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SAmARIum zinc sodium phosphate glasses doped by different Er2O3 concentrations were 
prepared using a conventional melt quenching technique. The structural properties due to the 

influence of Er+3 ions on the presented glass network were investigated. XRD pattern confirms 
samples amorphousity. Surface morphology using SEm proved the non-crystallinity and the 
homogeneity of the samples. The elemental composition using EDAX analysis gave an acceptable 
mass percentage of the constituent’s elements. FTIR revealed the formation of Non-Bridging 
oxygen (NBO). The measured density, molar volume, ion concentration, interatomic distance, 
polaron radius and field strength have been studied with respect to the concentration of Er+3. 
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Introduction                                                                  

The effect of rare-earth ions RE on glass network 
becomes one of the hot topics in glass science. 
Recently, glasses doped with (RE) oxides have 
received enormous attention due to their peculiar 
properties in different technological applications 
such as optical communication field [1], solid-
state lasers such as mid-IR fiber laser [2] and 
frequency converters [3] . Great efforts have been 
done to search for host materials that are suitable 
for RE. 

Glasses play a significant role for device 
applications cause they exhibit special advantages 
as the isotropy of its physical properties and the 
low cost of preparation [4]. The most interesting 
advantages of using the glasses as host materials 
are the possibility to shape through a simple and 
highly productive manufacturing process [5].

Glasses doped with rare-earth elements are 
known by their excellent chemical and physical 
properties like the higher chemical durability, 
inflater hardness, and elastic modulus due to the 
exaggerating field strength of these glasses than 
other traditional modifier cations  [6]. Among 

the glass matrices, phosphate glasses present 
distinct optical properties such as large infrared 
transmission window, low melting point, and 
high gain intensity. The high gain intensity in 
phosphate glass is due to the unique nature of high 
solubility of activator ions doped into a relatively 
small volume [7]. However, the disadvantage of 
phosphate glasses is the weakness of chemical 
durability which has been overcome by the 
injection of alkali and alkaline earth metal oxides 
[8]. In general, RE cations are used mainly as 
a modifier for glasses network such that they 
combine with the space between PO4 tetrahedral 
because Lanthanide’s ionic radius decreases with 
the increasing of their atomic number, also, their 
field strength changes continuously with the change 
of the ionic radius [9]. This variation causes many 
various physical properties [10]. The tetrahedral 
phosphate PO4 connected in the vitreous P2O5 
by three corners of oxygens and the fourth one 
is doubly bonded [11]. The incorporation of any 
RE ion (modifier) in phosphate glasses results in 
the breaking down of the bridging bond of P–O–P  
bonds and  the formation of a non- bridging 
bond of  P–O–RE bonds [12]. According to the 
number of the bridging oxygen the structure of 



1956

Egypt. J. Chem. 63, No. 5 (2020) 

A. A. ElbAkEy  et al.

the tetrahedral PO4 could be described by a code 
Qn used by Lippma et al. [13] where (n=[0,1,2,3] 
and represents the number of bridging oxygen). 
The Q3 site denotes a fully polymerized neutral 
unit of structure, Q2 is a structure based on chains 
and rings and it has a negative charge, Q1 means 
two corner-sharing tetrahedral units and Q0 means 
isolated tetrahedral [14]. Vibrational spectroscopy 
such as FTIR has been utilized to investigate the 
structural properties and identify the fundamental 
structural units which are very prerequisites for 
understanding the complex multicomponent 
systems [20,21]. 

Among the Lanthanides phosphate glasses, 
Er3+  doped glasses are especially attractive 
for numerous applications such as microchip 
lasers, erbium-doped  fiber amplifiers  (EDFA) 
in wavelength division multiplexing (WDm) 
systems, near-infrared telecommunication 
windows, and eye-safe laser systems [15]. 
Doping with Er+3 singly in glasses produces 
small absorption and emission cross-sections. 
While the codoping with other RE produces 
energy transfer between their levels and causes 
the needed enhancement [16]. many research has 
been done on studying glasses doped with pairs of 
RE especially with Er+3 ion e.g. Yb+3/Er+310, Pr+3/
Er+3 [18] and Sm+3/Er+3  [19]. 

In this paper, the influence of Er3+ ions on the 
structural properties of samarium zinc sodium 
phosphate glasses has been reported by employing 
various characterization techniques such as FTIR, 
XRD, SEm, EDX, and Density.

Experimental work                                                            

High purity of (NH4)2HPO4, Li2CO3, ZnO, 
Na2CO3, Sm2O3 and Er2O3  were used to prepare 
a series of phosphate glasses in the chemical 
formula 40P2O5-20ZnO-10Li2O-Sm2O3-(29-x) 
Na2O-xEr2O3  as tabulated in Table 1, where x = 
0, 1, 2, 3 mol %. The starting materials accurately 
weighed and the batches were mixed and grinded 
well in an agate mortar. In order to remove 
bubbles, undesired gases and obtain homogeneous 
optical glass, a semi-continuous melting process 
is adopted. The batches were melted in a porcelain 
crucible at 1100 oC for one hour. The melt was cast 
onto a preheated brass mould at 300 oC to prevent 
the fast cooling. To reduce the internal strain, the 
glasses were annealed at 200 ◦C for 4h and then 
left the furnace to cool down to room temperature. 
X-ray diffraction (XRD) patterns were carried out 
using the Philips X’Pert system, working at Cu Kα 

radiation (λ = 1.54056 Å). Surface morphology 
and elemental composition of glasses were 
studied using a scanning electron microscope 
(SEm) accompanying Electron Dispersive X-ray 
spectroscopy (EDAX) (quanta-FEG250). Fourier 
Transform Infrared (FTIR) spectrometer, Perkin 
Elmer spectrometer, RTX, was used to study the 
local structure of the prepared glasses. The density 
of the samples was measured by the Archimedes 
principle using Toluene as an immersing liquid.

Results and Discussion                                                         

X-Ray Diffraction (XRD)

XRD spectra of the prepared samples are 
shown in Fig. 1. The absence of sharp peaks in 
XRD patterns indicates the non-crystallinity of 
the prepared samples [18,19] SEM & EDX

The SEm analysis indicates the nature of 
homogeneity, moreover, the absence of any feature 
or particle formation assuring the amorphousity 
state of the presented glass samples. As shown in 
Fig. 2 (a, b) for Sm0Er0 and Sm1Er0 respectively. 
The elemental composition results of EDAX 
are in good agreement with the calculated mass 
percentage of the batch’s composition especially 
the presence of Sm+3 ions by (nearly 1 mol%) as 
presented in Fig. 2 (c, d) for Sm0Er0 and Sm1Er0 
respectively [24]. 

FTIR analysis

Fig. 3 shows the FTIR spectra in the range 
between 1400 and 400 cm-1 of all prepared 
samples. The row data were deconvoluted using 
eight independent Gaussian components shown in 
Fig. 4.(a,b,c,d,e). The bands in the range of 460 – 
418 cm-1 were assigned as the bending vibrations 
of O-P-O units, δ (PO4) modes of (PO2) in chain 
groups [25]. The bands about 552-568 cm-1 were 
assigned to O-P=O bending vibration [26]. The 
absorption bands υas(P–O–P) and υs(P–O–P) 
occurring around 889-905 cm-1 and 736-749 cm-1 
are assigned to the asymmetric and symmetric 
stretching of the bridging oxygen atoms bonded to 
a phosphorus atom in a Q2

 phosphate tetrahedron 
respectively [27]. The bands near 977-988 cm-

1  were assigned to the symmetric stretching 
vibration of P-O- mode in the Q1, while the strong 
IR band located about 1100 cm-1 was related to the 
asymmetric stretching vibration of the P-O- mode 
in the Q2 units [28]. The Peaks in spectral range 
1174-1196 cm−1 occurred due to PO2 symmetrical 
stretching although bands near 1282-1264 cm–1 
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Fig.1: XRD patterns of the prepared samples at different concentrations of Er+3.

Fig.2: (a,b) SEM for Sm0Er0 and Sm1Er0 respectively.

Fig.2 : (c,d) EDX for for Sm0Er0 and Sm1Er0 respectively.
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may be attributed to asymmetric stretching mode 
of the two non-bridging oxygen atoms bonded to 
phosphorus atoms, the O–P–O or (PO2) υas units, in 
the phosphate tetrahedral and the stretching mode 
of P=O double bonds. These two bands, (PO2) as 
and P=O, are overlapped to form broader bands 
in the spectra [29]. The main assignment of FTIR 
spectra for the deconvoluted bands for the studied 
glass samples is listed in Table 2. 

The injection of Er+3 and Sm+3 ions into the 
phosphate glass caused a serious change in the 
metaphosphate glass which observed by the 
changes occurred in the intensities and the positions 
of peaks. It clearly appeared from Fig. 3 that all 
positions of the  IR peaks slightly shifted towards 
the higher frequency, This shifting is attributed 
to the decreasing in the bond length confirming 
the formation of NBO in the system as reported 
in[30]. It is observed that the intensity of the 
bridging bond (P-O-P) which is centered at (737-
746) cm-1 decreased quietly by the introducing of 
the modifiers Sm+3 and Er+3 ions. The addition 
of rare earth elements caused a breaking down 
of the polymerized chains of the phosphate glass 
to depolymerizing phase forming more NBO31. 
In the presented system, the doping of Sm+3 and 
Er+3  ions are at the expense of Na2O ions, and it is 
known that the addition of alkali oxide i.e (Na2O) 
easily caused breaking in the bridging bond and 
forming NBO[25]. The decreasing of (Na2O) with 
(30-26)% mole concentration in the presence of 
increasing rare-earth ions caused no more long-
chain existed in the glassy system confirming the 
huge amount of non-bridging bonds [13]. So the 
non-bridging bond (P=O) which is peaked around 
(1252-1277) cm-1  increased slowly and seemed to 
had almost a constant intensity by the influencing 
of Sm+3 and Er+3 ions. 

Density and Molar volume

Fig. 5 shows the variation of density and molar 
volume with the influence of Er2O3 ions. Firstly, it 
is observed that the density of the blank sample 
(Sm0Er0) which is free from modifiers increased 
by 12% and decreased by 8% in the molar 
volume due to the singly doping of Sm2O3. By the 
introducing of erbium oxide, the density increases 
slightly in a gradual manner. This behavior 
attributed to the doping of higher molecular weight 
of Sm+3 and Er+3 than Na- [32], on the other hand, 
the molar volume (Vm) has two different regions 
in the same respect. The first region represents 
decreasing in the molar volume which indicates 

that the ionic radius of the modifiers are smaller 
than the interstices of the system network [16], 
while the enlarge in molar volume above 1 mol % 
of Er2O3 is due to the formation of non-bridging 
oxygens (NBOs) and opens up the structure of the 
prepared glass network [33]. The open structure 
may be also due to the inability of the voids of 
the phosphate network to accommodate such 
modifier ions without any expansion of the glass 
matrix [34]. 

The average distance between phosphorous 
ions, dp-p and  the molar volume that contains 
one mole of phosphorous  were determined using 
equations (1, 2) [24].

where, is the Avogadro’s number and  is the 
mole fraction of P2O5.

The ionic concentration Ni, interatomic 
distance ri, and polaron radius rp and the field 
strength F have been calculated as a function of 
Er+3 according to the following equations [29-30-
37].

where   is the sample’s density, Ci, mw and z 
are the mole concentration %, molecular weight 
and the oxidation number of Er+3 ions respectively. 
From Fig. 6 It is observed that the   follows the 
same trend as the molar volume which confirms 
that the doping of Er+3 beyond 1 mol % causes 
the formation of non-bridging oxygen NBO 
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Fig.3: FT-IR absorption spectra of the prepared samples for different concentrations of Er+3.

Fig.4: (a,b,c,d,e) FTIR spectra for the presented samples with deconvolution fitting.
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Fig. 5: Density and Molar volume of the prepared samples with different concentrations of Er+3 ions.

Fig.6: The average distance between phosphorous ions, dp-p with different concentrations of Er+3 ions.
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Sample P2O5 ZnO Li2O Na2O Sm2O3 Er2O3

Sm0Er0 40 20 10 30 0 0

Sm0Er1 40 20 10 29 1 0

Sm1Er1 40 20 10 28 1 1

Sm1Er2 40 20 10 27 1 2

Sm1Er3 40 20 10 26 1 3

No. Vibrational modes Q modes Range presented

1 Bending vibration of O―P―O,  δ 
(PO2) modes of (PO-2) chain groups.

447-422

2 Bending vibration of  O-P=O 533-551

3 υs(P–O–P) Q2 737-746

4 υas(P–O–P) Q2 889-903

5 υs(P-O-) Q1 969-986

6 υas(P-O-) Q2 1102-1114

7 υs(PO2) 1173-1197

8 υas(PO2) and Stretching mode of P=O. Q2 1252-1277

Sample Sm2O3 Er2O3 Ni x  1020 (ion /cm3) dp-p (nm) (nm) F x1014 (cm)2

Sm0Er0 0 0 0 0 0 0

Sm1Er0 1 0 0 0 0 0

Sm1Er1 1 1 1.81 1.7 0.71 0.9

Sm1Er2 1 2 3.53 1.4 0.57 1.49

Sm1Er3 1 3 5.22 1.2 0.50 1.94

TAbLE 1: The chemical composition with concentration (mol %) of the prepared samples.

TAbLE 2: Assignment for the deconvoluted peaks with the vibrational modes.

TAbLE 3: Ion concentration, the interatomic distance, polaron radius, and field strength with respect to the 
concentration of Er+3 ions.
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which gives a reason for the opening structure 
phenomena. As shown in Table 3, the space around 
Er+3 ions represented as ri decreases by increasing 
the concentration Ni,  both the interatomic distance 
ri and polaron radius rp decrease with the increasing 
of the Er+3 ion concentration. This inverse behavior 
may be attributed to the increase in the field strength 
between atoms or the stretching force constant F38.

Conclusion                                                                           

Samarium oxide doped phosphate glasses 
with different concentrations of Er+3 ions were 
prepared using a melt quenching technique. The 
XRD pattern proved the amorphousity nature 
of the prepared glasses. SEm analysis enhanced 
the X-ray results. The data evaluated using 
EDAX and the elements’ concentration existed 
in the batch are in a reasonable agreement. The 
quantitative analysis using FTIR demonstrated the 
transformation from Q3 sites into Q2 and Q1 with 
no evidence of Q0 site confirming the presence 
of NBO. The measured density increased by the 
influence of the concentration of Er+3 ions. The 
molar volume revealed the formation of NBO. 
The inversely proportional between interatomic 
distance, polaron radius, and field strength 
also confirmed the change in the glass network 
structure due to the formation of NBO. 
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