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Abstract 

In the present work, we have developed a facile, inexpensive, auto-combustion method for the synthesis of γ-Al2O3 and α-
Al2O3 nanoparticles. This was performed by employing aluminum nitrate as an oxidant and glycine as a fuel. The γ-Al2O3 
and α-Al2O3 nanoparticles were obtained by calcination of the combusted products at 800 °C for 2 h and at 1000 °C for 1 h, 
respectively.  The generated alumina nanoparticles were characterized by using X-ray diffraction (XRD), Fourier transform 
infrared spectroscopy (FT-IR), field-emission scanning electron microscope (FE-SEM), high-resolution transmission electron 
microscope (HRTEM), and thermal analyses (TG and DTA). The average crystallite sizes of γ-Al2O3 and α-Al2O3 
nanoparticles were estimated to be 5.8 nm and 15 nm, respectively. The TEM results revealed that the prepared alumina 
nanostructures were of low agglomeration degree. The proposed method exhibited that the phases of the produced alumina 
nanoparticles could be carefully tuned by the adapted experimental conditions.  
Keywords:  γ-Al2O3 and α-Al2O3 nanoparticles; auto-combustion synthesis; Glycine fuel, characterization.  

1. Introduction 

Nanoparticles have unique characteristics 

compared to bulk materials; therefore, various 

research groups have devoted their effort to preparing 

of nanoparticles and using them in different 

applications [1-4]. Metal oxide nanoparticles have 

good stability, low poisonousness, and selectivity 

linked with organic substances [5-10]. They showed 

remarkable applications in catalysis, sensor devices, 

drug delivery, semiconductor materials, water 

treatment, and solid oxide fuels [7-12]. Among these 

metal oxides, Al2O3 nanoparticles are one of the 

nanostructures that have aroused keen interests of the 

materials science researchers owing to their wide 

applications such as  wear  protection, automotive 

emission control, hydrogenation, metallurgy, 

refractories, and catalysis in petroleum refining [13-

15]. These various applications of alumina are due to 

its interesting characteristics including high catalytic 

surface activity, good optical activity, high corrosion 

resistance, and high surface area [16]. Furthermore, 

because of hardness, non-volatility, and resistance to 

oxidation and rust, as well as high melting points of 

aluminum oxides, they were used in ceramics [17-

19]. Owing to their hollow porous microspheres, 

hierarchical architecture, and arranged mesoporous 

structure, aluminum oxides were also applied as 

adsorbents [20] for the removal of some organic 

compounds from aqueous media [21, 22], cosmetic 

fillers [23], polishing and packaging materials [24], 

and thermal conductivity enhancers [25].  

Furthermore, aluminum oxide is an amphoteric 

oxide and exists in various polymorphs such as  

gamma (ɣ-), delta (δ-), theta (ɵ-), rho (ρ-), eta (η-), 

kappa (ƙ-) and chi (χ)-alumina, in addition to its 

stable phase (alpha (α)-alumina, corundum) [26]. 

Among them, alpha- and gamma-alumina have 

attracted a significant attention of the research groups 

based on their unique characteristics; therefore, both 

polymorphs have various applications as mentioned 

previously [13-16]. It is worth mentioning that 

corundum (α-alumina) is the most 
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thermodynamically stable and desirable polymorph 

of alumina. It has also high mechanical properties, 

chemical stabilities, and temperature resistance [15]. 

Consequently, synthesis of ɣ- and α-alumina 

nanoparticles is of great interest. Aluminum oxide 

nanoparticles were synthesized by different 

techniques such as hydrothermal synthesis [27], 

plasma synthesis [28], freeze-drying of sulfate 

solutions [29], the sol-gel method [30, 31], laser 

ablation [32], controlled hydrolysis of metal alkoxide 

[33], and precipitation [34], precipitation and sol-gel 

process followed by calcination [35, 36], sputtering 

[37], electrochemical [38], mechanical milling [39], 

pyrolysis [40], homogenous precipitation followed by 

calcination [41], and metal organic chemical vapor 

deposition [42]. However, limitations of these 

approaches, for both ɣ- and α-alumina nanoparticles, 

are of great concerns such as long reaction time, 

uncontrolled particle size, a high-temperature 

requirement, and use of expensive and toxic organic 

solvents. Besides, the synthesized ɣ-alumina 

nanoparticles sill experience some drawbacks such as 

non-dispersive particles and large particle sizes [43]. 

Therefore, it was notably essential to develop an 

inexpensive, facile, synthetic method to synthesize 

both ɣ- and α-alumina nanoparticles at lower 

temperatures.  

In this study, we have developed a facile, 

inexpensive approach for gamma- and alpha-Al2O3 

nanoparticles via an auto-combustion method 

employing aluminum nitrate as oxidant and glycine 

fuel as a reductant. The synthesized nanostructures 

were characterized by X-ray diffraction (XRD), 

Fourier transforms infrared spectroscopy (FTIR), 

field-emission scanning electron microscope (FE-

SEM), high-resolution transmission electron 

microscope (HR-TEM), and thermogravimetric 

analysis (TGA). 

 

2. Materials and Methods 

2.1 Chemicals and Reagents 

All materials and reagents in the current study 

were used as received without further purification 

since they were of analytical grade. Aluminum nitrate 

nonahydrate (Al (NO3)3.9H2O) was supplied by 

Oxford Lab. Fine Chem. LLP, India. Glycine 

(NH2CH2COOH) was obtained from El-Nasr 

Pharmaceutical Chemicals Company (Adwic) 

Company, Egypt. 

 

2.2 Preparation of gamma- and alpha-Al2O3 

nanoparticles  

Aluminum oxide nanoparticles were prepared by 

utilizing an auto-combustion in which glycine fuel 

was used as a reductant (F), and aluminum nitrate 

was used as an oxidant (O). In this procedure, the 

determined stoichiometry of the employed redox 

mixture for the current combustion process was based 

on that the equivalence ratio, Φc, should be unity (i.e. 

Φc= (F/O)=1) to maximize the energy which was 

released from the combustion procedure. Where (O) 

is the total oxidizing valence of the oxidizer (i.e. 

aluminum nitrate) and (F) the total reducing valence 

of the glycine fuel [10, 44, 45]. In a typical 

preparation procedure: aluminum nitrate (Al 

(NO3)3.9H2O) (10 g, 26.67 mmol) and glycine fuel 

(NH2CH2COOH) (3.34 g, 44.54 mmol) were mixed 

and dissolved in 75 mL distilled water. The reaction 

blend was stirred at room temperature for ca. 15 min 

until a homogenous solution was obtained. The 

solution was then heated at ca. 80 ºC under constant 

stirring for 60 min until it gave a viscous liquid. 

Afterward, the temperature of the reaction blend was 

increased to ca. 350 °C, while the entire combustion 

was performed in ca. 10 min. During this, the 

reaction mixture underwent swelling and auto-

ignition with a rapid evolution of a large volume of 

gases producing voluminous powders. The burned 

materials were ground and calcined for 2 h at 800 and 

for 1 h at 1000 °C to produce gamma- and alpha-

Al2O3 nanoparticles, respectively. The schematic 

flowchart of the applied synthesis process is shown in 

(Scheme 1). 

 
Scheme 1. Flowchart for the preparation procedure of 

Al2O3 nanoparticles by an auto-combustion method. 
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Characterization 

The phase structure and purity of the as-

prepared materials were investigated by using an X-

ray diffractometer (Bruker, model D8 Advance) with 

Cu/Kα radiation (λ= 1.5418˚A) (Metallurgical 

Development Research Center, Cairo, Egypt). 

Surface morphology of the products were examined 

by using a field-emission scanning electron 

microscope (FE-SEM; model QUANTA-FEG-250) 

(Desert Research Center, Cairo,Egypt). The 

microstructures of the products were studies by suing 

a high-resolution transmission electron microscope 

((JEOL; model 1200 EX) at an electron voltage of 80 

kV (National Research Centre, Cairo, Egypt). The 

chemical structure of the products was further 

examined using FT-IR spectra measured on an FT-IR 

spectrometer (Thermo Scientific, model Nicolet iS10) 

in the frequency range of 400–4000 cm-1, Chemistry 

Administration, Ministry of Trade and Industry, 

Cairo, Egypt. The thermal behavior of as-prepared 

powder was investigated by using thermal 

gravimetric analysis (TGA) and differential thermal 

analysis (DTA) (Shimadzu; model TA-60WS), 

Microanalytical Center, Cairo University, Cairo, 

Egypt. The thermal analysis was performed at heating 

rate of 10 °C/min under nitrogen gas atmosphere and 

the sample was heated from room temperature until 

1000 °C.  

 

3. Results and Discussion 

 The applied solution auto-combustion 

process is based on applying the thermochemical 

concepts of propellant chemistry [10, 44, 45]. 

Stoichiometric compositions of the mixtures (oxidant 

– reductant) for the combustion approach were 

calculated based on that the total oxidizing (O) and 

reducing (F) valences of the oxidant (aluminum 

nitrate) and reductant or fuel (glycine) so as to obtain 

the equivalence ratio (ɸc) equal unity (i.e. ɸc = 

(oxidant/fuel) = 1). This approach was utilized in the 

current research to prepare gamma- and alpha- 

aluminium oxide nanoparticles. As such glycine was 

used as a fuel and chelating agent for the aluminum 

element of the Al(NO3)3, which oxidized the fuel at 

high temperature at the same time. This procedure 

results in release of high energy, which is sufficient 

for producing Al2O3 nanoparticles. The suggested 

combustion reaction between aluminum nitrate and 

glycine to produce Al2O3 nanoparticles can be 

expressed as given in Eq (1). 

 

The aforementioned combustion reaction gives rise to 

producing Al2O3 nanoparticles as well as emitting 

some gases such as CO2, H2O, and N2, which result in 

high porosity of the products prepared using this 

approach. The burnt alumina samples were then 

calcined at 800 and 1000 ºC to generate the target 

gamma- and alpha-Al2O3 nanoparticles. The products 

were identified by using different techniques like 

XRD, FT-IR, TGA/DTA, SEM, and TEM analysis, 

as will be shortly mentioned. 

3.1. X-ray diffraction (XRD) study 

The XRD patterns of the burnt sample and 

the products calcined at 800 ºC for 2h and 1000 °C 

for 1h, are presented in (Fig.  1). It was observed that 

the burnt sample has low crystallinity since Fig. 1(a) 

displayed only two broad peaks at 2θ = 45.9° and 66.9° 

corresponding to formation of γ-Al2O3 nanoparticles, 

(JPCDS  card number: 10-0425) [46],  directly after 

the combustion process. However, γ-Al2O3 product 

was impure for two reasons; (1) its grey color 

indicating the presence of much carbon content in the 

burnt sample, low crystallinity of the burnt product, 

which may contain other impurities with amorphous 

nature. Therefore, the crystallinity of this sample was 

enhanced by its calcination at the burnt sample 800 

ºC for 2h. As expected, this calcination step gave rise 

to pure γ-Al2O3 product with significant crystallinity. 

The diffraction peaks of the respective XRD pattern 

(Fig. 1(b)) appeared at 2θ of 31.10o, 37.44o, 39.67o, 

45.96o, 61.00o, and 66.97o could be matched well to 

the (220), (311), (222), (400), (511), and (440) crystal 

planes, respectively, of cubic γ-Al2O3 (JPCDS  card 

number: 10-0425) [46]. However, the appearance of 

diffraction peak at 2θ of 33.44 o can be attributed to 

the transformation of tiny amount of γ-Al2O3 phase 

into θ-Al2O3 phase [15]. 

In addition, further calcination of the alumina 

product at 1000 ºC for 1h generated pure α-Al2O3 

phase with significant crystallinity, as it is clearly 

seen from the XRD pattern (Fig. 1(c)) of this calcined 

alumina product. This XRD pattern displayed 

reflections at 2θ of 25.62o, 35.2o, 43.46o, 52.71o, 

57.67o, and 66.59o which are matched-well with the 

(012), (104), (113), (024), (116), and (214) crystal 

planes, respectively, of rhombohedral α-Al2O3 phase ( 

JPCDS  card number: 46-1212 ) [47]. No other 

diffraction peaks have been detected for other 

impurities nor other alumina phases. The average 

crystallite sizes (D, nm) of the as-prepared alumina 

nanoparticles were determined using the Debye-

Sherrer formula (2) [48]: 

         D=0.9λ/βcos(θB)                                 Eq. (2) 

Where, 0.9 is Scherrer’s constant, β is the 

full width at half maximum (FWHM) of the 

diffraction peak, λ (1.5406 A°) is the wavelength of 

X-ray radiation, and θB the Bragg diffraction angle. 

The estimated average crystallite sizes of γ-Al2O3 
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and α-Al2O3 nanoparticles were found to be 5.8 and 

15 nm, respectively. These values are smaller than 

reported by other research groups [41, 49]. 

 
Fig. 1. XRD patterns of the combusted (a) and the 

calcined alumina products at 800 °C (b), and at 1000 

°C (c). 

3.2.  FT-IR study 

              The chemical structures of the as-

synthesized γ-Al2O3 and α-Al2O3 nanoparticles were 

inspected by using FT-IR spectroscopy, as depicted 

in Fig. 2. The vibration bands appeared at around 

1641 and 3478 cm−1 for both FT-IR spectra could be 

corresponded to bending and stretching vibrations, 

respectively, of the adsorbed water molecules [3, 4]. 

Fig. 2(a) displayed two broad vibrational bands at 

552 and 842 cm−1, which can be assigned to Al–O 

stretching vibrations in an octahedral coordination 

(AlO6) and a tetrahedral coordination (AlO4) sites, 

respectively. These two bands are characteristics for 

γ-Al2O3 and these results are in good agreement with 

the XRD results and the published data [41, 50]. On 

the other hand, calcination of the alumina sample at 

1000 °C for 1h gave rise to FT-IR spectrum shown in 

Fig. 2(b). This spectrum revealed vibrational bands at 

ca. 639.3, 588.19, 495.62, and 449.34 cm−1, which 

can be attributed to  α-Al2O3 nanoparticles [51]. 

These results are also compatible with the XRD data. 

Besides, both FT-IR spectra exhibited weak 

vibrational bands abound 1100 cm-1, which may 

correspond to Al-O-H bonds [52]. Both This is a 

good agree with XRD results. 

 
Fig. 2. FT-IR spectra of ɣ-Al2O3 (a) and α-Al2O3 (b) 

nanoparticles. 

 

3.3. Thermal analysis study 

Thermal behavior of the combusted sample 

was investigated using TG and DTA analysis, as 

displayed in Fig. 3. The TG curve of the combusted 

sample revealed four regions of mass losses. The 

first decomposition step (mass loss of 4.05%) 

observed in the temperature range 60 – 220 °C might 

be attributed to the dehydration of residual water 

content absorbed on the surface of the combusted 

sample. The second decomposition step (mass loss of 

2.52%) appeared within a temperature range of 220-

563 °C is probably due to dual decomposition of 

carbon content dehydration of Al-OH groups forming 

ɣ-Al2O3. This TG curve showed also a small third 

degradation step (mass loss of 0.40%) may be 

assigned to the decomposition of some organic 

content and dehydration of the remaining Al-OH 

groups forming ɣ-Al2O3. The last mass loss appeared 

in the temperature range of 660-860 °C, which may 

correspond to the decomposition of of the remaining 

carbon residue leaving behind pure ɣ-Al2O3, and this 

step is accompanied by mass loss of 5.0%. Then the 

mass of the sample remained constant after 860 °C. 

Moreover, Derivative thermogravimetric curve 

(DTG; Fig. 3) confirmed the TG data by revealing 

clearly the first, third and fourth steps at ca. 100, 575, 

and 790 °C, respectively.  Differential thermal 

analysis (DTA) curve supported the results gained 

from TG data. The DTA curved exhibited two strong 

endothermic peaks at 173 and 870 °C, which are 

simultaneously parallel to the first and fourth steps in 

the TG curve. These are probably, as previously 

mentioned, due to the elimination of adsorbed water 

molecules and decomposition of the remaining 

carbon content. Notably, the second and third 

decomposition steps in the TG curve were merged in 

the DTA curve into one broad step centered at around 

520 °C. 

  
Fig. 3. TG, DTG, and DTA curves of the combusted 

sample. 

 

3.4. Morphological investigation 
Morphological characteristics of α-Al2O3 

nanoparticles calcined at 1000 °C for 1h were 

investigated by utilizing FE-SEM and TEM 
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techniques, as displayed in Fig. 4(a,b). It is clearly 

seen from FE-SEM image (Fig. 4(a)) that the α-Al2O3 

product is composed of agglomeration of irregular 

and leave-like morphologies. The TEM image of the 

α-Al2O3 product (Fig. 4(b)) revealed that the alumina 

product consists of hexagonal and irregular particles 

of an average particle size of 16.2 nm. Fig. 4(b) also 

showed that the α-alumina product is not totally 

agglomerated and somewhat dispersed.  In addition, 

the HR-TEM image (Fig. 4(c)) of the alumina 

product calcined at 1000 °C obviously revealed 

fringes, which are oriented in various directions 

(planed with circles) corresponding to the different 

planes. These results also confirms the 

polycrystalline nature of α-Al2O3 nanoparticles, 

which are in consistent with the published results. 

 
Fig. 5 FE-SEM image (a), TEM images (b), and 

HRTEM fast Fourier transform (FTT) (c) of the as-

prepared α-Al2O3 nanoparticles.  

 

4. Conclusions 

In conclusion, γ-Al2O3 and α-Al2O3 nanostructures 

have been prepared by using a facile, inexpensive, 

economical auto-combustion approach. In this 

method aluminum nitrate and glycine fuel were used 

as an oxidant and a reductant, respectively. 

Controlling the calcination temperature tuned the 

produced alumina nanoparticles. Lower calcination 

temperature generated γ-Al2O3 nanoparticles while 

higher calcination temperature produced α-Al2O3.  By 

adapting this method, the average crystallite sizes 

were 5.8 and 15 nm, respectively, for γ-Al2O3 and α-

Al2O3 nanoparticles. The prepared alumina 

nanoparticles were of low degree of agglomeration. 

Accordingly, the adapted method can be proposed for 

synthesis of various alumina phases, easily and 

economically. 
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