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In this work, the adsorbent method is performed using artificial neural network (ANN) modeling.
The adsorbent is applied for removal of Thiocyanate in water samples using Titanium Dioxide
(TiO2) nanoparticles as effective sorbent. Prediction amount of Thiocyanate removal was
investigated with novel algorithms of neural network. For this purpose, six parameters were
chosen as training input data of neural network functions including pH, time of stirring, the mass
of adsorbent, volume of TiO2, volume of Fe (III), and volume of buffer. Performances of the
suggested methods were examined using statistical parameters and found that it is an efficient,
effective modeling satisfactory outputs. The radial basis function (RBF) and Levenberg-Marquardt
(LM) algorithm could accurately predict the experimental data with correlation coefficient of
0.997939 and 0.99931, respectively. The Pearson's Chi—square measure was found to be 29.00 for
most variables, indicating that these variables are likely to be dependent in some way.
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Introduction

In biomedical fluids, determination of
Thiocyanate is associated with biomedical
and toxicology [1-3]. These compounds would
cause some serious effects, especially on the
Nervous system, including Alzheimer’s disease,
nervousness, hallucination, psychosis, delusion,
and seizure [4]. Negative effects of this substance
decrease by increasing the molecular mass of
Thiocyanate alkyl [5]. This substance is found
in industrial waste-water, pesticide residues, and
organic metabolism. Thiocyanate is released as
the main product of detoxification and reforming
of Hydrogen Cyanide. It is synthesized from a
connection between existing sulfur molecules
such as thiosulfate and cyanide and, eventually, is
catalysed by Rodz enzymes [6,7]. These particles
exist in all eatable plants, water solutions, urine,

saliva, and human plasma [8]. So, there is
always conjunction between cyanide in blood,
Thiocyanate in plasma, and Thiocyanate in saliva.
This anion distributes its negative charge between
sulfur and nitrogen almost the same. As a result,
it can be treated as a nucleophile such that two or
three metal can join to it. The anion also connects
to Thiocyanate from N side if the metal is a hard
acid and connects from S side if it is a soft acid
[9]. The first study concerning the determination
of Thiocyanate particles in biological fluids was
conducted based on spectrophotometric detection
and intricacy of colors [10].

Some methods frequently applied for the
removal of metals are precipitate [11], ion
exchange [12], severe filtrations [13], adsorptions
[14,15], membrane separation [16], and
constructed wetlands [17]. In comparison with
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other methods, adsorption often can be considered
as a superior particle removal method because of
its cost-effective, easy setup, flexibility and high
efficiency [18]. Researchers are more interested
in nano-sorbents because of their sorbent particle
size and surface treatment, which causes the high
chemical reactivity and increases the interference
between absorption and adsorption material
[19,20]. The concentration range of nano-sorbents
is 1-1000 ppm owing to the removal of pollutants
[21]. During recent years, different studies have
been done for removing Thiocyanate. TiO,, is
also known as Titanium Oxide (IV) or Titania,
White Titanium, and White Pigment when used
as a pigment. All properties of TiO, exist in nano-
TiO, just, except that its particles are very smaller,
which leads to its additional extraordinary
properties. It has a larger surface and a higher
efficiency owing to its smaller particle sizes. Two
important properties of this substance that make it
so efficient and useful are being auto-cleaner and
photo-catalytic.

When the size of TiO, particles, decreases
to nano-scale, the photo-catalytic activity can
increase due to the increase in the effective surface.
TiO, is used to remove organic pollutants such
as Toluene, surfactants, insecticides, aromatic
sulfides, hydrocarbons, and organic dies [22].
This oxide usually is used as a reliable substance
for eliminating some detrimental particles,
especially in environmental usages [23]. Some
of the merits of TiO, include being a suitable
adsorbent, chemical and physical stability,
nontoxic, resistance to rusting, and economical
justification [24].

Unlike most researches which use
photocatalytic methods, in this study, the
mechanism of removal of Thiocyanate with TiO,
is based on a reversible physical adsorption. In
this method, the adsorbed Thiocyanate can be
easily extracted from adsorbent and there is no
need to use a modifier to adjust the surface of the
nanoparticles. Furthermore, nanoparticles can
be used several times which in turn, shows the
high performance of the method. Modeling the
removal process allows evaluating the influence
of every parameter and simulation of the removal
efficiency with a lower number of experiments. In
this regard, random forest (RF), adaptive Neuro-
fuzzy inference system (ANFIS), least squares
support vector machines (LS-SVM), and artificial
neural network (ANN) as some intelligent models
are efficient for predicting the adsorption process

Egypt. J. Chem. 63, No. 2 (2020)

[25,26]. ANN represents a promising modeling
technique, especially for data sets having non-
linear relationships. It requires no knowledge of
the data source and can combine and incorporate
both literature-based and experimental data to
solve problems. In this study, the capability of
artificial neural network (ANN) was investigated
for predicting metal ions removal. In this regard,
ANN was compared with the experimental data to
determine the relationship of six input parameters
on Thiocyanate adsorption capacities: pH, time
of stirring, the mass of sorbent, volume, and
concentration of TiO,, and volume of Fe (II) [27].
The novelty of the present study is using neural
network functions in anticipating the removal
of Thiocyanate in the prepared water samples.
The available neural network algorithms predict
removal percentage values instead of doing all of
the required experiments. Reducing the cost of
raw materials and reducing the use of expensive
laboratory equipment and instruments are among
the advantages of this method. Also, it can lead to
less time needed for the analysis and conclusions.
In the present study, the ability of radial basis
function and multi-layer perceptron algorithms
are assessed to predict the amount of removed
Thiocyanate and, eventually, the performance of
the neural network method is tested by the valid
statistical criteria. Two algorithms, including
multilayer perceptron (MLP) and radial basis
function (RBF) were used to evaluate the
performance of method. The results showed that
two models satisfactorily predicted the adsorbed
amount of Thiocyanate from wastewater [28].

Experimental
Material and methods

Solid Iron (III) Chloride (purity = 99), solid
Potassium Thiocyanate (purity= 99-100), solid
Sodium hydroxide (purity= 99-100) and other
materials with a high purity were supplied from
Merck Company (Germany). TiO, adsorbent
(purity = 99.5-100) was purchased from Neutrino
local company.

For two beam spectrophotometer, model Lambda
135 (manufactured by Perkin-Elmer) was used.
In addition, a 1cm TB glass was applied for the
adsorption of the Iron-Thiocyanate color complex
in A = 456.8 nm and drew a spectrum. pH meter
model F-11 (manufactured by Horiba Company,
Japan) was used for pH control in aqueous
solutions. Weight measurements were done using
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a balance (model BP210D, weight capacity =
200 g, and precision = 0.0001) manufactured by
Sartorius company in Switzerland. Pyrex glass
containers such as a volumetric flask, bécher,
pipette, Erlenmeyer flask, and glass stirrer were
used. A centrifuge H-11n (manufactured by
Kokusan Company, Japan) was used for the
centrifuging the synthesized particles. For taking
transmission electron microscopy (TEM) photos,
a Leo 906 device manufactured by Germany was
applied. A syringe filter manufactured by the
Chinese Biofil Company (pore size = 0.22 um
and maximum bear the pressure = 4.5 bar and as a
disposable) was also used during the experiments.

Preparation of samples for analysis
Iron (III) solution (0.1 molL")

First, using a digital balance, 2.70 g of Iron (III)
chloride hexahydrate was carefully weighed and
was transferred to a 100 ml volumetric flask. Next,
it was solved in a small amount of water and was
brought to volume by adding fresh distilled water.

Thiocyanate solution (1000 ug.ml")

Using a digital balance, 0.169 g of solid
Potassium Thiocyanate was carefully weighed
and transferred to a 100 ml volumetric flask. It
was solved in a small amount of water and was
brought to volume by adding fresh distilled water.

Ammonia buffer solution (0.02 molL™")

Using a micropipette, 0.75 ml of 1338 M
ammonia solution (0.91 g.ml", 25% W/W) was
transferred in a 500 ml volumetric flask and was
brought to volume. The pH of the solution was
adjusted by 0.1 M hydrochloric acid solution.

Hydrochloric acid solution (0.1 molL")

About 8.33 ml of 12 M hydrochloric acid solution
(1.19 g.ml"!, 37%W/W) was poured in a 1000 ml
volumetric flask. Thus, it was brought to 1 L of
volume by adding distilled water.

Sodium hydroxide solution (0.1 molL")

According to calculations and to synthesize sodium
hydroxide solution with a concentration of 0.1
molL", 1.00 g solid sodium hydroxide with high
purity was weighed. Then, after solving in a small
amount of water, in a 250 ml volumetric flask, it
was brought to volume by adding distilled water.

General procedure

To adsorb and remove the Thiocyanate by TiO,
nanoparticles, 1 ml of 100 pg.ml' Thiocyanate
solution, 1 ml of 0.1 M Iron (III) solution, and
0.5 ml buffer (pH = 9) were spilled in a 10 ml
volumetric flask and was brought to volume by
adding distilled water. The resulting solution was
transferred to a 50 ml bécher containing 0.5 g of
TiO, nanoparticles. Thus, the mixture was placed
on a magnetic stirrer for about 15 minutes and
nanoparticles were removed by using a filter.

Artificial neural network

The effect of operating conditions on the removal
process is often non-linear, which leads to
additional problems for developing and solving
the outcome using non-linear theoretical models.
Therefore, using theoretical models and multiple
linear regression (MLR) is necessary [29]. During
the module design, the relationship between
different modules is regarded. Artificial neural
network (ANN) is one of the most powerful tools
to reach this purpose. This method can introduce
mathematical functions for linear and non-linear
systems. Many studies have proposed ANNs for
solving nonlinear problems. An accurate trained
ANN can usually provide better performance
in comparison with conventional modeling
methods [30,31]. This method is widely used in
various research areas for acquiring experimental
information for designing water treatment model
[32,33]. In this study, the input parameters were
variables affecting the cyanide removal, including
pH (over range of 4-10), time of stirring (over
range of 1-20 min), the mass of sorbent (over
range of 0.1-0.6 g), volume (over range of 1-50
ml), and concentration of TiO, (over range of
10-200 mg.ml"), and volume of Fe (III) (over
range of 0.005-0.020) and the output parameter
or the target parameter was cyanide removal
efficiency and the network works based on the
correspondence between the input and target.
Fig.1 shows how the ANN deals with these data.

Radial basis function

The radial basis function (RBF) network is one of
the most popular ANNs. These networks have the
best performance when there are a large number of
training data. There are three types of layers in its
structure that play different roles. The input layer
connects the network to the control variables.
The newrb function adds neurons into the hidden
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layer of the radial basis network up to the time
that the amount of data mean square error is close
to the target or the number of determined neurons
is finished. The output layer is a linear layer that
leads to a response from the network that creates
an active pattern on the input layer. Neurons in
different layers are connected to each other by
the weight and bias. If C is the measured value
in testing and C, is the initial value of the desired
parameter, the output vector of the j-th neurons of
the hidden layer and the k-th neurons of the output
layer are calculated by the Equation (1) [34].

S g ”W}i — x| i
Y = Z Wi + Wi = ZW” exp|—0.83262 x o T
k=1 k=1 t

+ Wio

Eq. (1)

Where Wy, is the output of the hidden layer weights
and W, is the input of the hidden neurons weights,
Ci is 0.8326/ spread. Y, shows the j-th output
vector of the hidden layer; Y, is the k-th output
vector of the output layer; Xi is the i-th input
vector; N is the number of output neurons; and n
denotes the number of neurons of the hidden layer
(Fig.2). The proposed RBF model was designed
and taught by Matlab software with newrb
function. The newrb function adds neurons into
the hidden layer of the radial basis network up to
the time that the amount of data mean square error
is close to the target or the number of determined
neurons finish. This function is made of two-layer
networking. The first layer has radbas neurons
and the second layer contains purelin neurons
that adjust the weights are calculated to create an
appropriate network.

Levenberg-Marquardt function

Levenberg-Marquardt (LM) algorithm in a
multilayer perceptron (MLP) can be regarded as
an effective and efficient nonparametric technique
for estimating the unknown parameters. The
first layer is called the input layer and includes
a number of neurons often equal to the number
of inputs. In general, each input is connected
to all other inputs. Hidden layers are all layers
between the input and output layers and include
a vast number of neurons. Generally, a trained
MLP has very satisfactory generalized capability
to map input patterns into target estimation.
The theoretical framework of MLP modeling is
discussed in detail in [35,36]. The LM algorithm
provides a solution for minimizing the nonlinear
least squares. The function that should be
minimized is expressed by Equation (2) to (4) and
defined by train Im function in Matlab software
[37].
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Despite the structural similarities between the
two MLP and RBF methods, RBF needs to have
more neurons compared with back-propagation
networks, nevertheless, they took advantage of
their shorter design time compared to standard
MLP networks. For this reason, the rate of
learning and training for RBF networks is faster.

Methodology

RBF and MLP algorithms were used to develop the
removal method. The data were divided into two
categories including training and testing. These
data consist of 40 rows and 6 columns related to
parameters effective in the removal process. A
total of 32 rows of data were selected randomly as
training data and 8 rows for the training purpose.
The efficiency of the neural network was evaluated
using several statistical parameters such as root
mean square error (RMSE), the mean absolute
error (MAE), and the coefficient efficiency (CE).
The more the uncertainty, mean absolute error,
and standard error of the studied parameters are
closer to 0, the higher the performance of the
designed ANN for predicting the test data would
be. For a suitable algorithm of the neural network,
the coefficient of determination is close to 1 and
has a range between 0 and 1. If this parameter
is 1, there will be a perfect correlation between
measured and predicted data. On the other hand, if
the coefficient of determination is 0, the regression
equation cannot predict the desired values by no
means.

Results and discussion
Artificial neural network modelling

The experimental data obtained from the
experimental observations are divided into
training and testing sets. The data set consists
of 40 input values. From these 32 data sets are
used for training and the remaining is used for
testing the network. Then, the performance of
the network was studied using different statistical
performance parameters such as MAE, RMSE
and CE values. The train data and test data are
shown in Table 1 and Table 2, respectively.
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Experimental — parameters  of  Thiocyanate
adsorption

Effect of pH

Variation of pH value in the range of 4 to 10 was
done with the 1 ml of 1000 mg L' Thiocyanate
solution was added to 50 ml volumetric flasks.
Different amounts of sodium hydroxide and
hydrochloric acid were added to prepare solutions
with pH in the range of 4 to 10. 5 ml of 0.1 M
Fe (IIT) solution was added to each solution and
was brought to volume by adding distilled water.
After that, each solution was moved to a bécher
and placed in contact with Titanium dioxide
nanoparticles. Then, each bécher was stirred for
20 min. Next, the adsorption of each solution was
determined by spectrophotometry at A = 456.8 nm
after clearing by syringe filter and, the maximum
adsorption obtained at pH = 9, thus this pH was
chosen as optimum pH. The agreement between
the ANN model predictions and the experimental
data as a function of initial pH is shown in Fig.3.

Effect of the buffer

0.5 ml of ammonia buffer with 0.02 M
concentration was determined as the optimal
amount of buffer because the ammonia buffer can
destroy the adsorption spectrum and decline A,
in volumes more than 0.5 ml and concentrations
greater than 0.02 M. This amount of buffer was
added to 1 ml of 0.1 M Fe (III) solution and 1
ml of 100 pg.ml* Thiocyanate solution at pH = 9.
Next, it was brought to 10 ml volume by adding
distilled water in a 10 ml volumetric flask.

Effect of stirring time

To study the effect of stirring time, 1 ml of 100
ug.ml" Thiocyanate solution was added to 1 ml of
0.1 M Fe (1IT) solution and 0.5 ml 0f 0.02 M ammonia
buffer and moved to a 10 ml volumetric flask and
by adding distilled water brought to volume. Then,
each solution was moved to 50 ml bécher containing
0.1 gr of Titanium dioxide nanoparticles and each
bécher was stirred for a specific time. Nanoparticles
were removed using a filter and the adsorption of
each solution was determined by spectrophotometry
at A = 456.8 nm. Since the removal percentage of
Thiocyanate remained constant from the time 15
min, this time was chosen as the optimum time.
Fig.4 shows a comparison between the ANN model
predictions and the experimental data as a function
of contact time.

Effect of the amount of adsorbent

In this regard, 1 ml of 0.1 M Fe (III) solution, 1
ml of 100 pg.ml' Thiocyanate solution, and 0.5
ml of 0.02 M ammonia buffer were placed in a
10 ml volumetric flask and by adding distilled
water brought to volume. Different amounts of
Titanium dioxide nanoparticles were placed in 50
ml béchers containing. After 15 min, the solutions
were cleared by the filter and the absorption of each
solution was determined by spectrophotometry
at A= 456.8 nm and the optimum amount for
Titanium dioxide nanoparticles was 0.5 g. Fig.5
shows a comparison between the ANN model
predictions and the experimental data as a function
of the amount of adsorbent.

Effect of the volume of Fe(IIl) solution

To optimize the volume of Fe(III) solution, 1 ml
of 100 pg.ml! Thiocyanate solution and 0.5 ml of
ammonia buffer were moved to 10 ml volumetric
flasks. Then, different amounts of 0.1 M Iron
(IIT) solution were added to each solution. Next,
each solution was brought to volume by adding
distilled water, moved to a 50 ml volumetric flask,
and placed in contact with 0.5 gr Titanium dioxide
nanoparticles. Each solution was stirred for 15
min and cleared by syringe filter. In the final step,
the adsorption of each solution was determined by
spectrophotometry at = 456.8 nm and 0.01 M Fe
(IIT) was chosen as the optimum amount for the
concentration of Fe (III) solution. The agreement
between the ANN model predictions and the
experimental data as a function of initial volume
of Fe (I1I) is shown in Fig.6.

The effect of the initial concentration of
Thiocyanate

To evaluate the effect of the initial concentration
of Thiocyanate, different amounts of 1000
gr.ml"! Thiocyanate solution was added to 5 ml
of 0.1 M Fe (III) solution, and 2.5 ml of 0.02
M ammonia buffer at pH= 9. Each solution was
brought to volume by adding distilled water.
Next, each solution was moved to 100 ml béchers
containing and placed in contact with 0.5 gr
Titanium dioxide nanoparticles. Each solution
was stirred for 15 min and cleared by the filter.
Then, the adsorption of each solution was
determined by spectrophotometry at A= 456.8 nm
and the optimum concentration of Thiocyanate
was 40 pg.ml'. Fig.7 shows the effect of initial
concentration of Thiocyanate on the adsorption
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TABLE 1. Experimental data for training artificial neural network model

N.O Fe Volume Conc]f;lnotrzation Volume pH Adsorbent Time (min) R(%)
(ml) heml) (ml) 2
1 5 10 5 4 0.5 20 50.47
2 5 10 5 5 0.5 20 50.95
3 5 10 5 7 0.5 20 51.31
4 5 10 5 8 0.5 20 51.55
5 5 1 5 9.5 0.5 20 52.06
6 5 1 5 10 0.5 20 51.1
7 1 0.1 1 9 0.1 1 15.3
8 1 0.1 1 9 0.1 2 20.9
9 1 0.1 1 9 0.1 4 29.42
10 1 0.1 1 9 0.1 5 32.36
11 1 0.1 1 9 0.1 7 42.27
12 1 0.1 1 9 0.1 10 47315
13 1 0.1 1 9 0.1 15 53.89
14 1 0.1 1 9 0.1 17 53.89
15 1 0.1 1 9 0.1 20 83.89
16 1 0.01 1 9 0.5 15 53.98
17 1 0.01 1 9 0.5 15 60.69
18 1 0.01 1 9 0.5 15 89.59
19 1 0.01 1 9 0.5 15 95.92
20 1 0.01 1 9 0.5 15 96.2
21 1 0.01 1 9 0.5 15 96.2
22 0.75 10.0 1 9 0.5 15 94.96
23 1 20.0 1 9 0.5 15 96.25
24 1.5 30.0 1 9 0.5 15 95.11
25 2 40.0 1 9 0.5 15 91.89
26 1 100.0 1 9 0.1 15 53.98
27 1 0.1 1 9 0.2 15 60.69
28 1 0.1 1 9 0.4 15 89.59
29 1 0.1 1 9 0.45 15 95.92
30 1 0.1 1 9 0.6 15 96.2
31 1 0.1 1 9 0.05 15 39.02
32 1 0.1 1 9 0.65 15 96.2
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TABLE 2. List of data for test and validation simulated neural network algorithm

TiO
N.O Fe Xﬁlf)lme Concentrzation V(()Illlllgl ¢ pH Ads(ogr)b ent Time (min) R(%)
(pgml')
1 5 10 5 6 0.5 20 51.22
2 5 10 5 9 0.5 20 53.05
3 1 0.1 1 9 0.1 3 24.04
4 1 0.1 1 9 0.1 13 50.83
5 1 0.01 1 9 0.5 15 74.6
6 0.5 0.1 1 9 0.5 15 93.05
7 1 0.1 1 9 0.3 15 74.6
8 1 0.1 1 9 0.5 15 96.2
— Obtained
ANN
£0.00]
50,00 -
R%
40,00
30.00-]
20,00
10.00]
0.00 T T T T T T I
4.00 5.00 .00 7.00 8.00 9.00 10.00
PH

Fig. 3. Agreement between ANN outputs and experimental data as a function of pH
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Fig. 4. Agreement between ANN outputs and experimental data as a function of contact time

— Obtained
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100.00—
80.005
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50.00
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A0 20 30 40 45 &0
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Fig. 5. Agreement between ANN outputs and experimental data as a function of the amount of
adsorbent
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Fig. 6. Agreement between ANN outputs and experimental data as a function of the volume of Fe (I1I)

process and the agreement between the ANN
model predictions and the experimental data.

Statistical diagram of neural network evaluation

Fig. 8 presents the flowchart of the methodology
followed in this study. As can be seen, in both
methods, the radial basis function and MLP
function, training data have lower distribution
compared to the testing data. Also, the data
deviation from the regression line for MLP, for
training data and test data, are smaller than the
amount of RBF function, suggesting the better
performance of RBF algorithm.

Fig. 9 presents how the actual data obtained
from experiments correlate with those predicted
by the neural network for training and testing
data. As is quite evident, the specifications of the
aerodynamic probe can be predicted by the results
of the neural network with appropriate accuracy.
For both functions, actual and predicted data
match together with a high accuracy although
the performance of MLP is more appropriate.
However, the higher performance of the proposed

Egypt. J. Chem. 63, No. 2 (2020)

algorithm, for predicting the training data
compared to test data, is obvious because of
making the simulations based on the training data.

The absolute error or the modulus of the
difference between the actual and predicted data
is presented as a histogram as a dotted line graph
(Fig. 10a and 10b) and histogram diagram (Fig.
10c) using the neural network for training and
testing data, respectively. During training the
neural network by RBF, the maximum absolute
error is equal to 1.3954 and its minimum value is
0.1748. Minimum and maximum absolute errors
in the training data by MLP function are 0.5031
and 7.48E-07, respectively. Finally, maximum
and minimum absolute error for predicting the
test data for RBF model and MLP are (4.05 and
0.00882) and (3.405 and 0.2833), respectively.

To determine and examine the detailed
performance of functions, neural network
efficiency should be evaluated. Statistical
parameters were calculated as Equations (5) to
(7). The results of the statistical parameters for
measuring the performance of MLP and RBF
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algorithms are presented in Table 3. As can be
seen, for both training and test data, the uncertainty
level and mean absolute error for MLP algorithm
are closer to zero and the correlation coefficients
are closer to one. Hence, the MLP model has a
more effective performance in recovery and
determination of the amount of the absorbed
Thiocyanate [38-40].

1 57a s
RMSE = 7,7\“;;1_} Eq. (5)
L1

12w
MAE =7E%7u,
Vi3

Eq. (6)

N A 2
Z[u,.-u,.)
CE=1-+—— Eq. ()

' T
Z{"v_"J
Pearson’s Chi square

Among feature selection techniques such as
Median, Runs, Binomial, Mann-Whitney,
Wald-Wolfowiz, Kolmogorov-Smirnov, Sign,
Friedman, Wilcoxon, Kruskal Wallis, McNemar,
and Cochran Q, the Chi-square test is the most
well-known statistics used to test the agreement
between observed and theoretical distributions,
independency and homogeneity. Furthermore,
Pearson’s Chi-square is a non-parametric method
which can be used for the independent variables.
The Chi-square test of independence is used
to test statistical independence or association
between these two categorical variables. In this
case, the statistical question to be answered is
what are inter-correlations between variables
and output. The null hypothesis for a Chi-square
independence test is that two categorical variables
are independent. For this purpose, the outputs of
all variables were compared and chi square test
used to see if there is an association between
them. Table 4 shows the case processing summery
which presents the number of valid cases used for
analysis. Only cases with non-missing values for
both the volume of Fe (III) solution (ml) and the
volume of Fe (III) solution (ml) can be used in the
test [41,42].

Tables 5 and 6 show Fe-Thiocyanate cross-
tabulation and chi-square test results, respectively.

The number of degrees of freedom obtained from
Equation (8).

= ® - 1) x (€ - 1
Eq. (8)

where R is the number of rows and C is the number
of columns. Since the test statistic is based on a
7%2 cross-tabulation table, the degrees of freedom
(df) for the test statistic is:

df=R-1) x (C-1)=(7-1) X (2-1)=6

The null hypothesis (H ) and alternative hypothesis
(H,) of the Chi-square test of independence can be
expressed in two different but equivalent ways:

H,: “[ Variable 1] is independent of [ Variable 2]”

H,: “[Variable 1] is not independent of [Variable
2]”

OR

H,: “[Variable 1] is not associated with [Variable
2]”

H,: “[Variable 1] is associated with [Variable 2]”

The key result in the Chi-square tests table is the
Pearson Chi-Square. As can be seen, the amount
of Pearson Chi-Square is 29.000. Since there
are only 12 cells have expected count less than
5, it seems that these two variables are related
significantly. The effect of most variables,
including pH*buffer, Fe*buffer, pH*Thiocyanate,
Time*Thiocyanate, and Fe*Thiocyanate showed
almost the same results. The Pearson Chi-square
test for other variables showed more cells have
expected count less than 5 which means there are
less association between them.

Evaluating real samples

In order to evaluate the performance of the method,
some real water samples from the tap water, Karun
water, Karkheh dam water, Karun and Fanavaran
petrochemicals sewage were prepared. The
adsorption capacity ranged from 96.20 to 96.40
mg g! for tap water, from 95.33 to 96.00 mg g
for Karun water, from 96.00 to 96.40 mg g! for o
Karkheh dam water, from 95.27 to 96.40 mg g
for Fanavaran petrochemicals sewage, and from
95.33 to 96.50 mg g! for Karun petrochemicals
sewage. In addition, the adsorption capacity of
Thiocyanate was found to be more dependent
on pH, time of stirring, and concentration of
TiO,. The adsorption capacity increased sharply
by enhancing the concentration of TiO, but it
remained constant at the concentration of 0.5 mg
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TABLE 3. Statistical parameters for evaluation of efficiency of neural network functions

Statistical parameter

Function  Algorithm

Uncertainty Mean Absolute Error Coefficient efficiency

. RBF 1.153537 0.02561875 0.997939
Train Data

MLP 0.667157 2.33813E-08 0.99931

RBF 2.321255 0.371062 0.990487
Test Data

MLP 1.679934 0.087246 0.994627

TABLE 4. Case Processing Summary
Cases
Valid Missing Total
N Percent N Percent N Percent
*
Fe 20 80.0% 10 20.0% 30 100.0%
Thiocyanate

TABLE 5. Fe * Thiocyanate Cross-tabulation

Fe * Thiocyanate Cross-tabulation

Count
Thiocyanate
1.00 5.00 Total
Fe .01 1 0 1
.01 1 0 1
.01 1 0 1
A5 1 0 1
20 1 0 1
1.00 16 0 16
5.00 0 8 8
Total 21 8 29
TABLE 6. The Chi-square test
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson Chi-Square 29.000? 6 0.001
Likelihood Ratio 34.162 6 0.000
Linear-by-Linear Association 27.133 1 0.002

N of Valid Cases 29

a. 12 cells (85.7%) have expected count less than 5. The minimum expected
count is. 28.
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g!. As demonstrated, time of stirring and pH are
important variables in determining Thiocyanate
adsorption capacity. Therefore, these variables
were chosen, along with the mass of sorbent,
volume of solution and volume of Fe (III), to be
the input parameters of the computational the
artificial neural network models.

Conclusions

In this work, TiO, nanoparticles were used as
an adsorbent and the artificial neural network
method was used for simulating the Thiocyanate
removal. The vector data were taken at different
experimental conditions and, after hard trying, a
suitable algorithm was achieved by the effective
and widely used neural network functions. The
performance of two functions was evaluated
by statistical parameters and the results showed
that the MLP non-recursive function has a
higher ability in the removal of Thiocyanate in
comparison with the radial basis function. The
advantage of using a neural network in the above
method includes reducing the examination time,
reducing the costs, and decreasing the use of
required laboratory samples.
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