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The study was undertaken to evaluate the protective effect of bone marrow mesenchymal 
stem cells (BM-MSCs) and Moringa oleifera extract (MOE) against gentamicin (GN)-

induced nephrotoxicity in male albino rats. Thirty two adult male rats were divided into four 
groups including the control group, the group injected i.p with a single dose of GN (100 mg/
kg b.w), the group treated orally with MOE (400 mg/kg b.w) for 6 days then injected with a 
single dose of GN and the group was injected with a single dose of BM-MSCs (5x105cells) 
by tail vein then injected with GN. At the end of experiment blood and kidney tissue samples 
were collected for estimation of different biochemical parameters. The results recorded a 
significant increase in BUN, serum KIM-1, cystatin C, creatinine, sodium and renal MDA 
accompanied with a significant decrease in serum calcium, renal GSH, SOD and CAT in GN 
alone-treated group as compared to control group. Co administration of MOE or BM-MSCs 
before GN injection improved all above parameters when compared with GN administered 
group. It could be concluded that MOE and BM-MSCs have a therapeutic and protective action 
against AKI induced by GN administration which manifested by lowering kidney markers and 
MDA contents and elevation in antioxidant profile.
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Introduction                                                                          

The kidneys, the major control system maintaining 
homeostasis of body and a central detoxification 
organ, are the major targets for the toxic effects 
of various chemical agents and drug exposure. 
Thus drug-induced acute kidney injury (AKI) is a 
frequent entity in clinical medicine. The incidence 
of nephrotoxic or AKI is difficult to estimate due 
to the variability of patient populations and the 
criteria of AKI. However, nephrotoxicity has 
been reported to contribute to 8-60% of hospital 
acquired AKI cases [1].

The aminoglycoside gentamicin (GN) 
is widely antibiotic used in the treatment of 
infection caused by gram negative bacteria [2]. 
It was defined to possess significant nephrotoxic 
action in man and experimental animals [3] due to 
its accumulation in proximal renal tubules which 
in turn leads to brush border network damage [4]. 
The nephrotoxicity involves renal free radical 
production and accumulation, which had been 
suggested as a causative agent of cell death in 
different pathological states including various 
models of renal diseases [5] such as consumption 
of antioxidant defense mechanisms, glomerular 
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congestion and acute tubular necrosis [6], leading 
to diminished creatinine clearance and renal 
dysfunction.

Nephrotoxicity is traditionally diagnosed 
using serum markers blood urea nitrogen (BUN) 
and creatinine levels which get elevated only 
after significant (approximately 30%) kidney 
damage [7]. They are also influenced by age, 
gender, muscle mass, muscle metabolism, diet, 
medications, and hydration status [8]. As these 
markers are insensitive and lack specificity, 
recently, novel early biomarkers have been 
suggested to evaluate early kidney damage both 
in preclinical species and human. Kidney injury 
molecule-1 (KIM-1) is among the most promising 
ones. KIM-1 is expressed on the surface of tubular 
epithelial cells in the kidney. KIM-1 levels are 
undetectable in normal kidneys, whereas elevated 
KIM-1 expression was detected in the ischemic 
kidney in the animal model of disease [9], as well 
as in humans [10]. KIM-1 could be utilized as a 
nephrotoxicity biomarker in preclinical studies 
of drug candidates [11]. The Food and Drug 
Administration (FDA) and European Medicines 
Agency (EMA) had recently recognized KIM-
1 as an appropriate biomarker for renal injury 
in preclinical studies of pharmacologic agents 
[12]. Another sensitive biomarker in detecting 
site specific nephrotoxicity is Cystatin C (CysC) 
which is a small molecule of 13.3 kDa, 122 amino 
acid non-glycosylated basic cysteine protease 
(lysosomal proteinases) inhibitor, preventing 
breakdown of certain intracellular and extracellular 
proteins within the body, constitutively expressed 
by all nucleated cells, and is synthesized and 
secreted to the plasma at a steady rate [13]. Serum 
CysC was used as glomerular filtration rate (GFR) 
marker in toxicology studies although it has been 
widely used in clinic [14].

Stem cell-based therapy has a great attention 
in treatment of complex disorders such as AKI. 
It holds a great promise for the repair of injured 
tissues and organs, including the kidney [15] and 
constitute a promising resource in regenerative 
medicine for the generation of appropriate cell 
types in cell replacement therapy [16]. Many 
studies suggested that mesenchymal stem cells 
(MSCs) possess potential in the treatment of AKI 
[17,18]. Among the different types of stem cells 
bone marrow-derived mesenchymal stem cells 
(BM-MSCs), also known as marrow stromal cells 
[19] or mesenchymal progenitor cells [20], are 

defined as self-renewable, multipotent progenitor 
cells with the capacity to differentiate into several 
distinct mesenchymal lineages [21]. BM-MSCs 
are regarded as an attractive therapy for renal 
tissue regeneration, as the cells can be isolated 
from the bone marrow of patients and be modified 
in vitro by vector-mediated gene delivery easily, 
and they also avoid the ethical ambiguities of 
using embryonic stem cells [22].

Recently, great attention has been focused on 
traditional and herbal medicine for the treatment 
of renal disease. Moringa oleifera (MO) has 
rich antioxidant content and diverse therapeutic 
properties. The different parts of MO are reported 
to possess various pharmacological actions 
and nutritional qualities [23]. MO has a potent 
antioxidant and free radical scavenging activities 
in vitro and in vivo [24,25]. It was also reported 
that MO has protective action to prevent the renal 
damage induced by diabetes through its protective 
effect on the oxidative status and inflammatory 
cytokines in the kidneys of diabetic rats [26]. 
The present study was carried out to evaluate the 
protective effects of MO extract and BM-MSCs 
against GN-induced renal toxicity in rats.

Material and Methods                                                

Chemicals and kits
Gentamycin sulphate (GN) and aqueous-

ethanolic Moringa Olifera extract (MOE) were 
purchased from Sigma Chemical Co. (St. Louis, 
Mo, USA) and Mepaco Arabian Pharmaceutical 
co., (Cairo, Egypt), respectively. Kits for 
creatinine, blood urea nitrogen (BUN), Kidney 
Injury Molecule-1 (KIM-1), lipid peroxidase 
(MDA), reduced glutathione (GSH), catalase 
(CAT), superoxide dismutase (SOD) and ELISA 
kits of Cystatin C were purchased from Bio 
Diagnostic (Cairo, Egypt).

Experimental animal
Male albino rats (weighing, 140 -160 g) 

were purchased from animal house colony, 
Biochemical laboratory, Faculty of Medicine, 
Cairo University. The animals were housed under 
standard conditions with a 12 hr light/12 hr dark 
cycle and thermally controlled (25 ±1 OC). Water 
and food were provided ad libitum. All animals 
were received humane care in compliance with the 
guidelines of the Animal Care and Use Committee 
of Faculty of Medicine, Cairo University and the 
National Institute of Health (NIH publication 86-
23 revised 1985).
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Preparation of bone marrow- derived 
Mesenchymal Stem Cells (BM-MSCs)

Isolation of rat BM- derived MSCs 
MSCs were collected from three-months 

old male albino rats (140 -160 gm). Briefly, the 
rats were euthanized by cervical dislocation and 
their tibias and femurs were cleared of muscle 
and connective tissue. Bone marrow cells 
were aspirated using an 18-gauge needle with 
phosphate-buffered saline (PBS) and passed 
through 70 μm nylon gauze. The cells were 
washed twice for 5 min each by centrifugation 
at 150 x g and re-suspended in Dulbecco's 
modified Eagle's medium (DMEM; GIBCO /
BRL) supplemented with 10% fetal bovine serum 
(GIBCO /BRL). Nucleated cells were isolated 
with a density gradient [Ficoll/Paque (Pharmacia)] 
and re-suspended in complete culture medium 
supplemented with 1% penicillin/streptomycin 
(GIBCO/BRL). Cells were incubated at 37°C in 
5% humidified CO2 for 12-14 days as primary 
culture. Media was changed every 2-3 days. When 
large colonies developed (80-90% confluence), 
cultures were washed twice with phosphate buffer 
saline (PBS) and the cells were trypsinized with 
0.25% trypsin in 1mM EDTA (GIBCO /BRL) for 
5 min at 37°C. After centrifugation, cells were re-
suspended with serum-supplemented medium and 
incubated in 50 cm3 culture flasks (Falcon). The 
resulting cultures were referred to as first passage 
cultures [27]. On day 14, the adherent colonies of 
cells were trypsinized and counted.

Phenotypic analysis of BM-MSCs
Flow cytometric analysis for MSC phenotype 

was doing using FC500 (Beckmann). Cells were 
harvested and washed in flow cytometry buffer 
and incubated for 20 min in flow cytometry buffer 
containing fluorescein-conjugated monoclonal 
antibodies directed against differentiation of MSC 
antigens (CD29, CD49d, CD105, Chemicon) and 
against hematopoetic antigens (CD34 and CD45, 
Miltenyl Biotech). Cells at passages 3-5 were 
used for in in vivo experiments.

Experimental design 
After one week of an acclimatization 

period, the rats were divided into four groups 
(8 rats/group) and treated daily for a period of 
6 successive days as follow: group 1; Vehicle 
control group received an intraperitoneal (i.p.) 
injection of 0.5 ml of normal saline, group 2; rats 
injected i.p with a single dose of 100 mg/kg b.w 
GN according to Sonkar et al. [28], group 3; rat 
treated with a daily oral dose of MOE (400 mg/

kg b.w) for 6 days then i.p. injected with a single 
dose of GN [29], group 4;  rats received a single 
injection of BM-MSCs (5x105 cells) [30] then 
injected with a single dose of GN. Animals were 
left for 24 h after the last injection then blood 
samples were collected via the retro-orbital venous 
plexus under diethyl ether anesthesia. Sera were 
separated using cooling centrifugation and stored 
at -20 OC until analysis. The serum samples were 
used for the determination of creatinine, blood 
urea nitrogen (BUN), kidney injury molecule-1 
(KIM-1) and Cystatin C. levels according to the 
manufacturer’s instructions. After the collection 
of blood samples, all animals were sacrificed and 
sample of kidney from each rat was dissected, 
weighed and homogenized in phosphate buffer 
(pH 7.4) to give 20% w/v homogenate and was 
used for the determination of MDA then it was 
further diluted to give 2% and 0.5% dilution for 
the determination of GSH (2%), CAT and SOD 
(0.5%) activities [31].

Statistical analysis
Data were represented as mean ± SD of 

different groups. One-way analysis of variance 
(ANOVA) followed by Tukey's post-hoc test was 
used to compare between the groups for parametric 
data. For non-parametric data, Kruskal-Wallis test 
was used to compare between the groups. The 
significance level was set at P ≤ 0.05. Statistical 
analysis was performed with IBM® SPSS® 
Statistics Version 20 for Windows.

Results                                                                 

The results of the current study revealed 
that single i.p. injection of GN at dose of 100 
mg/kg b.w. increased the levels of serum BUN, 
creatinine, KIM-1 and cystatin-C compared to 
control group. The pretreatment with MOE or 
BM-MSC induced a significant improvement of 
the levels of all parameters tested compared to 
GN alone treated group. However the recorded 
values were still higher than the control group. 
The recorded improvement in both groups was 
more pronounced in the group treated with BM-
MSC (Table 1).

The effect of MOE and BM-MSC on oxidant/ 
antioxidant in rats treated with GN (Table 2) 
showed that GN induced a significant increase 
in MDA in the kidney tissue accompanied with 
a significant decrease in SOD, CAT and GSH 
compared to the control group. Pretreatment with 
MOE for 6 days or a single dose of BM-MSC 
could induced a significant decrease the elevation 
of MDA and also induced a significant increase in 
the reduction of SOD, CAT and GSH resulted from 
GN. Although the co-treatment with MOE or BM-
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MSC plus GN induced a significant improvement 
in the antioxidant status, these parameters were 
not normalized and still differing than the control 
group. 

The results illustrated in Fig. 1 and 2 indicated 
that injection with a single dose of GN resulted in 
a significant increase in Na+ level accompanied 
by a significant decrease in Ca++ level compared to 
control. Treatment with MOE or BM-MSC before 
GN alleviated the alteration in both electrolytes 
levels.

Discussion                                                                  
The nephrotoxicity of aminoglycoside GN is 

well documented. All rats injected with a single 
dose of GN (100 mg/kg b.w) showed nephrotoxic 
effects. In agreement with previous studies which 

exhibited that administration of GN induced 
nephrotoxicity in various experimental animal 
models including mice, rat and rabbit [32-34].

 In the current study the levels of BUN and 
serum creatinine were significantly higher in GN 
treated group than the control. These findings were 
consistent with data obtained by other researchers 
[35,36]. Additionally, nephrotoxicity induced 
by GN was confirmed by marked elevations in 
serum KIM-1 and Cystatin-C concentrations 
when compared with the control group. This 
finding is in agreement with a recent report [36]. 
Elevation in serum parameters in GN-treated rats 
was probably the result of tubular necrosis with a 
consequent decrease in the number of functioning 
nephrons [37].

TABLE 1. Effect of BM-MSCs and MOE on serum parameters of kidney injury of rats treated with GN 

Parameter

Groups

BUN 

     (mg/dL)

Creatinine 

(mg /dL)

KIM-1 (ng/mL) Cystatin-C (ng/mL)

Control 42.8 ± 13.3a 0.15 ± 

0.06a 

3.1 ±1.0a  5.4 ±1.0a 

GN 90.2 ± 19.6b  1.61 ± 

0.55b

13.2 ±4.3b 22.0 ± 8.9b

MOE then 

GN

87.5 ± 10.7b 0.64 ± 

0.12c

6.1 ±1.7c 13.6 ±3.6c 

BM-MSCs 

then GN

67.3 ± 8.4c 0.39 ± 

0.12d

5.7 ±1.7c 9.8 ±3.8d 

BUN: Blood Urea Nitrogen, KIM-1 and Cystatin-C, data is expressed as Mean ± SD 
Within each column, means superscript with different letters (a, b, c…..) are significantly different (P≤0.05)

TABLE 2. Effect of BM-MSCs and MOE on MDA and antioxidant capacity in the kidney tissue of rats treated 
with GN 

Parameter

Groups

MDA

(nmol/g tissue)

SOD

(U/g tissue)

CAT

(U/g tissue)

GSH

(nmol/g tissue)

Control 1.3 ±  0.4a 4.0 ± 1.0a  147.6 ± 23.0a 68.7 ±  8.2a

GN 24.3 ± 7.4b 0.6 ± 0.3b 65.4 ± 22.6b 24.9 ± 5.0b

MOE then 

GN

12.7 ± 3.1c 1.6 ± 0.5c 116.1 ± 11.0c 41.6 ± 5.4c

B M - M S C s 

then GN

7.2 ± 2.3d 2.2 ± 0.8c 119.1 ± 14.0c 50.9 ± 8.6d

MDA: Malondialdehyde, SOD: Superoxide dismutase, CAT: catalase and GSH: Glutathione. Data is expressed as Mean 
± SD 
Within each column, means superscript with different letters (a, b, c…..) are significantly different (P≤0.05)
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Fig. 1. Effect of BM-MSCs and MOE on serum level of sodium in rats treated with GN

Fig. 2. Effect of BM-MSCs and MOE on serum level of calcium in rats treated with GN
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Oxidative stress is one of the major features 
of GN-induced renal damage. The present 
work showed that GN injection altered various 
biochemical indicators of oxidative stress in 
kidney tissue. The level of renal lipid peroxidation 
(MDA) was increased whereas GSH content, CAT 
and SOD activities were decreased in GN-treated 
group when compared with the control. These 
results were in accordance with previous studies 
[38,39]. Several reports have been recognized 
that GN enhances the generation of reactive 
oxygen species (ROS). ROS may damage some 
macromolecules to induce cellular membrane 
integrity and necrosis via several mechanisms 
including peroxidation of membrane lipids, 
protein denaturation and DNA damage [5,40].

Lipid peroxidation alters the kidney functions 
via a proximal event in the injury cascade of GN 
nephrotoxicity. Some reports showed that GN acts 
as an iron chelator, and the complex of iron-GN is 
consider a potent catalyst of free radical produc-
tion [41,42]. Additionally, GSH is a vital and most 
abundant cellular detoxifying antioxidant in the 
body. GN was reported to induce excessive pro-
duction of hydroxyl radicals, superoxide anions 
and hydrogen peroxides and reactive nitrogen 
species in the renal cortex [38], resulting in the 
decrease of GSH levels due to its increased utili-
zation in protecting \SH group containing proteins 
from free radicals. Similarly, decreased activities 
of SOD and CAT may be attributed to excessive 
formation of superoxide anions and hydrogen per-
oxide and/or their inactivation by excessive GN 
induced oxidants [39].

Kidney diseases and intake of some antibiotics 
such as aminoglycosides cause electrolyte 
imbalance. The present study showed significant 
changes in the levels of both serum electrolytes 
Na+ and Ca+ after GN intoxication as compared 
with control. Renal failure with electrolyte 
disturbance is potentially serious and causes 
high morbidity and mortality. It was documented 
that a second less side-effect of GN therapy is 
a disturbance of electrolyte homeostasis [43]. 
The current finding is in harmony with the 
observations of [44,45]. These authors reported 
that a slightly increased level of sodium and 
decreased level of magnesium and potassium in 
GN-treated rats caused by alteration of tubular 
reabsorption and glomerular dysfunction [46]. 
Additionally, Padmini and Kumar [47] confirmed 
lower levels of serum sodium which indicates 
kidney inability to conserve sodium and chloride. 

Also, haemodilution was appeared due to the 
decrease of sodium value via excess of water 
intake and/or increase production of endogenous 
water [47].

The current study revealed that a hypocalcemia 
in GN treated group when compared with the 
corresponding values of control group. These 
results are in agreement with the findings of Zahid 
et al. [48] in rabbits. Moreover, derangements of 
renal functions were caused by aminoglycosides 
which manifested by its accumulation on brush 
border and basolateral membranes of proximal 
convoluted tubules [49]. Liamis et al. [50] 
suggested that megalin receptor which found at 
the apical membrane of the proximal convoluted 
tubules can binds and induces endocytosis of 
the aminoglycosides. Moreover, the plasma 
membrane of renal proximal tubular cells is the 
first site of the interaction of aminoglycosides 
and cells which cause the depression of the 
apical membrane transporter resulted in 
the loss of phospholipids and brush border 
membrane enzyme which is early occurring 
after the administration of aminoglycosides. 
Consequently, it decreased the transportation of 
electrolytes (Calcium and Potassium), organic 
bases, and reduces Na+-K+ATPase activity [51]. 
Additionally, hypercalcemia was also reported 
by Parsons et al. [52] which is mediated by the 
decrease in re-absorption of calcium in the early 
distal tubules.

Previous reports indicated that co-treatment 
with different antioxidants may prevent or 
attenuate kidney damage induced by GN [53]. So, 
it is important to search for non-toxic and effective 
medicinal plants with anti-oxidative activity [54]. 
MO was the plant of choice which has great 
antioxidant properties. Pretreatment with aqueous 
-ethanolic MOE at a dose of 400 mg/kg b.w 
alleviated the increased kidney biomarkers BUN 
and serum creatinine. These results are similar to 
those previously reported in GN-treated rabbits 
[55], Checken [56] and rats [57]. Additionally, 
co-administration of MOE before GN injection 
in present work improved the serum KIM-1 and 
Cystatin-C levels when compared with GN alone 
treated rats.

Co-administration of MOE attenuated 
nephrotoxicity induced by GN as evidenced 
by the decline in renal lipid peroxidation level 
accompanied with increasing GSH content, SOD 
and CAT activities. These results were coinciding 
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partially with the results obtained by Al Tayib 
and El Badwi [57] and Omodanisi et al. [26] in 
rats, Das et al. [58] in mice, Ouédraogo et al. [55] 
in rabbits, Arafat et al. [56] in chickens and El-
Azab and El-Habashi [59] in laying hens. The 
protective effect exhibited by MOE could be due 
to its antioxidant potential by scavenging the 
free radicals. The antioxidant properties may be 
mediated through several mechanisms including 
(1) direct trapping of the free radicals, (2) metal 
chelation activity [60] or (3) through preserving 
structural integrity of cell membrane which was 
supported by the data published previously [61]. 
These authors suggested that MOE induced 
protective effects against chemical induced 
hepatonephrotoxicity due to its ability to induce 
phase II detoxification pathway via promoting 
reduced glutathione conjugation with toxic 
metabolites generated from CYP450 pathway 
[61]. Additionally, Sokunbi et al. [62] reported that 
the protective effect of MOE could be attributed to 
the ability to antagonize the enhancement of lipid 
peroxidation, consequently stabilize the integrity 
of the cellular membranes. All these observations 
illustrated that the phytochemical constituents in 
MOE could contribute to its antioxidant activity 
and, hence, nephroprotection [60].

Sodium is one of the important electrolytes re-
sponsible for the maintaining of normal cells and 
organs and it used for the determination of dis-
eases status in the laboratory analysis. The current 
results showed a marked decrease in serum Na+ 
level in the group received the combined treat-
ment of MOE plus GN when compared to GN 
alone treated group. These data are in agreement 
with the previous studies obtained in previous re-
ports [63,64]. This effect may manifested by the 
hypotensive effect of MOE which attributes to 
the presence of active phytochemical compounds 
such as niazinin A, niazinin B, niazimicin and ni-
azinin A + B [65].

Also, the present results exhibited a significant 
increase in serum Ca+ level in GN-treated group 
pretreated with MOE. This finding was in 
coincidence with the observation of Voemesse et 
al. [66], who recorded a highest concentration of 
calcium, magnesium and iron contents in birds 
fed with MO leaf meal during juvenile growth. 
Another suggestion was obtained by Dangi et 
al. [67] who showed the leaves of MO possess 
highly potent alkaloid salts, which are considered 
as possible calcium channel blocking activities. 
Additionally, MOE was reported to have great 

nutritional properties since it rich in calcium, 
magnesium and iron, various vitamins and 

essential amino acids [66].

Several studies have applied bone marrow 
derived mesenchymal stem cells (BM-MSCs) 
against AKI in animal models [68,69]. BM-
MSCs are defined as multipotent progenitor 
cells which had a unique properties due its 
immunomodula¬tory ability and the potential 
for differentiation into mesenchymal lineage 
[70,71] and different types of renal cells [72,73]. 
The current study showed that nephro-protective 
activity of BM-MSCs against GN toxicity, 
manifested by decreasing BUN serum creatinine, 
KIM-1 and cystatin-C concentrations. Partially 
similar results were obtained by Selim et al. 
[74] who showed recovery in kidney functions 
manifested by a decline in serum creatinine, 
urea, KIM-1 of rats administrated BM-MSCs 
injection along with cisplatin. Also, Reis et al. 
[69] demonstrated that BM‑MSCs have been 
reported to minimize renal damage induced by 
GN. Another study showed a nephro-protective 
effect in mice treated with BM-MSC which 
indicated by a decline in BUN level and urine 
albumin: creatinine ratio in albumin-overloaded 
mice which served as chronic kidney diseases 
models [75]. Similar nephro-protective effects 
were obtained by Morigi et al. [71] and Gatti et 
al. [76] who illustrated the nephro-protective 
activity of MSCs in ischemia-reperfusion injury- 
in cisplatin- and in glycerol-induced AKI through 

paracrine and endocrine mechanisms. 

As mentioned earlier, oxidative stress is 
considered as a major mechanism among 
several suggestions proposed in GN-induced 
nephrotoxicity [44] and contributes to AKI 
through increased production of reactive oxygen 

species and/or lowering endogenous antioxidants 
system [77]. BM-MSCs had the ability to 
ameliorate oxidative stress and augment the 
antioxidant defense system [78,74] (Moustafa et 
al., 2016; Selim et al., 2019). The present study 
demonstrated that BM-MSCs injection along with 
GN decreased renal MDA level and increased 
GSH content, SOD and CAT activities. These 
results were coinciding with the observations 
obtained by Ali et al. [79] who confirmed that BM-
MSCs improved the injury induced by hypoxia 
in brain of rats exposed to NaNO2 through 
the improvement of the enzymatic and non-
enzymatic antioxidant system. This improvement 
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may be indicated by lowered MDA, GSSG levels 
and oxidized GSSG ratio, and increased GSH 
level and GSH/GSSG ratio and/or induction of 
growth factors, chemokines, and cytokine leading 
to tissue repair [80,81]. Similar results were 
obtained in ischemia/ reperfusion injury in the 
kidney [82,83]. Additionally, the present work 
showed an enhancement in serum electrolytes 
in rats administrated BM-MSCs injection along 
with GN. Similar result reported that BM-MSCs 
protect against hypocalcaemia in cisplatin treated 
rats [78].

Conclusions                                                          

The present data indicate that GN induced 
kidney injury as indicated by the elevation of 
serum BUN, creatinine, KIM-1 and Cystatin-C 
along with increased the level of MDA and the 
decreased GSH and SOD in the kidney tissue. GN 
also induced a disturbance in serum electrolytes 
such as Na+ and Ca++. MOE and BM-MSCs could 
alleviate these effects and protect the kidney from 
GN-induced injury. Both agents are safe and may 
be considered as protective agents against kidney 
injury of different drugs or toxicants. 
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تعديل السمية الكلوية التي يسببها عقار الجنتاميسين باستخدام 
الخلايا الجذعية الوسيطة لنخاع العظام ومستخلص المورينغا 

أوليفيرا
السعيد اسماعيل1، حكمة عبد اللطيف1، هاجر المتولي محمد2، مي عبد 

الفتاح1، ليلى راشد3،مسعد عطية عبد الوهاب4

1قسم الأدوية والسموم -كلية الصيدلة -جامعة القاهرة -مصر،
2 قسم علم الحيوان -كلية العلوم -جامعة العريش -العريش -مصر،

3 قسم الكيمياء الحيوية -كلية الطب -جامعة القاهرة -مصر،
4 قسم سموم وملوثات الغذاء -المركز القومي للبحوث -الدقي -مصر

أجريت الدراسة لتقييم التأثير الوقائي للخلايا الجذعية الوسيطة لنخاع العظام ومستخلص 
نبات المورينجا أوليفيرا ضد السمية الكلوية الناتجة عن عقار الجنتاميسين في ذكور الفئران 
البيضاء .استخدمت في هذه الدراسة عدد 32 من الفئران الذكور البالغين قسمت إلى أربع 
مجموعات شملت المجموعة الضابطة، المجموعة التي تم حقنها بجرعة واحدة يالبريتون 
بعقار الجنتاميسين 100) ملجم /كجم وزن جسم(، المجموعة المعاملة لمده 6 ايام عن 
طريق الفم بمستخلص نبات المورينجا 400) ملجم /كجم وزن جسم (ثم جرعة واحدة 
عن طريق البريتون من عقار الجننتاميسين والمجموعة المعامل بجرعة واحدة من الخلايا 
الجزعية .(5x105cells) في نهاية التجربة، تم جمع عينات الدم والكلى لتقدير الدلائل 
  cystatin C،  KIM-1وBUN  الكيميائية الحيوية المختلفة .سجلت النتائج زيادة كبيرة في
، الكرياتينين، الصوديوم في السيرم صاحبه وياده في تأكسد الدهون بالكلية مع انخفاض 
معنوي في كالسيوم السيرم وجلوتاثيون والسوير اوكسيد ديسماتيز والكتاليز في نسيج 
الكلى للفئران المعالجة بالحنتاميسين وحده بالمقارنة مع المجموعة الضابطة .أثبتت 
النتائج ان المعاملة بالخلايا الجذعية او مستخلص المورينجا مع الجنتاميسين أدت إلى 
حدوث تحسنا معنويا في كل القياسات محل الدراسة بالمقارنة بالمجموعة المعالجة 
بالجنتاميسين .نستنتج من هذه النتائج أن المعاملة بالخلايا الجذعية أو مستخلص 
المورينجا لهما تأثير علاجي ووقائي ضد التهاب تسمم الكلى الناتج عن تعاطي عقار 
الجنتاميسين من خلال خفض مؤشرات الكلية وتقليل تأكسد الدهون بالاضافة إلى زيادة 

مضادات الأكسدة في نسيج الكلية.


