

STRUCTURAL INVESTIGATION OF Fe₂O₃-Bi₂O₃-B₂O₃ GLASSES

K. El-Egili * and R. Ghazal

Glass Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Abstract

The structure of $xFe_2O_3 \cdot (30-x)Bi_2O_3 \cdot 70B_2O_3$ and $xFe_2O_3 \cdot (50-x)Bi_2O_3 \cdot 50B_2O_3$ glasses (mol%) was investigated by FTIR, XRD and SEM. Increasing Fe_2O_3 content causes decreasing in the fraction N_4 of four coordinated boron atoms of both series. FTIR analyses indicate that Fe_2O_3 tends preferentially to form its former matrix and the majority of BO₄ units are modified by Bi³⁺ ions. XRD patterns confirm that only α -Fe_2O_3 crystalline phase appears in the glasses with Fe_2O_3 \geq 15 mol% for the first group and Fe_2O_3 \geq 25 mol% for the second one. $50Bi_2O_3$ - $50B_2O_3$ glass in the second group has tendency to crystallization when heat treated. SEM shows that spherical particles are separated from the main matrix with different sizes in both glass groups. There is a linear decrease of density in both series with replacing Bi_2O_3 by Fe_2O_3. The molar volume seems to be constant in the first group, whereas it decreases in the second one. Calculated density and molar volume are in a good agreement with the experimental data.

keywords: Fe₂O₃-- Bi₂O₃-B₂O₃ glasses; X-ray: SEM; FTIR spectra; Density-structure correlations ;

1. Introduction

Glasses containing Bi2O3 well known to have more interest in the field of superconductor materials [1], thermal, mechanical sensors [2] and fast ion conducting glasses [3]. The high polarizability of Bi³⁺ make them suitable for many optical tools [4]. Raman and infrared spectral investigations of B₂O₃-Bi₂O₃ glasses doped with small amount of Fe₂O₃ [5] and CuO [2] indicated that Bi3+ cations are incorporated in the glass network as BiO3 pyramidal and BiO6 octahedral units for lower content of Bi₂O₃ and as distorted BiO₆ polyhedra for higher content. Infrared spectra of bismuth borate [6] glasses involving 30-60 mol% Bi₂O₃ are characterized with their short-range order structure. Presence of Bi2O3 causes a rapid conversion of BO₃ to BO₄ groups. In addition, Bi₂O₃ in the form of BiO₆ octahedral units plays the role of glass former. FTIR studies of xGd₂O₃·(100x)[2Bi₂O₃·B₂O₃] [7] show that the glass structure consists of BiO₆, BO₃ and BO₄ units, but their

proportion depends on Gd³⁺ content in these glasses. In addition, Gd³⁺ play the role of a network modifier while both Bi₂O₃ and B₂O₃ behave as network formers. Previous investigations of V2O5-Bi2O3-Fe2O3 [8] have reported that both V2O5 and Bi2O3 can play a dual role in the glass network. The existence of several structural units, i.e., VO₅, VO₄, BiO₆, FeO₆ and FeO₄ has been proved. On the other hand, the existence of iron ions in glass matrices in different valence states with different coordinations has its influence on the physical and structural properties [9]. It is reported that the trivalent iron ions can take two different coordination sites, namely tetrahedral or octahedral sites in glasses. Hence, Fe shares in glass matrix as Fe²⁺ and Fe³⁺ and results in various modified structural units [10]. Also it's believed that Fe₂O₃ often plays a dual function at lower concentrations, it acts as a modifier and behaves as a glass former for the higher concentrations depending on the glass matrix. As a consequence, it can imply a proclivity to shape a new glassy phase in certain cases [11, 12]. The present work aims to study the structure of Fe₂O₃-Bi₂O₃-B₂O₃

^{*}Corresponding author e-mail: <u>k.elegili@yahoo.com</u>.; (K. El-Egili). Receive Date: 11 March 2021, Revise Date: 06 April 2021, Accept Date: 11 April 2021 DOI: 10.21608/EJCHEM.2021.67227.3454

^{©2021} National Information and Documentation Center (NIDOC)

glasses. The influence of Fe_2O_3 content on the structure and some physical properties of these glasses are investigated by using FTIR spectroscopy, X-ray diffraction (XRD) and Scanning electron microscope (SEM).

2. Experimental

Two glass groups; $xFe_2O_3 \cdot (30-x)Bi_2O_3 \cdot 70B_2O_3$ (labeled as 30BiFeB) and xFe_2O_3 (50-x)Bi_2O_3 · 50B_2O_3 (50BiFeB) were prepared by melting homogeneous mixtures of high purity H₃BO₃, Bi₂O₃ and Fe₂O₃ (with purity not less than 98%). In these groups, Fe₂O₃ could be introduced to the Bi₂O₃-B₂O₃ network up to 20 mol% in 30BiFeB glasses whereas it could be added up to 35 mol% in 50BiFeB glasses. The powdered samples were mixed together in porcelain crucibles in an electric furnace under normal temperature and pressure conditions at temperature ranging between 800 and 1150 °C for 30-40 min., depending on the glass composition. The melt was swirled frequently to ensure the homogeneity. After melting, the refined melt was poured on a steel plates and then pressed with another steel plate to obtain glass disks at room temperature.

KBr pellet technique was used to get the FTIR absorption spectra of the studied glasses. The glassy specimens were grinded in a gate morter then mixed with KBr at ratio 1:100 in weight. A Mattson FTIR spectrometer, with a 2 cm⁻¹ resolution, was used to get the spectra in range 400-4000 cm⁻¹ at room temperature in average 20 scans are accumulated to form the spectra of each sample. FTIR spectra have been analyzed by deconvolution method.

A cautious deconvolution of the absorption profiles using the peak fit program was used to perform a quantitative analysis for the infrared spectrum. Twopoint baseline correction was used to correct IR spectra for dark current noises and history. Many trails have been performed using various band types, but the best match was discovered to be the Gaussian form. The software automatically adjusts the location of each band, as well as its width and strength, based on the minimization of differences between the experimental and simulated spectrum.

Both short and long range orders of the glass matrix have been examined by using a Bruker D8 Advanced power XRD instrument. It is filled with a vantech

Egypt. J. Chem. 64, No. 8 (2021)

super speed position sensitive detector and a Cu-Ka Xray tube with a gobel mirror. Measurements were made over the range 4° to 70° on 2θ scale using a dwell time of 0.4 s.

SEM model JEOL-JSM-6510 LV, operated at accelerating voltage up to 30 kV was used to follow up the morphological changes and a surface modification of glass samples. Samples were etched at room temperature for (10 min) using HF solution (5%).

Density is calculated by using Archimedes method, with xylene as immersion fluid. At least four samples of each glass was used to determine the density. Density values are precise to ~ ± 0.4 g/cm³. The molar volume was obtained from the relation Vm = M/D, where *M* is the molecular weight of the glass.

3. Result and discussion 3.1 Infrared spectra

Fig. 1 (a, b) shows the infrared spectra (FTIR) of two xFe_2O_3 ·(30-x)Bi₂O₃·70B₂O₃ (30BiFeB) and xFe_2O_3 ·(50-x)Bi₂O₃·50B₂O₃ (50BiFeB) glass groups, respectively. The main vibrational modes of the borate network are observed for all glass compositions which present mainly in two infrared bands ~740–1170 cm⁻¹ and ~1170–1600 cm⁻¹. In addition, there are two small absorption bands at 450 and 680 cm⁻¹. In pure B₂O₃ glass, the absorption IR band at ~740-1170 cm⁻¹ is referred to B-O bond of BO4 units [13,14]. The second absorption band in the region ~1170-1600 cm-¹ is due to stretching vibrations in symmetric and asymmetric BO₃ units [13, 15]. The band at 450 cm⁻¹ is attributed to the Bi-O bending vibration of BiO₆ structural units for binary Bi₂O₃-B₂O₃ glasses [7]. Further, the absorption band seen at around 680 cm⁻¹ is related to bending vibration of B-O-B linkage in the borate network [16]. It is observed also that, the relative area under the band in the region ~740-1170 cm⁻¹ decreases whereas that under the band in the region ~1170-1600 cm⁻¹ and under the peak at 680 cm⁻¹ is increased up on Fe₂O₃ addition. This indicates that the concentration of BO3 units increases at the expense of BO₄ units. For glasses $\geq 15 \text{ mol}\% \text{ Fe}_2\text{O}_3$ in 30FeBiB group and $\geq 25 \text{ mol}\% \text{ Fe}_2\text{O}_3$ for 50FeBiB

Fig. 1. Infrared spectra of (a) xFe_2O_3 : $(30 - x)Bi_2O_3$: $70B_2O_3$ (30BiFeB) and (b) xFe_2O_3 :(50-x) Bi_2O_3 : $50B_2O_3$ (50BiFeB) glasses. Numbers at the plots refer to Fe_2O_3 content (mol%).

group, the absorption region 400-600 cm⁻¹ shows splitting to two small bands at 470 and 550 cm⁻¹. These bands are related to the vibrations of Fe-O bond in FeO₆ and FeO₄ structural units, respectively [9]. In addition, the area under these peaks increases with increasing Fe₂O₃ content. This indicates that, Fe₂O₃ plays a dual role as network former and modifier [17]. The Bi-O band in this region may masked by the Fe-O bands. Further, there is splitting of the absorption region ~740-1170 cm⁻¹ to smaller peaks for glass containing 20 mol% Fe₂O₃ in 30FeBiB group. Further, the same region for glass containing 35 mol% Fe₂O₃ in 50FeBiB group becomes two shoulders in the region between 740-1000 cm⁻¹ and small peak at 1080 cm⁻¹. Such features reflect some structural changes in these glasses. These changes may be related to the higher tendency of these glasses for crystallization. On the other hand, the center of the absorption region ~1170-1600 cm⁻¹ for both glass groups shifts to higher wavenumber. This may be due to the formation of more BO₃ units at the expense of BO₄ units as will be seen later.

The fraction N_4 of four coordinated boron for the investigated glasses can be obtained by deconvoluting

Egypt. J. Chem. 64, No. 8 (2021)

the plots shown in Fig. 1 (a, b). According to the deconvolution method N_4 is calculated as follow (the area associated to BO⁻⁴ units / the total area of BO₃ and BO⁻⁴ units). This method was successfully used for some borate [18, 19] and borosilicate [20] glasses to calculate N_4 from the infrared spectra. In addition, it was also used to determine the concentration of the different structural units in tellurite glasses [21]. Fig.

Fig. 2. Deconvolution of the normalized infrared spectrum of the glass $25Fe_2O_3-25Bi_2O_3-50B_2O_3$

2 shows deconvolution of the infrared spectrum of 25Fe₂O₃-25Bi₂O₃ 50B₂O₃ glass, as an example.

Figure 3 shows the dependence of N_4 on Fe₂O₃ content in xFe₂O₃·(30–x)Bi₂O₃·70B₂O₃ and xFe₂O₃·(50–x)Bi₂O₃·50B₂O₃ glass groups. It appears that N_4 for glasses at x = 0 agree well with the NMR data given by Bajaj et al. [22]. In addition, N_4 decreases with increasing Fe₂O₃ content for the studied glass groups. The rate of decrease of N_4 for glasses in 30BiFeB group is higher than that of 50BiFeB group.

Fig. 3. Fraction N_4 of four-coordinated boron in (a) $xFe_2O_3 \cdot (30 - x) Bi_2O_3 \cdot 70B_2O_3$ (30BiFeB) glasses and (b) $xFe_2O_3 \cdot (50 - x) Bi_2O_3 \cdot 50B_2O_3$ (50BiFeB) glasses. The open symbol refers to experimental data. the error limit is estimated as \pm 5%. The filled symbol for the value x = 0 is predicted from NMR data given by Bajaj et al. [22].

In Fig. 3 the equation of the fitting of N_4 for 30BiFeB glass group is

 $N_{4} = -9.2809 \text{E} \cdot 05x^{2} - 0.004625676x + 0.401335731$ (1) whereas that for 50BiFeB glass group is

$$N_4 = -2.59089 \text{E} \cdot 05x^2 - 0.001016559x + 0.452981604$$
 (2)

It is supposed that N_4 represents the consequent modification of borate matrix. Taking in consideration in the case of including more than one type of modifier, each modifier shares for N_4 with specific factor that relies on the modifier content [23, 24]. This can be formulated as

$$N_4 = N_{4(\text{Fe})} + N_{4(\text{Bi})}.$$
 (3)

Here, $N_{4(\text{Fe})}$ and $N_{4(\text{Bi})}$ are, respectively, the

participation of Fe₂O₃ and Bi₂O₃ content to N_4 of glass. N_4 can be correlated to the concentration of Fe₂O₃ and Bi₂O₃ by

Egypt. J. Chem. 64, No. 8 (2021)

$$N_4 = C_{\rm Fe} f_{\rm Fe} + C_{\rm Bi} f_{\rm Bi} \tag{4}$$

where C_{Fe} and C_{Bi} are, respectively, the molar fraction of Fe₂O₃ and Bi₂O₃ in glass. While f_{Fe} and f_{Bi} are, respectively, numerical factor that determine how much of Fe₂O₃ and Bi₂O₃ shares to N_4 . From Eqs. (3) and (4) it clarifies that

$$N_{4(\text{Fe})} = C_{\text{Fe}} f_{\text{Fe}}$$
(5)
and

(6)

 $N_{4(\text{Bi})} = C_{\text{Bi}} f_{\text{Bi}}.$

 N_4 data obtained from Eqs. (1) and (2) can be used to get f_{Fe} and f_{Bi} for the 30BiFeB and 50BiFeB glass

Fig. 4. The dependence of fractions $N_{4(\text{Fe})}$ and $N_{4(\text{Bi})}$ in (a) $x\text{Fe}_2\text{O}_3$; (30 – x) Bi₂O₃; 70B₂O₃ (30BiFeB) and (b) $x\text{Fe}_2\text{O}_3$; (50 – x) Bi₂O₃; 50B₂O₃ (50BiFeB) glasses with Fe₂O₃ content

groups, and therefore to determine the values of $N_{4(\text{Fe})}$ and $N_{4(\text{Bi})}$. This can be obtained by solving Eq. (4) simultaneously for two N_4 values near to each other and then by substituting in Eqs. (5) and (6). Fig. 4 (a, b) shows that $N_{4(\text{Bi})}$ decreases whereas $N_{4(\text{Fe})}$ increases with increasing Fe₂O₃ content for both glass groups. It is observed that, the rate of decreasing of $N_{4(\text{Fe})}$ is higher than the rate of increasing of $N_{4(\text{Fe})}$ for all glass groups, which explains the decrease in N_4 (Fig. 3) in spite of the increase in Fe₂O₃ content. In addition, at 20 mol% Fe₂O₃ the values of $N_{4(\text{Fe})}$ and $N_{4(\text{Bi})}$ for 50BiFeB glass group are higher than those for 30BiFeB glass group. This explains the higher rate of decrease of N_4 for glasses in 30BiFeB group (Fig. 3).

From Eqs. (5) and (6) the concentration of various structural units for 30BiFeB and 50BiFeB glass groups can be obtained. The molar fractions of B₂O₃ converted to BO₄ units by Fe₂O₃ ($C_{B4(Fe)}$) and Bi₂O₃ ($C_{B4(Bi)}$) are given, respectively, as

$$C_{B4(Fe)} = N_{4(Fe)} C_B$$
(7)
and

 $C_{\rm B4(Bi)} = N_{\rm 4(Bi)} C_{\rm B}.$ (7a)

Here, $C_{\rm B}$ is the molar fraction of B₂O₃ in the glass group (0.7 for 30BiFeB and 0.5 for 50BiFeB). Therefore, the molar fractions of modifier Fe₂O₃ ($C_{\rm Fe(m)}$) and Bi₂O₃ ($C_{\rm Bi(m)}$) becomes

$$C_{\rm Fe(m)} = C_{4({\rm Fe})}/3$$
 (8)
and
 $C_{\rm Bi(m)} = C_{4({\rm Bi})}/3$ (8a)

The factor (1/3) appears because each one molecule of modifier Fe_2O_3 or Bi_2O_3 would alters three B_2O_3 molecules to six BO_4 units. In addition, it is known that Fe_2O_3 and Bi_2O_3 inter the glass structure as network former and modifier [6], [17], [25]. Therefore, the fraction ($C_{Fe(f)}$) of the former Fe_2O_3 can be given as

$$C_{\rm Fe(f)} = C_{\rm Fe} - C_{\rm Fe(m)}.$$
(9)

Similarly, the fraction of the former Bi_2O_3 ($C_{Bi(f)}$) can be given as

$$C_{\rm Bi(f)} = C_{\rm Bi} - C_{\rm Bi(m)} \tag{10}$$

Finally, the fraction of symmetric BO₃ units (C_{B3s}) of B₂O₃ that remains without being modified can be given as

$$C_{\rm B3s} = C_{\rm B} - C_{\rm B4(Fe)} - C_{\rm B4(Bi)}.$$
 (11)

Fig. 5 (a, b) shows the dependence of the quantities given by Eqs. (7–11) with Fe₂O₃ content for 30BiFeB and 50BiFeB glass groups, respectively. There is a linear increase in $C_{\text{Fe}(m)}$ and $C_{\text{Fe}(f)}$ while $C_{\text{Bi}(m)}$ and $C_{\text{Bi}(f)}$ linearly decrease with increasing Fe₂O₃. These changes are expected due to the increase in Fe₂O₃ at the expense of Bi₂O₃. Further, for all glasses, the rate of increase in $C_{\text{Fe}(f)}$ is always greater than that of $C_{\text{Fe}(m)}$ and the values of $C_{\text{Bi}(m)}$ is higher than that of $C_{\text{Fe}(m)}$ except the glass contains 35 mol% Fe₂O₃ for 50BiFeB group. This indicates that Fe₂O₃ tends preferentially to form its former matrix rather than modifying the borate network to from BO₄ units and the majority of BO₄ units were formed by Bi³⁺. It is noticed that, C_{B3s} linearly increases with ~ 1.21 times for 30BiFeB glasses and ~ 1.15 times for 50BiFeB glasses which is consistence with the increase in the relative area of the envelopes between 1170 cm⁻¹ and 1600 cm⁻¹ as in Fig. 1 (a, b). This is mainly related to two reasons; the first is the decrease in Bi₂O₃ content in the glass matrix i.e. BO₄ units decrease, and the second is the weak capability of Fe₂O₃ to compose BO₄ units i.e. BO₃ units increase. Similar behavior was observed in Sb₂O₃–PbO–B₂O₃ glasses [18].

Fig. 5. The dependence of $C_{\text{Fe(m)}}$, $C_{\text{Fe(f)}}$, $C_{\text{Bi(m)}}$, $C_{\text{Bi(f)}}$ and C_{B3s} in (a) $x\text{Fe}_2\text{O}_3(30 - x)$ Bi₂O₃·70B₂O₃ (30BiFeB) and (b) $x\text{Fe}_2\text{O}_3(50 - x)$ Bi₂O₃·50B₂O₃ (50BiFeB) glasses on Fe₂O₃ content. $C_{\text{Fe(m)}}$ and $C_{\text{Fe(f)}}$ are, respectively, the fractions of modifier and former Fe₂O₃. $C_{\text{Bi(m)}}$ and $C_{\text{Bi(f)}}$ are, respectively, the fractions of modifier and former Bi₂O₃. C_{B3s} is the fraction of B₂O₃ that forms symmetric BO₃ units. Lines are drawn as guides to the eyes.

From a numerical overview, at 20 mol% Fe_2O_3 (Fig. 5a), the glass is composed ~ 51 mol% B_2O_3 as sym. BO₃ units, ~ 10.5 mol% B_2O_3 as BO₄ units modulated by Bi³⁺, ~ 8.4 mol% B_2O_3 as BO₄ units modulated by Fe³⁺ and former units of Fe₂O₃ (~ 17.2 mol%) and Bi₂O₃ (~ 6.5 mol%). This means that the majority of such glass is consist of a borate rich phase ~ 70 mol% as host matrix and just ~ 23.7 mol% as former units of Fe₂O₃ and Bi₂O₃. Whereas, at 35 mol%

Egypt. J. Chem. 64, No. 8 (2021)

Fe₂O₃ (Fig. 5b) the glass is composed ~ 30.7 mol% B₂O₃ as sym. BO₃ units, ~ 7.28 mol% B₂O₃ as BO₄ units modified by Bi³⁺, ~ 12 mol% B₂O₃ as BO₄ units modified by Fe³⁺ and former units of Fe₂O₃ (~ 31 mol%) and Bi₂O₃ (~ 12.57 mol%). This means that such glass is composed a higher ratio of former units ~ 43.57 mol% and the borate phase ~ 50 mol% as host matrix.

Fig. 6 (a, b) shows the dependence in density (D) and molar volume (V_m) with Fe₂O₃ content for 30BiFeB and 50BiFeB glass groups, respectively.

Figure 6a shows a linear decrease in *D* whereas $V_{\rm m}$ seems to be constant, while both *D* and $V_{\rm m}$ linearly decrease in Fig. 6b with increasing Fe₂O₃ content. These changes reveal that both of Fe₂O₃ and Bi₂O₃ contribute to *D* and $V_{\rm m}$ with constant rates. The decrease in *D* is expected because the relative molecular mass of Fe₂O₃ (159.69 g/mol) is much smaller than that of Bi₂O₃ (465.96 g/mol). In this case, one would expect an increase in $V_{\rm m}$ because *D* and $V_{\rm m}$ mostly change inversely to each other. Therefore, the

Egypt. J. Chem. 64, No. 8 (2021)

changes in *D* and V_m indicate that both of them is correlated with the relative change in the structural units in the glass matrix due to introduction of Fe₂O₃ at the expense of Bi₂O₃ rather than the big deference between their relative molecular masses.

It is concluded [18], [24], [26] that the glass is composed of various structural units that form its network and the variation in D and $V_{\rm m}$, must be interpreted in the light of the change in glass composition. The decrease in D Fig. 6 (a, b) indicates that the structural units associated with Fe₂O₃ are less dense and have smaller volume than those corresponding to Bi₂O₃.

By using Eqs. (7)–(11) one can interpret the factors influencing the *D* based on the structural units in the glass. It is known that, the density is considered as the sum of masses of structural units divided by the sum of their volumes. Therefore, the density of a glass can be expressed as

$$D = \frac{\sum n_u M_u}{\sum n_u V_u}$$
(12)

Where, n_u symbolizes the content of structural unit u (number per mole of glass). M_u and V_u point, respectively, to the mass and volume of unit. M_u represents the sum of masses of atoms in the unit. As well as, V_u represents the resultant volume of atoms and its surrounding space (free volume) in the unit in the glass matrix. As previously shown, the structure of the studied glasses consists of BO_{4(Fe)}, BO_{4(Bi)}, Fe_(f), Bi_(f) and the symmetric BO₃ units. Therefore, Eq. (12) can then be rewritten as

 $D = (n_{4(Fe)}M_{4(Fe)} + n_{4(Bi)}M_{4(Bi)} + n_{Fe(f)}M_{Fe(f)} + n_{Bi(f)}M_{Bi(f)} + n_{3}M_{3s}) / (n_{4(Fe)}V_{4(Fe)} + n_{4(Bi)}V_{4(Bi)} + n_{Fe(f)}V_{Fe(f)} + n_{Bi(f)}V_{Bi(f)} + n_{3}V_{3s}).$ (13)

Here, $n_{4(Fe)}$, $n_{4(Bi)}$, $n_{Fe(f)}$, $n_{Bi(f)}$ and n_3 refer, respectively, to the number per mole of glass of the units BO_{4(Fe)}, BO_{4(Bi)}, Fe_(f), Bi_(f) and BO_{3s}. Masses and volumes in Eq. (13) are pointed to the corresponding units.

According to these hypotheses, $M_{\text{Fe}(f)}$ (in Eq. 13) is considered as the mass of former FeO₄ unit (mass of Fe + 2O), $M_{\text{Bi}(f)}$ is the mass of former BiO₃ unit (mass of Bi + 1.5O) and M_3 is the mass of BO₃ unit (B + 1.5O). In addition, each BO⁻₄ unit associated with a negative charge that could be neutralized by one of the three positive charges of Fe³⁺ or Bi³⁺ ion. Therefore, $M_{4(\text{Fe})}$ is the mass of (B + 2O + Fe/3) and $M_{4(\text{Bi})}$ represents the mass of (B + 2O + Bi/3). The

Fig. 7. XRD patterns of (a) xFe_2O_3 (30–x) Bi_2O_3 (70 B_2O_3 (30BiFeB) and (b) xFe_2O_3 (50–x) Bi_2O_3 (50BiFeB) glasses. Numbers at the plots refer to Fe_2O_3 content (mol%).

concentration of structural units $n_{4(\text{Fe})}$, $n_{4(\text{Bi})}$, $n_{\text{Fe}(f)}$, $n_{\text{Bi}(f)}$ and n_3 in Eq. (13) can be got from Eqs. (7–11), respectively, as

$$n_{4(\text{Fe})} = 2N_{\text{A}} C_{\text{B4(Fe)}},\tag{14}$$

$$n_{4(\mathrm{Bi})} = 2N_{\mathrm{A}}C_{\mathrm{B4(Bi)}},\tag{15}$$

$$n_{\text{Fe}(f)} = 2N_{\text{A}}C_{\text{Fe}(f)}, \tag{16}$$
$$n_{\text{Bi}(f)} = 2N_{\text{A}}C_{\text{Bi}(f)} \tag{17}$$

$$n_{\rm Bi(f)} = 2N_{\rm A}C_{\rm Bi(f)}$$

and

$$n_3 = 2N_{\rm A}C_{\rm B3s}.\tag{18}$$

The factor 2 arises because each B₂O₃ molecule produces two BO₃ or two BO₄ units. Also, each Fe₂O₃ or Bi₂O₃ molecule produces two FeO₄ units or two BiO₃ as former units and N_A is Avogadro's number. the density can be calculated from Eq. (13) if the volumes of the structural units were well defined. The volumes of $V_{4(Bi)}$ and $V_{Bi(f)}$ are calculated from binary $xBi_2O_3-(1-x)B_2O_3$ [27] glasses, in addition to that of V_{3s} from vitreous B₂O₃ [19]. These volumes can be used as a guide to solve Eq.13 to get $V_{4(Fe)}$ and $V_{Fe(f)}$ for iron oxide. These are $V_{4(Bi)} = 2.29 \times 10^{-23}$ cm³ and $V_{Bi(f)}$ $= 5.05 \times 10^{-23}$ cm³ and $V_{3s} = 3.14 \times 10^{-23}$ cm³. Then, trials can be done to find the values of $V_{4(Fe)}$ and $V_{Fe(f)}$ experimental densities. The values obtained are $V_{4(\text{Fe})} = 1.681 \times 10^{-23} \text{ cm}^3$ and $V_{\text{Fe}(f)} = 3.823 \times 10^{-23} \text{ cm}^3$. Fig. 6 (a, b) shows good agreement between the calculated and experimental densities. It is clear that, the volume of the structural unit including Bi³⁺ ($V_{4(\text{Bi})}$) is higher than that including Fe³⁺ ($V_{4(\text{Fe})}$) because of the greater size of Bi³⁺ ion with respect to Fe³⁺.

According to Eq. (13), $V_{\rm m}$ can be given by:

$$V_m = n_{4(\text{Fe})}V_{4(\text{Fe})} + n_{4(\text{Bi})}V_{4(\text{Bi})} + n_{\text{Fe}(f)}V_{\text{Fe}(f)} + n_{\text{Bi}(f)}V_{\text{Bi}(f)}$$

+ n_3V_{3s} . (19)

Good agreement between calculated and experimental $V_{\rm m}$ data Fig. 6 (a, b) could be achieved by using the previous volumes in Eq. (19). This harmony of *D* and $V_{\rm m}$ data is a proof of validity of the presented view on the structure of Fe₂O₃–Bi₂O₃–B₂O₃ glasses.

3.2. X-ray and scanning electron microscopy

Fig. 7 (a, b) shows the X-ray diffraction (XRD) pattern of 30BiFeB and 50BiFeB glass groups, respectively. The features of all spectra are typical for heavy metal oxides specially Bi₂O₃ glasses. Up to 10 mol% Fe₂O₃ for 30BiFeB group and 20 mol% Fe₂O₃ for 50BiFeB group, the XRD patterns show no sharp

peaks, only broad diffraction humps centered at about $2\theta = 28.2^{\circ}$ and 47.45° confirming the amorphous nature of glass samples [28]. However, the existence of broad humps indicate also that some phases are not fully grown and might be nano-crystalline phases or clusters formation embedded in the glass matrix [29, 30]. Due to the limited resolution of normal XRD technique, the presence of a small amount of crystallite cannot be excluded. Especially, if the amount of the crystallite or its sizes is very small [31].

On the other hand, it is observed that the broadness of the humps increases whereas their intensities decreases with increasing Fe₂O₃ content until seems to disappear at 20 mol% Fe₂O₃ for 30BiFeB group (Fig. 7a). These changes may be consistent with the decrease in Bi₂O₃ content in the glasses. Beside the broad humps, sharp peaks start to appear for glass containing \geq 15 mol% Fe₂O₃ for 30BiFeB group and \geq 25 mol% Fe₂O₃ for 50BiFeB group at $2\theta = 24.1, 33.1,$ 35.6, 40.6, 49.6, 54.1, 62.5 and 63.9° which could be indexed to lattice planes (012), (104), (110), (113), (024), (116), (214) and (300) respectively. These peaks correspond to α -Fe₂O₃ crystalline phase (PDF # 890597) precipitated in Bi₂O₃-B₂O₃ network [32]. The number of sharp peaks and their intensities increases with increasing Fe₂O₃ content. This indicates that the degree of crystallinity increases as the content of Fe₂O₃ increases. Further, some of sharp peaks are superimposed on the broad humps. This means that the glass structure contains mixture of the amorphous phase of Bi_2O_3 and crystalline α -Fe₂O₃ phase. According to Sherrer's equation [33], the average crystalline size of α -Fe₂O₃ phase is ~ 20 nm.

Fig. 8 shows the X-ray patterns of 30Bi₂O₃-70B₂O₃ and 50Bi₂O₃-50B₂O₃ glasses heat treated at 500°C for 4h. It is observed that, the glass 30Bi₂O₃-70B₂O₃ is not affected with heat treatment. On the other hand, it has been noticed that by heat-treatment a Strong tendency of crystallization for 50Bi₂O₃-50B₂O₃ glass. It shows a broad hump with three sharp peaks at $2\theta = 23.13$, 28.55 and 47.97 which could be indexed to lattice planes (110), (111) and (220) respectively. These peaks are related to α -Bi₂O₃ crystalline phase (PDF # 762478). It is clear that, the main peak superimposed on the broad hump indicates the glass structure contains mixture of amorphous and crystalline phases. Moreover, this confirms that the presence of broad humps in Fig.7 (a, b) reflects some microstructural changes (partial phase separation) of

small crystallite sizes in bismuth borate matrix [29], [34], [35].

Fig. 8. XRD pattern of heat treated $30Bi_2O_3$ -70 B_2O_3 and $50Bi_2O_3$ -50 B_2O_3 glasses. Heat treatment was performed at 500 °C for 4h.

From the above analyses of the IR data, at 0 mol% Fe₂O₃ in 30BiFeB group (Fig. 5a) the concentration of Bi₂O₃ as former units is ~ 20.64 mol% and that of symmetric BO₃ units is ~ 42 mol% whereas at the same composition in 50BiFeB group (Fig. 5b) the concentrations are ~ 42.45 mol% and ~ 27.35 mol%, respectively. Therefore, it can be deduced that the high concentration of former Bi₂O₃ units and the low concentration of symmetric BO₃ units in 50BiFeB group are the main reason to form crystalline phase of α -Bi₂O₃ under heat treatment effect (Fig. 8).

The surface morphology has been investigated by scanning electron microscopy (SEM). Fig. 9a shows the micrograph of etched 30Bi₂O₃-70B₂O₃ glass. It is clear that, many isolated spherical particles with different sizes are distributed within a homogeneous glassy phase (the dark background), which indicates the glass structure is not fully amorphous. The big particles (like stone) seem to be formed by collecting small ones. The number of these particles and their sizes increase for etched 50Bi₂O₃-50B₂O₃ glass in the form of clusters of different size between 0.25 µm and 1 µm as shown in Fig. 9b. It can be assumed that the spherical particles in Fig. 9 (a, b) are formed mainly from amorphous Bi2O3 which may contain small crystallites of α -Bi₂O₃ phase. On the other hand, the glassy phase (dark background) is assumed to be borate rich phase which consists of symmetric BO3 and modified BO4 units. the micrograph of the surface of 20Fe₂O₃-10Bi₂O₃-70B₂O₃ glass sample is shown in Fig. 9c. Spherical black droplets of size up to 3 µm separately

Egypt. J. Chem. 64, No. 8 (2021)

(e)

Fig. 9. SEM micrographs of (a) etched $30Bi_2O_3 - 70B_2O_3$ glass, (b) etched $50Bi_2O_3 - 50B_2O_3$ glass, (c) the surface of $20Fe_2O_3 - 10Bi_2O_3 - 70B_2O_3$ glass, (d) etched $20Fe_2O_3 - 10Bi_2O_3 - 70B_2O_3$ glass and (e) etched $35Fe_2O_3 - 15Bi_2O_3 - 50B_2O_3$ glass.

distributed and surrounded with white fine particles on the entire glass surface. In the light of X-ray information, the spherical black droplets might be α -Fe₂O₃ phase and the white fine particles may be small crystallites of α -Bi₂O₃. The micrograph of etched 20Fe₂O₃·10Bi₂O₃·70B₂O₃ glass (Fig. 9d) shows spherical particles are separated from main matrix with size of ~ 0.5 µm. The micrograph of etched 35Fe₂O₃-15Bi₂O₃-50B₂O₃ glass shows agglomerates from condensed spherical particles of greater size as shown in Fig. 9e. It can then be assumed that the agglomerates appearing in Fig. 9e are formed of symmetric BO₃ units, modified BO₄ units and vitreous former Bi₂O₃ units.

4. Conclusion

XRD, FTIR and SEM have been used to investigate the structure of $xFe_2O_3 \cdot (30-x)Bi_2O_3 \cdot 70B_2O_3$ and $xFe_2O_3 \cdot (50-x)Bi_2O_3 \cdot 50B_2O_3$ glass groups. FTIR analyses indicate that the majority of BO₄ units modified by Bi³⁺ and Fe₂O₃ tends preferentially to form its former matrix. There is a linear reduction in the portion (N_4) of four coordinated boron atoms and density with rising Fe₂O₃ content. In the first group the molar volume seems to be constant, whereas it decreases in the second one. Calculated density and molar volume are concurrent with the experimental data. XRD exhibit sharp peaks corresponding to α -Fe₂O₃ crystalline phase for high content of Fe₂O₃ and the degree of crystallinity increases with increasing Fe_2O_3 content. SEM shows agglomerates consists of vitreous former Bi_2O_3 units.

4. Conflicts of interest

"There are no conflicts to declare".

5. References

- T. Maeder*, 'Review of Bi2O3 based glasses for electronics and related applications', *Int. Mater. Rev.*, vol. 58, no. 1, pp. 3–40, 2013.
- [2] L. Baia, R. Stefan, W. Kiefer, J. Popp, and S. Simon, 'Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content', *J. Non. Cryst. Solids*, vol. 303, no. 3, pp. 379–386, 2002.
- [3] A. Pan and A. Ghosh, 'Correlation of relaxation dynamics and conductivity spectra with cation constriction in ion-conducting glasses', *Phys. Rev. B*, vol. 66, no. 1, p. 12301, 2002.
- [4] M. M. Gomaa, S. Ibrahim, and H. Darwish, 'Effect of SiO 2/B 2 O 3 replacements on the structure, physicochemical and electrical properties of Bi 2 O 3-containing glasses', *Silicon*, vol. 7, no. 1, pp. 55–63, 2015.
- [5] L. Baia, D. Maniu, T. Iliescu, S. Simon, S. Schlucker, and W. Kiefer, 'Spectroscopic studies of iron doped B~ 2O~ 3-Bi~ 2O~ 3 glasses', *Asian J. Phys.*, vol. 9, no. 1, pp. 51–58, 2000.
- [6] Y. Cheng, H. Xiao, W. Guo, and W. Guo, 'Structure and crystallization kinetics of Bi2O3– B2O3 glasses', *Thermochim. Acta*, vol. 444, no. 2, pp. 173–178, 2006.
- [7] P. Pascuta and E. Culea, 'FTIR spectroscopic study of some bismuth germanate glasses containing gadolinium ions', *Mater. Lett.*, vol. 62, no. 25, pp. 4127–4129, 2008.
- [8] R. Iordanova, Y. Dimitriev, V. Dimitrov, S. Kassabov, and D. Klissurski, 'Glass formation and structure in the V2O5 Bi2O3 Fe2O3 glasses', *J. Non. Cryst. Solids*, vol. 204, no. 2, pp. 141–150, 1996.
- [9] M. Shapaan and F. M. Ebrahim, 'Structural and electric–dielectric properties of B2O3–Bi2O3– Fe2O3 oxide glasses', *Phys. B Condens. Matter*, vol. 405, no. 16, pp. 3217–3222, 2010.

- [10] G. Srinivasarao and N. Veeraiah, 'The role of iron ions on the structure and certain physical properties of PbO–As2O3 glasses', *J. Phys. Chem. Solids*, vol. 63, no. 4, pp. 705–717, 2002.
- [11] I. Ardelean, R. Lungu, and P. Păşcuţă, 'Structural changes induced by Fe 2 O 3 addition in strontium-borate glass matrix', *J. Mater. Sci. Mater. Electron.*, vol. 18, no. 8, pp. 837–841, 2007.
- [12] F. A. Moustafa, A. M. Fayad, F. M. Ezz-Eldin, and I. El-Kashif, 'Effect of gamma radiation on ultraviolet, visible and infrared studies of NiO, Cr2O3 and Fe2O3-doped alkali borate glasses', *J. Non. Cryst. Solids*, vol. 376, pp. 18–25, 2013, doi: https://doi.org/10.1016/j.jnoncrysol.2013.04.052.
- [13] I. Ardelean, S. Cora, and D. Rusu, 'EPR and FT-IR spectroscopic studies of Bi2O3–B2O3– CuO glasses', *Phys. B Condens. Matter*, vol. 403, no. 19–20, pp. 3682–3685, 2008.
- [14] H. Doweidar, K. El-Egili, G. El-Damrawi, and R. M. Ramadan, 'Sites distribution and properties of Al2O3–PbO–B2O3 glasses', *Phys. Chem. Glas. J. Glas. Sci. Technol. Part B*, vol. 49, no. 5, pp. 271–277, 2008.
- [15] H. Doweidar and Y. B. Saddeek, 'FTIR and ultrasonic investigations on modified bismuth borate glasses', *J. Non. Cryst. Solids*, vol. 355, no. 6, pp. 348–354, 2009.
- [16] E. I. Kamitsos, 'Infrared studies of borate glasses', *Phys. Chem. Glas.*, vol. 44, no. 2, pp. 79– 87, 2003.
- [17] Y. M. Moustafa, K. El-Egili, H. Doweidar, and I. Abbas, 'Structure and electric conduction of Fe2O3–P2O5 glasses', *Phys. B Condens. Matter*, vol. 353, no. 1–2, pp. 82–91, 2004.
- [18] H. Doweidar, K. El-Egili, R. Ramadan, and M. Al-Zaibani, 'Structural investigation and properties of Sb2O3–PbO–B2O3 glasses', *J. Non. Cryst. Solids*, vol. 497, pp. 93–101, 2018.
- [19] K. El-Egili, H. Doweidar, R. Ramadan, and A. Altawaf, 'Role of F- ions in the structure and properties of BaF2B2O3 glasses', *J. Non. Cryst. Solids*, vol. 449, pp. 83–93, 2016.
- [20] K. El-Egili, 'Infrared studies of Na2O– B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses', *Phys. B Condens. Matter*, vol. 325, pp. 340–348, 2003.
- [21] E. F. El Agammy, H. Doweidar, K. El-Egili, and R. Ramadan, 'Structure of PbF2–TeO2

Egypt. J. Chem. 64, No. 8 (2021)

glasses and glass-ceramics', J. Mater. Res. Technol., 2020.

- [22] A. Bajaj *et al.*, 'Structural investigation of bismuth borate glasses and crystalline phases', *J. Non. Cryst. Solids*, vol. 355, no. 1, pp. 45–53, 2009.
- [23] H. Doweidar, K. El-Egili, R. Ramadan, and M. Al-Zaibani, 'Structural units distribution, phase separation and properties of PbO–TiO2– B2O3 glasses', *J. Non. Cryst. Solids*, vol. 466, pp. 37–44, 2017.
- [24] H. Doweidar, G. El-Damrawi, E. Mansour, and R. E. Fetouh, 'Structural role of MgO and PbO in MgO–PbO–B2O3 glasses as revealed by FTIR; a new approach', J. Non. Cryst. Solids, vol. 358, no. 5, pp. 941–946, 2012.
- [25] E. R. Shaaban, M. Shapaan, and Y. B. Saddeek, 'Structural and thermal stability criteria of Bi2O3–B2O3 glasses', *J. Phys. Condens. Matter*, vol. 20, no. 15, p. 155108, 2008.
- [26] H. Doweidar, 'Density and molar volume of Li2O–SiO2 glasses in relation to their microstructure', *Phys. Chem. Glas.*, vol. 39, no. 5, pp. 286–289, 1998.
- [27] K. El-Egili and R. Ghazal, 'Structuralproperties correlation and conductivity of Bi2O3– B2O3 glasses', *work in progress*.
- [28] A. Madheshiya, C. Gautam, and S. Kumar, 'Synthesis, structural and X-ray absorption spectroscopy of (PbxBi1-x). TiO3 borosilicate glass and glass ceramics', J. Asian Ceram. Soc., vol. 5, no. 3, pp. 276–283, 2017.
- [29] S. Singh and K. Singh, 'Effect of in-situ reduction of Fe3+ on physical, structural and optical properties of calcium sodium silicate glasses and glass ceramics', J. Non. Cryst. Solids, vol. 386, pp. 100–104, 2014.
- [30] Z. Y. Yao *et al.*, 'Structure and mechanical properties of copper–lead and copper–zinc borate glasses', *J. Non. Cryst. Solids*, vol. 435, pp. 55–68, 2016.
- [31] L. Liu, K. C. Chan, and G. K. H. Pang, 'Highresolution TEM study of the microstructure of Zr65Ni10Cu7. 5Al7. 5Ag10 bulk metallic glass', *J. Cryst. Growth*, vol. 265, no. 3–4, pp. 642–649, 2004.
- [32] H. Akamatsu, K. Tanaka, K. Fujita, and S. Murai, 'Magnetic phase transitions in Fe2O3– Bi2O3–B2O3 glasses', J. Phys. Condens. Matter, vol. 20, no. 23, p. 235216, 2008.

- [33] A. L. Patterson, 'The Scherrer formula for Xray particle size determination', *Phys. Rev.*, vol. 56, no. 10, p. 978, 1939.
- [34] A. K. Singh, K. Singh, and N. S. Saxena, 'Effect of annealing on structures and effective thermal conductivity of Se90 In10-chalcogenide glass', J. Ovonic Res., vol. 4, pp. 107–111, 2008.
- [35] M. Thomas, *Supplementary cementing materials in concrete*. CRC press, 2013.