gaseous or liquid phase, with the bigger materials are 

involved in chemical interaction of the smaller ions. 

9.3.1.  Laser evaporation method 

For the production of magnetic nanopowders, 

laser evaporation is a potential bottom-up approach. 

The laser was utilized to vaporize the raw metal 

oxides, which are the synthesis's starting ingredients. 

As a result of the strong temperature difference, 

nanoparticles developed beyond the evaporation zone 

by rapid condensation and nucleation [137]. The size 

of the nanoparticles and magnetic phase may be 

adjusted by changing the power of the utilized laser 

and also the composition of gas in the evaporation 

chamber [138]. 

 

9.3.2.  RF plasma method 

The RF Plasma technique, which needs a 

high temperature, is another physical method. The 

metal is heated above its evaporation point by 

employing high voltage RF coils enclosed around the 

evacuated unit. The system is subsequently filled with 

helium gas, which causes the coils in the region to heat 

up. The nucleation of metal vapor happens on the He 

gas atoms. It diffuses into the cooler collection rod, 

resulting in the formation of nanoparticles [139]. 

 

9.3.3.  Thermal decomposition or thermolysis 

As a result of the heat, the decomposition 

occurs. This is an example of an endothermic reaction. 

This heat causes the compound's chemical bonds to 

shatter and divide into smaller ones. The iron oxide 

nanoparticles were made by Hyeon et al using a 

thermal decomposition method [140]. Park et al 

produced monodispersed nanoparticles with a 

diameter of 13 nm [141], and the coordination 

compounds should be stabilized and caped before 

thermal decomposition. 

The size and shape of the reaction change as 

the stabilizing and capping agents are changed, as well 

as the concentration of precursors, solvents, and 

reaction time. The stabilizing agent can also function 

as a capping agent in some cases. LiN3 tiny lithium 

particles, for example, can be produced using lithium 

azide. The substance is put in an evacuated quartz tube 

and heated to 400 oC. Around 370 oC, LiN3 

decomposes, producing N2 gas. After a few minutes, 

all of the N2 gas has been evacuated, resulting in a 

reduction in pressure. The lithium atoms that have 
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been left out combine to create metal colloidal 

particles. This technique can produce nanoparticles 

with a size of less than 5 nm [142]. 

 

9.4.  Chemical route for the synthesis of 

nanomaterials 

The chemical approach demonstrates a range 

of bottom-up synthesis strategies for the production of 

nanoparticles. This technique is mostly suited to gas or 

liquid phases. This technique allows for the production 

of pure and regulated particle sizes. There are various 

techniques for producing nanoparticles via the bottom-

up methodology. The optimal method for preparation 

was determined by the size, kind of nanomaterial, 

simplicity of process, and characteristics of 

nanocomposite. The diverse techniques of synthesis 

include the following subtitles. 

9.4.1.  Synthesis of nanoparticles using Co-

precipitation method 

This is the most basic and commonly used 

approach for producing a wide range of nanoparticles. 

The aqueous medium is required for precipitation in 

this technique. Using this method, uniform 

nanoparticles can be produced [142, 143]. In a 

summary, the co-precipitation technique entails 

combining two or more water soluble salts of metal 

ions that are typically divalent and trivalent. The 

soluble salts are usually found in trivalent metal ions. 

These water-soluble salts interact and are reduced, 

resulting in the precipitation of at least one water-

insoluble salt. Continuous stirring of the solution is 

required, and the heat conditions may or may not be 

followed depending on the reaction circumstances and 

the reducing agent [144, 145].  

 

9.4.2.  Synthesis of nanoparticles using Sol–gel 

method 

At beginning, the sol–gel technique was 

created for the low-temperature production of glass 

and ceramic materials. The metal alkoxide solution 

will be first hydrolyzed with alcohol or water under the 

influence of acid or base, accompanied by 

polycondensation. When all of the water molecules 

have been condensed, the gel phase transforms into a 

powder phase (Figure 17). To achieve the fine 

crystalline form of the powder,  more heat is necessary 

[96, 146]. This technique might be used to make 

oxides, composites, and mixtures of inorganic and 

organic materials. The sol–gel technique is based on 

inorganic polymerization processes. The simplicity of 

this approach is its major benefit. However, due to the 

production of composites in this process, the purity is 

lower. As a result, post-treatment is necessary for 

sample purification. 

 
Figure 17:  Schematic representation of Sol-Gel 

method [96] 

9.4.3. Synthesis of nanoparticles using 

hydrothermal method 

The solutions are exposed to high pressure 

and temperature in this technique. The major benefit 

of this approach is that it allows you to make high-

quality crystals while regulating the composition. The 

divalent and trivalent transition metal salts are 

combined in 1:2 mol ratios [147, 148]. To make a 

homogenous solution, add the organic solvent to the 

aforementioned solution while constantly stirring. The 

solutions are then placed in a sealed vessel, sometimes 

known as an autoclave. Heating causes an autogenous 

increase in pressure, which causes the solvents to rise 

over their boiling points. The time and temperature 

adjustments are determined by the type of the 

produced nanoparticle [96]. Rather than the usual 

approaches, this attracted a large number of 

researchers. Oxides [149], various doped metals [150], 

Single crystals, selenides, sulphides  and zeolites [151]  

can all be made utilizing such process. 

 

9.4.4.  Synthesis of nanoparticles using 

sonochemical method 

Sonochemical technique is the most reliable 

and efficient. In order to generate cavities, this method 

employs ultrasonic irradiation in a liquid media. This 

ultrasonic energy disperses through the medium, 

increasing the enormous energy within the bubbles at 

the temperature of approximately 5000 K as well as a 

pressure of 20 MPa, and autogenously collapsing the 

bubbles, causing chemical excitation of the materials 

inside and outside [96]. 

9.4.5. Synthesis of nanoparticles using microwave-

assisted technique 

The microwave-assisted technique has been 

used since 1950s, but it has only recently achieved 

widespread popularity. Through heating with 

moveable electric charges and utilizing EMR, 

microwave radiations are transmitted directly to the 
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materials. Electromagnetic energy is transformed to 

thermal energy in this process [152]. The frequencies 

used are between 1 and 2.5 GHz, resulting in a 

temperature of 100–200oC. It necessitates a faster 

reaction time so that longer reactions may be 

accomplished in a matter of seconds [153]. It is 

possible to create narrowly dispersed tiny size 

particles that use this approach. 

 

10.  Applications of nanoparticles and nanofibers 

Biomedical [154],  wastewater treatment, 

catalysis, and information technology are all examples 

of nanoparticles and nanofibers applications. They are 

utilized in electrochemical, optical, piezoelectric, and 

magnetic fields as sensors and biosensors [155, 156].  

They may be used in energy storage devices 

[157], in the form of electrodes, which can be used to 

make batteries and supercapacitors. In terms of 

recording medium. They can also be used with audio 

and video cassettes. They may be used in energy 

storage devices [157] in the form of electrodes, which 

can be used to make batteries and supercapacitors. 

They can also be found in isolators, shifters, and 

circulators. They're also beneficial in the dyeing 

industries [158]. and wastewater treatment [159]. 

 

10.1.  In medicine for diagnosis and drug delivery 

Nanotechnology has been used in medicine 

since 1965. They are useful in medicinal imaging 

because of their diverse set of characteristics. It is 

primarily focused on four areas: molecular 

engineering, pharmaceutics, tissue engineering, and, 

biosensors and diagnostics. Nanoparticles are used in 

targeted medicines to treat diseases, particularly 

cancer tumors. The nanoparticle must be the smallest 

size possible for such utilization of delivering the 

medication to the desired location via blood 

circulation. Under stimulation, the nanoparticles will 

release the drug at the desired location. Physical–

chemical, biological, thermal, and electrical stimuli 

are examples of diverse types of stimuli. The drug will 

be released based on these triggers. Quantum dots, 

gold nanoparticles (AuNPs), magnetic nanoparticles, 

and titanium nanoparticles are commonly utilized for 

drug delivery and targeting. AuNPs are by far the most 

efficient in targeting many of the drugs. AuNPs have 

distinctive optical characteristics that are significant in 

cancer photothermal treatment and diagnostics 

[160].Nanoparticles composed of silver [161], and 

magnetic materials [162] are also effective 

nanocarriers [163]. 

It has been reported that the nanocarriers are 

designed to carry anticancer drugs to the desired 

location [164, 165]. Nanoparticles have a significant 

penetration level and cause minimal disruption in 

healthy tissues. As a result, normal cells will be safe. 

As a result, nanoparticles play a crucial role in drug 

delivery. These nanoparticles occur in a variety of 

shapes and sizes, including Fe, Ni, and Co, as well as 

their oxides. Mesoporous silica nanoparticles are also 

useful in diagnosis and treatment [166].  

10.2.  In catalysts 

The catalytic reaction takes place in a variety 

of methods, including lowering the activation energy, 

binding to reagents via polarized bonds, obtaining an 

effectual collision thru introducing reactive species 

closer together, and increasing product yield. Catalysts 

can be used to reduce the temperature of a process 

while also limiting the development of side reactions. 

The surface area per unit mass is increased 

when the nanoparticles are smaller. This increases the 

surface area available for catalytic chemical reactions. 

As a result, the reactivity of nanocatalytic processes is 

higher than that of traditional catalytic reactions using 

bulk materials [167, 168]. Thin-layer nano catalysts, 

metal-based nanocatalysts carbon-based 

nanocatalysts, core–shell nano catalysts, quantum 

dots, and ceramic nanocatalysts are all examples of 

nanocatalysts [167, 168].   

 

11.  Synthesis, forms and application of gold 

nanoparticles   

For their distinctive optical and physical 

characteristics, including such surface plasmon 

oscillations, imaging, and sensing, gold nanoparticles 

(AuNPs) are frequently utilized as outstanding 

properties throughout many disciplines. Biomedical 

applications have recently made significant progress, 

with improved biocompatibility in disease detection 

and treatments. Many functionalizing agents, 

including surfactants, polymers, ligands, dendrimers, 

DNA, RNA, peptides, oligonucleotides, and proteins 

might be used to synthesize AuNPs. Nanotechnology 

was first used by Mesopotamians in the 9th century to 

create a glossy appearance in pots. 

Michael Faraday discovered ruby gold 

nanoparticles (AuNPs) for the first time in 1857, 

laying the groundwork for contemporary 

nanotechnology [169, 170]. After forty years, 

Zsigmondy combined his technology with Faraday's 

findings and created the so-called "seed mediated 

method," that are still used to synthesize different NPs 

today [171]. Zsigmondy also developed an 

ultramicroscope for studying the structure, shape, and 

size of the nanoparticles [172]. 
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11.1.  Synthesis of Various Types of Au Colloids 

The form, size, and physical characteristics of 

AuNPs may be used to classify them. Au nanospheres 

were the first achievement in the field of AuNPs, but 

they were not perfectly spherical. Later, many 

additional forms, such as nanorods, nanoshells, and 

nanocages, were produced, as illustrated in (Figure 

18). For many decades, synesthetic techniques were 

continually improved. As a result, various simple 

synthetic procedures were accessible, and their sizes 

and forms, such as nanocages, could be well 

controlled. 

 

 
Figure 18: Schematic representation of various types 

Au nanomaterials [173] 

 

11.1.1. Au Nanospheres 

Au nanospheres is another name for Au 

colloid. The diameters may range from 2 to 100 nm, 

and they could be made by reducing an aqueous 

HAuCl4 solution using various reducing agents under 

various parameters and circumstances. The most 

broadly utilized reducing agent, citrate, generated 

monodisperse Au nanospheres [174, 175]. The smaller 

the concentration of citrate used, the more nanospheres 

produced. The size of the produced nanospheres may 

be controlled by adjusting the citrate and Au ratio. 

11.1.2.  Au Nanorods 

For the production of Au nanorods, several 

methods were used. The template approach was 

utilized to produce Au nanorods by electrochemical 

deposition of Au within the pores of nanoporous 

polycarbonate or alumina template membranes [176]. 

The diameter of the Au nanorods may be ascertained 

by the size of the template membrane holes. The 

quantity of deposited Au within the membrane pores 

might determine the length of the Au nanorod. The 

primary drawback of the above approach, but from the 

other side, would have been the poor yields of Au 

nanorods, as just a single layer of nanorods might be 

produced [177, 178].  

For reducing Au chloride, Au seed solution 

was usually prepared in the presence of a strong 

reducing agent, including such sodium borohydride. 

Such seeds would serve as the nucleation sites for 

nanorods [179–183].  

 

12. Nanoemulsion  

Nanoemulsions are biphasic distribution of 

two non-miscible liquids, generally containing of an 

oily system dispersed in an aqueous system (O/W), or 

an aqueous system dispersed in an oily system (W/O), 

creating droplets or oily phases of nanometric sizes. 

These arisen through as ultrafine dispersions whose 

difference drug loading; viscoelastic as well as visual 

properties may provide to a wide variety of 

functionalities comprising drug delivery. But there is 

still comparatively slight vision concerning growth, 

developed, manufacture and management of 

nanoemulsions which mainly stalks from the point that 

conservative features of emulsion establishment and 

stabilization only partly relate to nanoemulsions 

(Figure 19).  

 

 
Figure 19: Schematic representation of 

nanoemulsion: concepts, development 

and applications in drug delivery [184] 

 

13. Spearmint oil nanoemulsion  

Spearmint oil, which is commonly used as an 

essential oil in health products, has a number of 

noteworthy properties, including anticancer 

properties. Spearmint oil, gained from Mentha spicata 

leave, is one of the usually usage essential oils for oral 

care products. Terpene derivatives consider the key 

active constituents of Spearmint oil which containing 

carvone (70%) plus limonene (15%) [185], that 

establish different pharmacological properties [186, 

187] comprising antioxidant, anti-inflammatory, 

antibacterial, antispasmodic, antifungal, as well as 

antitumor actions. Concerning anticancer action, 

Spearmint oil has been displayed cytotoxicity contrary 

to diversity of tumor cells counting human mouth 

epidermal carcinoma, murine leukemia [179] , human 
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epithelial type 2 [188] in addition human breast 

adenocarcinoma cell line [184] therefore it may be a 

safe plus possible cytotoxic agent for cancer treatment, 

specifically for local therapeutic of oral cancer. 

However, Spearmint oil displays inadequate water 

solubility as well as insufficient biocompatibility in 

form of natural oil and consequently needed a water 

compatible transporter with high oil loading for 

directing Spearmint oil to cancer cell.  

Establishment of nanoemulsions has been 

effectively accomplished by numerous manufacture 

approaches comprising high and low energy 

technique. The high energy process requirements huge 

mechanical force as well as energy for the reduction of 

droplet size whereas low energy technique produces 

nanoemulsions through varying properties of system 

[189]. The high energy system reveals several good 

features in terms of simply fashioned nanoemulsions 

besides scalability; nevertheless it still displays some 

drawbacks comprising cost of specific apparatus and 

generation of extreme heat that occasionally affects 

the stability of drugs However, the creation and assets 

of matching nanoemulsions through this technique 

have been mainly prejudiced by the procedure and 

preparation factors that essential to be carefully 

explained to attain the exact conditions for every 

active constituent [190]. 

 

14. Application of nanofibers loaded 

nanoemulsion and nanoparticles  

Nanofibers with great principles counting 

large surface area-to volume ratio, high inter fiber 

porosity, little interference for mass transfer, adaptable 

morphology, adjustable handling as well as suitable 

mechanical properties are appropriate for therapeutic 

patches, nanocarriers in drug delivery besides porous 

fibrous mats for biomedical applications. Figure 20 

demonstrates the possessions and the bio-

physiochemical types of nano-carriers intended for 

drug delivery applications. 

 
Figure 20: The nano-carriers for drug delivery method 

and the bio-physiochemical properties 

[191]. 

Antibacterial agents and antibiotics have 

been the most often encapsulated medicinal molecules 

in recent years, using diverse biopolymers and their 

combinations as carriers [192–199]. 

Various polymers, including such PLGA, 

PCL, and PLA, are primarily used in the electrospun 

fibers process of polymer for biodegradability. 

Synthetic and natural hydrophilic or hydrophobic 

polymers are also used to regulate the drug's release 

design. In one study tetracycline hydrochloride plus 

poly (ethylene-co-vinyl acetate) (PEVA). Electrospun 

fibers containing tetracycline HCl, PCL, and PEVA 

were developed for use in wound healing and skin-

structure infections. When compared to commercially 

available drug test disks, the three-layered electrospun 

matrix showed regulated release as well as greater 

antibacterial efficiency [200]. They also claimed that 

the developed fiber blends have strong biological 

activity in composite biofilm building models. The 

fibers dissolved manufactured biofilms and produced 

thick colonies of Staphylococcus aureus, preventing 

the formation of new biofilms in the process. 

Pleurocidin, a novel broad-spectrum antibacterial 

peptide, is electrospun into PVA nanofibers for use in 

food packaging. 

Wound dressings protect the wound from 

external germs while also absorbing and adsorbing the 

wound's exudate for a pleasing aesthetic look [201–

207]. The use of a variety of components in wound 

dressings prevents infection and speeds up the healing 

process [5]. The bio-actives in the formula of the 

produced films, foams, hydrogels, and sponges are 

primarily the components contributing to the inert 

dressings [208]. Electrospun fiber mats owe the 

advantage of high specific surface area for effective 

absorption of exudates to wound healing; in addition 

to changing the humidity of the wound and assisting 

scar-free skin cell regeneration, these mats have 

porosity sufficient to supply oxygen for cell 

respiration, but insufficient for bacterial infections 

[209]. PVA and poly(vinyl acetate) (PVAc) 

electrospun nanofibers were produced independently 

and then combined in a 50:50 combination. The 

produced nanofibers, which were made from a two-

polymer combination, continued to release the 

medication and were found to be satisfied due to 

substantial swelling [208]. 

Thakur et al. also used the twin spinneret 

electrospinning technique to create a single lidocaine 

and mupirocin scaffold [210]. To achieve different 

release characteristics, dual medicines with varying 

lipophilicities were developed. Ethylene-co-vinyl 

alcohol nanofibers were produced using a variety of 

antibacterial medicines as well as silver to create 

wound dressings that were more germ-killing. 

Chutipakdeevong et al., [211] have recently employed 
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the hybridization technique to combine Bombyx mori 

silk fibroin with poly("-caprolactone) (PCL) 

electrospun fibers. Using the lyophilization technique, 

the PCL fiber surfaces were coated with silk fibroin 

protein and then enhanced with fibronectin to increase 

their biological activity. The surface-modified hybrid 

showed significant proliferation of common human 

dermal fibroblasts (NHDF), followed by the hybrid 

scaffold, and previously well-ordered PCL fibers. 

 

15. Conclusion and future trends 

 

In our current article review, we aimed to 

highlight on the electrospinning of biocompatible 

polymers to be used for wound dressing. The factors 

affecting the electrospinning process including such 

conductivity, molecular weight, surface tension have 

been extensively clarified. The article review outlined 

the numerous polymers that utilized for nanofibers 

formation. Some of these polymers are chitosan, 

cellulose, cellulose acetate, polyvinyl alcohol (PVA), 

polyvinyl pyrrolidone (PVP), polyurethane (PU) and 

polycaprolactone (PCL). In addition, in the present 

review, we also aimed to define the nanomaterials in a 

comprehensive manner and the various methods of 

their preparation including such chemical, physical 

and biological methods. It was also discussed the 

definition of nanoemulsions and the method of 

preparing them to arrive at how to prepare nanofibrous 

scaffold containing nanoparticles (gold nanoparticles) 

or colloidal emulsions with the aim of using them as 

dressings that have the ability to heal the infected 

wounds. 
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