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Introduction                                                                   

Phenol is considered to be one of the 
most important intermediate materials for 
manufacturing of petrochemicals, plastics and 
agrochemicals [1-5]. A complex cumene process 
usually performs production of phenol. This 
process uses a high consumption of energy in 
addition to equimolar production of acetone as a 
byproduct. [6]. Using H2, O2, N2O or O2 for direct 
hydroxylation of benzene into phenol becomes an 
economic alternative for the processing [7-11].

Hydroxysodalite(HS) is considered to be a 
compact cubic symmetry with Si/Al ratio of 1 
[12]. The use of Hydroxylzeolite as catalyst may 
enhance the diffusion of reactants and products, 
which can enhance the catalytic activity. Copper 
is used as a catalyst with different oxidants in 
the oxidation-reduction reactions. [13-15]. The 
ion exchange of copper over HS will result in 
the presence of copper in a divalent state.  The 
microwave is considered to be an effective 
alternative, and a lower cost technique for 
preparation of many materials [16-18].

In this paper, we will compare the preparation 
of HS by normal heating with the microwave 
assistance of two sample groups. Furthermore, we 
studied the stability of both samples to the extent 

of copper ion exchange. The copper exchanged 
HS was used as an effective catalyst for direct 
hydroxylation of benzene into phenol. Due to the 
low cost of preparation of HS, we assumed that 
this method would have an economic impact to be 
used in such reactions.

Experimental                                                                   

Preparation of Zeolite HS
Zeolite HS was prepared from kaolin, and 

silica gel with alkaline hydrothermal treatment 
in autoclave for 5 hours at 150OC. The used 
autoclave was from autogenouslypressure-closed 
autoclave. The heating was done in a normal 
dry oven. The Zeolite HS sample prepared 
previously was nominated as HS-N. The same 
previous composition mixture was autoclaved in 
the microwave at a 150oC. Moreover, the used 
microwave digestion system was a MileostoneE.
THOS, from Italy and a 600Wattpower. This 
sample prepared was nominated as HS-M.

Catalytic activity test:
The catalytic activity was performed using 0.2 

g catalyst, added to 2 mL of benzene in 16 mL of 
acetonitrile.  After that, 3 mL of 30% H2O2 was 
added,then the temperature was brought to 60oC 
for 10 minutes. The product was analyzed using a 
Bruker model scion 456-GC gas chromatographic 

H  YDOXYSODALITE was prepared by two different methods using normal hydrothermal 
heating, and using a microwave assisted the other method. Some heavy metals were 

selected and their removed capacity was as a probe indicator for the properties of both 
methods. X-ray diffraction (XRD) was used for follow-up for the crystallinity and the degree 
of crystal destruction upon copper ion exchange. The copper ion exchanged zeolite was used in 
hydroxylation of benzene as  probe reaction. 

The results showed that the microwave assisted prepared zeolite had lower crystallinity.  
Also, it showed a higher stability toward the ion exchange and higher catalytic activity per 
active centers. 
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(WCOT), with a mass detector instrument. The 
setting for the (WCOT) fused silica was 15m x 
0.25 mm injection mode, with a temperature of 
260°C, rate equal to 80°C/min, and a flow equal 
to 1ml/min. 

XRD(X-ray diffraction)
X-Ray diffractograms of various samples were 

collected using a Bruker D8 advance instrument 
with CuKα1 target with second monochromator 
40kV,40mA.

Infrared  Spectroscopy (IR)
Infrared (IR) spectra: FTIR spectra of the 

samples were recorded in the range of 450–4000 
cm-1 on a Perkin Elmer Spectrum 100 FTIR 
spectrometer.

Electron Paramagnetic Resonance Spectroscopy 
(EPR)

Electron paramagnetic resonance (EPR) 

spectra of different solids of the catalyst were 
measured using (Brucker E Mex 500) operated 
at X-band frequency. The following parameters 
are generalized in all samples. The microwave 
frequency setting: 9.73 GHz, receiver gain: 20, 
sweep width: 6000 center at 3480, microwave 
power: 0.00202637.

Results and Discussion                                                  

X-ray diffraction (XRD)
The XRD patterns of pure phases of HS are 

shown in Fig. 1. It shows that both samples one 
from microwave irradiated, and the other from 
normal heated have the same pure crystalline 
phases of HS. We can also observe that the 
normal heated sample is more crystalline or in 
other words, crystal size of microwave-irradiated 
sample is less than that of the normal heated one. 
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Fig. 1 XRD of Normal heated and microwave irradiated samples of HS.

Regarding the effects of ion exchange process 
for the copper ions on the crystal structures 
is concluded in Fig. of 2 and 3. As the initial 
concentration of copper ion increases in solution 
the degree of crystallinity more or less decreases.  

This means the crystal lattice of HS degrades 
upon the increase of the initial amount of copper. 
It could also be observed that the stability of the 
microwave sample was irradiated greater than 
that of normal sample.
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Ion-exchange of zeolite with copper:
Tables 1 and 2 represent the ion-exchange data 

of both samples. From this data, it is concluded 
that the maximum capacity of two samples is 
about ~0.7 mmol/g. Furthermore, from the HS-N 
sample attained the maximum at a lower initial 
concentration of copper. The light of XRD patterns, 

which showed that this sample had a larger crystal 
size, could explain this. However, the initial 
concentration of Cu2+ increases, taken from both 
samples. Moreover, there was a decrease of the 
degradation of the crystal structure of HS, which 
had been confirmed before by XRD patterns.
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Fig.2. Effect of extent of ion exchange in XRD patterns of HS-N sample where 5, 
10, 20 represents the initial concentration of Cu2+ in mmole.
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Fig.3. Effect of extent of ion exchange in XRD patterns of HS-MW sample where 5, 
10, 20 represents the initial concentration of Cu2+ in mmole.

TABLE 1. Ion exchange results of microwave irradiated HS sample.

Initial amount (mmole) Amount removed (mmole/g)

20 0.578

10 0.604
5 0.73
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Electron Paramagnetic Resonance Spectroscopy 
(EPR spectra)

Figure 4 of the EPR spectra of both HS-N and 
HS-MW samples showed isotropic symmetric 

TABLE 2. Ion exchange results of microwave irradiated HS sample.

Initial amount (mmole) Amount removed (mmole/g)

20 0.4

10 0.715
5 0.571

signals o a copper overlap with a signal of iron 
impurities. This could be explained that the Cu2+ 
ions exist in symmetrical tetrahedral symmetry.
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Fig. 4. EPR spectra of copper exchanged HS of both samples HS-N (NH) and 
HS-MW (MW) samples.

Infrared  Spectroscopy (IR spectra)
Figure 5 and 6 show the IR spectra of the HS 

samples.  They represent the typical spectra of HS 

with the absence of a double ring region (500-650 
Cm-1), which characterizes the HS framework 
structure of HS.
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Fig. 5. IR spectra of HS-NH sample.
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Fig. 6. IR spectra of HS-MW sample.

Catalytic activity of Cu-zeolite
Table 3 compares the catalytic activity from 

the copper amount of the zeolite samples. From 
the above table it could be observed that, as 
the degree of crystallinity of HS decreases the 
catalytic activity increased. In other words, the 
catalytic activity per active site increases. 

The maximum catalytic activity reached 
from the HS-N sample was (159) using the least 
amount of Copper of (0.578 mmole/g).  However, 
the maximum catalytic activity per active site 
reached for HS-MW sample was (217.5) using 
a Copper amount of (0.4mmole/g), which also 
showed a highest degree of conversion.

TABLE 3. Catalytic activity results of both sample HS-N and HS-MW in hydroxylation of phenol.

HS-N
0.2 g

HS-MW
0.2 g

Cu- content
mmole/g % conversion Catalytic activity 

per active site
Cu-content 

mmole/g % conversion Catalytic activity 
per active site

0.73 68% 93 0.715 60% 83.9

0.604  70% 115 0.571 68% 119

0.578 92% 159 0.4 87% 217.5

Conclusions                                                              

In conclusion, the Zeolite HS was successfully 
prepared for the first time from Saudi Arabia 
white silica. Also, the microwave sample was 
utilized as an alternative fora method of reducing 
time and energy in the preparation of Zeolite 
HS. Moreover, the microwave sample had less 
crystalline. Furthermore, the microwave sample 
showed more stability towards ion exchange. 
However, the copper loaded samples proved to be 
an excellent catalyst for hydroxylation of phenol. 
It only took 10 minutes with a 90% conversion, 
compared to a 2-hour in literature.
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المحمل  الهيدروكسي سوداليت  باستخدام  البنزين  في  الهيدروكسيل  لمجموعة  المبشر  الادخال 
بالنحاس

إيمان زكريا حسين حجازي 2,1  ،إسلام حمدي عبد المقصود 2,1 ،سامية عبد الحميد كوسة1 ، ليلي عياد الحربي1
1جامعة الملك عبد العزيز- قسم الكيمياء – جدة

2المركز القومي للبحوث، قسم الكيمياء الفيزيقية- الدقي- القاهرة

تم تحضير الهيدروكسي سوداليت بطرقتين مختلفتين و تم الاستعانة بالميكروويف في احداهما. تم اختيار كمية الازالة 
الاشعة  باستخدام حيود  التبلور  تتبع درجة  تم  الطريقتين.  المحضرة من كلا  للعينات  كاختبار  الثقيلة  العناصر  لبعض 
البنزين.  الهيدروكسيل علي  المحضر كحفاز لادخال محموعة  الزيوليت  المحمل علي   النحاس  استخدام  وتم  السنية. 
أظهرت النتائج ان استخدام الميكروييف قد ادي الي درجة تبلور اقل  ولكنه كان اكثر ثباتا في التبادل الأيوني كما أظهر 

كفاءة حفزية عالية لكل مركز نشط.


