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Abstract

The adsorption of Hz2 in dehydrated and hydrated Materials of Institute Lavoisier (MIL-101) was investigated theoretically. The
effect of terminal water molecules on adsorption as one of the more vital MIL-n trivalent chromium-based porous carboxylates
in metal-organic frameworks application in the renewable energy field was also theoretically studied. The MIL-101 structures
were optimized for geometry and energy minimization was performed. The calculations were carried out using density
functional theory approach with B3LYP functional and mixed basis set of Lanl2DZ and 6-31G(d, p) for Cr and light atoms (C,
H, O, F), respectively, as implemented in the Gaussian 09 program package. The spin and atomic charges distribution on the
Cr metal atoms, adsorbate, and water molecules are calculated using natural bond orbital (NBO). The density of states (DOS)
for the clusters was obtained using Gaussian smearing of Kohn—Sham orbital energies. The natural bond orbital (NBO) for
molecular orbital analysis and atomic charge calculations were utilized. For the dehydrated MIL-101, more adsorbate molecules
were found near the exposed Cr sites than the fluorine saturated Cr: sites. Furthermore, terminal water molecules in the
hydrated MIL-101 made more interaction sites and enhanced adsorption.

Keywords: Metal-organic frameworks; Mil 101; Hydrogen Storage; DFT; Adsorption energy.

1. Introduction Typical gas storage methods require extremely high

In view of increasing demand worldwide, the
development, handling, and processing of energy have
become a priority. Nonetheless, this must be
sustainable and consistent with the climate. To achieve
reliable and cost-competent alternative energy
sources, these fundamental issues must be addressed
correctly and prepared for market readiness by 2030
[1]. Over the past three decades, there has been a
sustained research activity in hydrogen gas storage
[1,2].

pressure, leading to high safety issues in large storage
tanks and relatively high energy consumption at the
gas processing and development stage [3-5]. Both of
these limitations are major obstacles to production and
call for materials that can store large amounts of gas
under standard conditions in safe environments [5-7].

So, a group of porous cooperation polymers,
consisting of metal ions connected to one another by
organic bridges, described as Metal-Organic
Frameworks (MOFs) are explored due to their
extremely high surface areas (up to 10,000 m?/g),
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porosity (up to 90 percent), and tunable pores with
volumes (1-4 cm®/g), which are the most appealing
characteristics [8-10]. They are considered as an
alternative tool for gas storage and purification,
particularly for the reduction of environmental
pollution and energy crises [10,11].

Materials of Institute Lavoisier Chromium, as MIL-
101(Cr), has been investigated for different energy
applications as one of the most vital prototypical
metal-organic frameworks (MOFs) for its high stable
humidity, good thermal efficiency, exceptionally large
pore volumes and surfaces, and for its multiple
unsaturated chromium sites [12]. MIL-101(Cr) has the
empirical formula of [Cr3(0O)X(BDC)3(H.0).] (BDC =
benzene-1,4-dicarboxylate, X = OH or F) with two
types of internal cages with diameters of 29 and 34 A,
pore aperture window diameters of up to 16 A, and
Brunauer-Emmett-Teller (BET) surface area of 4000
m?/g [13]. Hydrated MIL-101(Cr) contains terminal
water molecules that can be removed under a high
vacuum and thus create possible Lewis acid sites
linked to an octahedral trinuclear Cr(111)s0 building
system [14] to the dehydrated MIL-101(Cr).

In the literature, MIL-101 (Cr) has been extensively
investigated in an attempt to enhance its H, uptake that
has been recently reported to be 6.2 wt.% at 77 K, 80
bar, and BET surface area of 4100 m?/g [14, 15].

In this work, we will estimate the hydrogen gas
adsorption capability of the MIL-101 (Cr) in both
hydrated and dehydrated structures and will explain
the physical interaction between gas molecules and the
MOF. Also, we will search for the most favorable
adsorption sites of gases via computing the adsorption
energy and then analyze electronic properties based on
the van der Waals dispersion-corrected density
functional theory calculations.

2. Experimental

In this study, geometry optimization and energy
calculations were carried out by the hybrid generalized
gradient approximation B3LYP method (Becke’s
three-parameter exchange functional and the
correlation functional from Lee, Yang, and Parr) [16,
17]. Mixed basis set of Lanl2DZ [18] and 6-31G(d, p)
[19] for Cr and light atoms (C, H, O, F), respectively,
that utilizes the Los Alamos National Laboratory 2
double zeta core potential on the transition metal were
included. Pople-type double zeta basis set with
polarization functions on all other atoms with
Gaussian 09 software package [16] was used. The
dispersion corrections for the non-bonding van der
Waals interactions were included using Grimme’s
DFT-D3 method [20] to avoid double-counting of
electron correlation effects.

Adsorption energies (KJ/mol) were determined
from the equation between the gas and MOF clusters
as;

Eags = EMOF-gas_ Ewmor — Egas (1)
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where Emor-gas, Emor, and Eg.s are the total energies of
the optimized geometries of MOF cluster alone with
the isolated adsorbed gas molecule, the MOF cluster,
and the gas molecule, respectively.

The Natural Bond Orbital [21] were used for the
distribution of spin and atomic charges on the Cr metal
atoms, Adsorbate and Water molecules. The density of
states [22] for the models was obtained using Gaussian
smearing of Kohn—Sham orbital energies.

3. Results and Discussions

According to MIL-101(Cr) empirical formula
discussed before [13], CrsO trimers and 1,4-
benzenedicarboxylic acids are combining the MIL-
101 by assembled shared corner super tetrahedron
with 8.6 A free aperture micropores where the four
vertices and six edges are occupied by the trimer and
organic linker, respectively, resulting in a three-
dimensional MTN zeotypic structure with a very high
volume of cells (~702000 A3) [23].

Each Cr is linked to 4 carboxylate oxygen-based
atoms, 1 p30 oxygen-based atom and 1 terminal site.
A fluorine atom or a terminal water molecule might
occupy the terminal site. As a result, three-terminal
sites are available for each Cr30 trimer, with fluorine
to water ratio of 1:2. Upon dehydration, terminal
waters can be extracted and exposed Lewis acid sites
in MIL-101 are thereby given. We considered the
structures involved fluorine terminal atom and overall
charges of different investigated MIL 101 are zero also
based on previous work [23].

Figure 1 displayed the optimized structures of
MOF, gas and MOF-Gas with terminal fluorine and
saturation of cleavage bonds of Cr30 by methyl group.
The optimized structures are symbolized by MIL101
(hydrated), MIL101 (dehydrated), H2 gas, MIL1,
MIL2, MIL3, MIL4 for MOF (MIL-101 (Cr)) in both
hydrated and dehydrated then hydrogen gas then
MOF-Gas structures in hydrated and dehydrated
forms, respectively, and four positions of entering
hydrogen: Posl (Cr2-F), Pos2 (Cr1-O-H2) then Pos3
(Cr2-F), Pos4 (Cr1-O-H2).
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)
Fig. 1. Optimized geometry: (a) MIL101 (hydrated), (b) MIL101
(dehydrated), (c) H, gas, (d) MIL1, (e) MIL2, (f) MIL3,(g) MIL4.

Also, table 1 lists the zero-point energy (ZPE),
thermal energy corrections (E correction), Hartree—
Fock (HF) energy , Energy at 0 K (EO) and Energy at
298 K (E298) , respectively for MIL 101 in the two
forms, gases and MIL101-Gas compounds.

(d)
Table 1. Total energies of MOFs, Gases and MOF-Gas species in atomic units.
Species ZPE E correction HF EO E 298
MIL101 (Hydrated) 0.861 0.928 -3344.88 -3343.95 -3343.95
MIL101(Dehydrated) 0.810 0.873 -3344.80 -3191.08 -3343.93
H, gas 0.010 0.012 -1.178 -1.16 -1.16
MIL 1 0.875 0.945 -3346.06 -3345.19 -3345.12
MIL 2 0.874 0.945 -3346.06 -3345.19 -3345.11
MIL 3 0.824 0.889 -3193.14 -3192.31 -3192.25
MIL 4 0.822 0.888 -3193.13 -3192.31 -3192.25
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In table 2, energies of band gap in electron volt
and calculated adsorption energies in KJ/Mol were
listed. It was noticed that, the band gaps (Eg) for the
dehydrated species of MOF and MOF-GAS are 3.66
and 3.54 eV, respectively, which are more stable than
the hydrated ones (4.12 and 4.16 eV). On the other
hand, the adsorption energies are -0.74, 2.215, -17.17
and -11.42 KJ/mol for MIL 1, MIL 2, MIL 3, and
MIL 4, respectively. These values stated that
hydrated forms have relatively better adsorption
behavior than the dehydrated forms.

Table 2. Energies of adsorption and band gap energies for MOFs
and MOF-Gas species.

Species Eg (eV) Eads (KJ/mol)
MIL101 (Hydrated) 4.12
MIL101(Dehydrated) 3.55 -

MiL 1 416 -0.74
MIL 2 412 2.215
MIL 3 3.66 -17.17
MIL 4 3.55 -11.42

To rationalize the observed changes in the band
region, the density of states (DOS) of hydrated form
are higher than dehydrated forms. As shown in
Figure 2, the DOS of MIL 101 forms (a, b) are
characteristic of increased band gap of 3.55 eV for
the dehydrated form to 3.66 eV of MOF-gas
compounds. Also, the band gap was slightly
increased, and a mid-gap state appeared at around
4.12 to 4.16 eV for hydrated MOF and hydrated
MOF-GAS compounds, respectively. So, it appears
that the Fermi level was mostly dominated by the
contribution from the chromium atoms (near valence
band). DOS of H; gas doesn't affect the band gap due
to its buried orbitals.
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Fig. 2. Total density of states spectrum: (a) MIL101 (hydrated),
(b) MIL101 (dehydrated), (c) MIL 1, (d) MIL 2, (e) MIL 3, ()
MIL 4.

According to figure 3, the total atomic charges Cr
are noticed higher than oxygen and fluorine. For the
dehydrated MIL-101, more adsorbate molecules
were found near the exposed Cr2 sites than the
fluorine saturated Crl sites. Furthermore, terminal
water molecules in the hydrated MIL-101 vastly
made interaction sites and enhanced adsorption.
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Fig 3. NBO: (a) MIL101 (dehydrated), (b) MIL101 (hydrated), (c)
MIL 1, (d) MIL2. (c) MIL 3, (d) MIL4.

4. Conclusions

In this paper, Adsorption energies of H in both
hydrated and dehydrated MIL 101 (Cr) with density
functional theory where we showed the higher
selectivity of hydrated form of MIL 101 than the
dehydrated form. Furthermore, less stability of the
hydrated form was noticed than the dehydrated one
at 298 K and 1 bar.

Egypt. J. Chem. 64, No. 3 (2021)

The present findings indicated that molecular
modelling is an important tool for elucidating several
parameters to fulfil the experimental findings. This is
in good agreement with those obtained previously
[24-40].
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