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nO nanoparticles (NPs) have been synthesized by precipitation

method and auto-ignition method from zinc nitrate hexahydrate.
The powder was characterized by thermal analysis (TGA-DTA), X-ray
diffraction (XRD), scanning electron microscopy (SEM), transmission
electron microscopy (TEM), Ultra violet- Visible optical absorption
(Uv-Vis), and photoluminescence spectroscopy analyses (PL). XRD
patterns for both catalysts showed that ZnO nanoparticles have
hexagonal unit cell structure. SEM and TEM pictures detect the
morphology and particle size of the as-prepared ZnO NPs. The UV-
Vis absorption spectrum shows ZnO nanoparticles prepared by
precipitation method has an absorption band at 385 nm while by auto-
ignition method has an absorption band at 355nm. PL spectra proved
that ZnO prepared by auto-ignition method was the most active one.
This indicated a minimum recombination rate. These ZnO
nanoparticles can be used in different applications due to their great
optical properties.

Keywords: ZnO nanoparticles (NPs), Uv-Vis absorption and
Photolumin-ancesence (PL).

Today, there has been an increasing demand for the development of nanosized
semiconductors due to their considerable electrical and optical properties which
are highly useful in fabricating nanoscaled optoelectronic and electronic devices
with multifunctionality™®. Among various semiconducting materials, zinc oxide
(Zn0) is a distinctive electronic and photonic wurtzite n-type semiconductor with
a large direct band gap of 3.37eV and a prominent exciton binding energy
(60 meV) at room temperature™®. ZnO nanoparticles are promising candidates
for various applications, such as solar cells® , nanogenerators™, bio-sensors®,
varistors®, gas sensors’®, photo-detectors, and photo-catalysts*?. From the
literature survey, it was found that various approaches for the synthesies of ZnO
NPs have been developed, namely, sol-gel® , thermal decomposition of organic
precursor®™,  microemulsion®™, spray  pyrolysis®®, electrodeposition®”,
microwave- assisted techniques®® , ultrasonic“®, chemical vapor deposition®® ,
hydrothermal® and precipitation methods®*?®. Most of these techniques were
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not extensively used on a huge scale, but chemical synthesis has been widely
used due to its simplicity and lower cost. In the present study, we report the
preparation of ZnO nanoparticles using chemical precipitation® and auto-
ignition @) methods. The characterization of ZnO nanoparticles using different
analytical tools is discussed.

Experimental

Instruments

The as-prepared ZnO nanoparticles from the two methods were characterized
for their optical, morphological and nano-structural properties through various
analysis tools. Differential thermal analysis was carried out by Q600 DST
simultaneous DSC/TGA apparatus. All runs were carried out at a heating rate of
10°C/min in the temperature range from room temperature to 1000°C under air
flow to follow the structural changes accompanying the thermal treatment. The
X-ray diffraction patterns of both oxides were recorded by Brucker AXS-D8
Advance XRD instrument (Germany) with nickel-filtered copper radiation (A
=1.5405A) at scanning speed of 0.4 degrees/ min. The N, adsorption-desorption
isotherms were performed with Quantachrome Nova 3200 instrument (USA).
The surface area and total pore volume were calculated throughout the BET plot
and BJH equation, respectively. The surface, as well as the inner morphology of
the prepared oxides, was obtained by scanning electron microscope (SEM) model
JEOL 5300 (Japan) and Transmission electron microscope (TEM), model JEOL
1230, Japan. The UV- reflectance analysis of the prepared photocatalysts was
acquired via UV-spectrophotometer model V-570 manufactured by JASCO
(Japan). Photo-luminance (PL) analysis (as one of the essential characteristics for
photocatalysts) was measured at room temperature using Spectrofluorometer,
model JASCO FP-6500-Japan.

The zinc Oxide (ZnO) nanoparticles were prepared by two methods namely;
(&) The chemical precipitation and (b) The auto-ignition methods.

(a) In the chemical precipitation, 0.1N solution of Zn (NO3),.6 H,O was prepared
using de-ionized water. The solution was then heated up to 60 °C to enhance
the dissolution of the zinc salt. An aqueous solution of NaOH (0.5N) was
afterward added drop-wise to the zinc solution under vigorous stirring until
the reaction had completed. During the addition of NaOH, a cloud of
suspended molecules was initially observed. The solution was then turned to
bright white due to the formation of the Zn-hydroxide particles. The stirring
was afterward stopped, and the hydroxide particles were allowed to
precipitate at the bottom of the preparation vessel. The precipitate was then
filtered on a Buchner funnel and repeatedly washed with de-ionized water.
The obtained zinc hydroxide was dried in an oven for overnight at 120 °C.
Finally, the hydroxide particles were converted to Zn-oxide (catalyst A) via a
calcination step for 4 hr at 500 °C.
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(b) In auto-ignition, zinc nitrate [Zn (NO3)5.6H,0] and citric acid (CgHgO7.H,0)
were first dissolved in a minimum volume of de-ionized water on a different
basis. Both solutions were then mixed with certain molar ratios (according to
equation 1). The mixing was executed at 80° C under energetic stirring 600
rpm.

97Zn (N03)24H20 ot 5 CsHgO4 (cﬁg Zn0O ©* 9 Nz(g) + 30 CO, @t 24 H,0 (9
eq. (1)

At the first place, a transparent solution was detected while a highly viscous
snow-white liquid was then obtained after a short time (ca 20 min). The
temperature was next increased to 200 °C where the viscous liquid had started to
swell and was simultaneously auto-ignited. A Large volume of gasses was
immediately generated due to the effect of auto-ignition. The evolution of gasses
had left behind a voluminous amount of solid powder. The obtained powder was
finally calcined at 500 °C for 4 hr to produce pure zinc oxide (catalyst B).

Results and Discussion

Characterization of zinc oxide nanoparticles
Thermal Gravimetric Analysis

The TGA -DTA profiles displayed by the corresponding metal hydroxides
Zn(OH), prepared from different methods in temperature range, 25 -1000°C, are
illustrated in Fig. 1. The total weight loss of Zn(OH), prepared by precipitation
method, was (3.007mg) 14.06% ; only small changes are shown either below
200° C related to evaporation of adsorbed water, or above 350° C linked with
lattice changes (phase transfer). On the other hand, for Zn(OH), prepared by
auto-ignition method, (1.707 mg) 9.309 % ; the weight loss up to 300° C
represents the removal of adsorbed water and citrate decomposition while (5.872
mg) 32.01 % ; the loss may be referred to the lattice change between 300 and
400° C, The total weight loss was 41.32% (7.579 mg) as shown in Table 1.
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Fig. 1. TGA and DTA curves of prepared Zn(OH), by preciptation method and auto-
ignition method.
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TABLE 1. Thermal analysis and weight losses from thermal analysis of Zn(OH), by
precipitation and auto-ignition methods.

Components range and % of Wt. loss

Components Water removal Lattice changes
(2200°C) (300-400°C)

Metal hydroxide of

Catalyst A 2.417 (2.491 mg) 11.65 (1.701 mg)

Metal hydroxide of

Catalyst B 9.309 (1.707 mg) 32.01 (5.872 mg)

X-Ray Diffraction (XRD)

Figure 2 shows the XRD patterns of the as-synthesized catalysts A and B.
From this XRD patterns analysis, we determined peak intensity, position and
width, full-width at half-maximum (FWHM) data. All the diffraction patterns
indexed to the hexagonal wurtzite structure zincite phase of ZnO®% with
crystal lattice 3.902 and 3.900 , respectively, which is in good agreement with the
literature values (card N0.01-070-2551) and (card No.01-36-1451) respectively.
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Fig. 2. XRD patterns of ZnO nanoparticles catalyst A and catalyst B.
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The diffraction pattern shows the as-prepared nanoparticles was monophasic
zincite with rod structures. Both catalysts have exhibited similar spectrums
consisting of main reflections centered around 26 of 31.37°, 34.42°, 36.26°,
47.54°, 56.61°, 62.68°, 66.39°, 67.96°, 69.10°, 72.55°, and 76.97° corresponding
to (100), (002), (101), (102), (110), (103), (200), (112), (201), (004), (202). The
wurtzite HCP "hexagonal close-pack™ structure (Fig. 3), show, each of the two
individual atom types forming a sub lattice which is HCP-type. When viewed
altogether, the atomic positions are the same as in lonsdaleite (hexagonal
diamond). Each atom is tetrahedrally coordinated. The exhibited sharp and
intense peaks in the spectrum can explicitly reveal the high crystalline structures
of both the prepared catalysts. Also, the absence of any additional peaks confirms
the high purity of the prepared nanoparticles. The synthesized ZnO nanoparticle,
the crystalline size Dygp Was calculated with Scherer’s equation®: D = KA/ B
cos 0, where D is the average size of the crystal; K (the wavelength of X-ray
radiation) equal 0.9, A is the wavelength of X-rays, B is the peak full width at
half maximum (FWHM) of the diffraction peak corresponding to plane (101) and
0 is the Bragg diffraction angle.

Fig. 3. The wurtzite HCP "*hexagonal close-pack structure.

Surface identifications for ZnO NPs

The surface characteristics of the as-prepared catalysts are illustrated in
Table 2. The average particles size of all catalysts, as calculated from the XRD
and surface analyzes.

Table 2 shows low surface area values for both catalysts A and B. However,
the surface area of catalyst B is higher than that of catalyst A. also, catalyst B had
exhibited relatively higher total pore volume, and, a little average pore radius was
detected compared with catalyst A. For both catalysts A and B, the detected pores
system is uniquely micro-porous structure, since the total pore radius was 1.24
nm and 1.08 nm, respectively. Both catalysts showed similar unit cell according
to the following equation: ao= di11V3, reported in®. Also, they exhibit unlike
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average crystal sizes, for example, catalyst A has a bigger particle size than that
of catalyst B as calculated from the relationship: Dggr= 6/p. Sger Where p is the
theoretical density of the powder (5.606 g/cm® for ZnO). In line with, catalyst B
has presented an average particle size equal to nearly half of the detected grain
size of catalyst A, as given by Scherer’s equation®. This, in turn, could explain
the reason behind the slight increase in the surface area value of catalyst B over
catalyst A. This also can confirm the good match between the XRD data and the
surface characteristics of the synthesized catalysts owing to the linked Sggr
values to the familiar crystal size by XRD.

TABLE 2. Surface characteristics and particles size values of the as-prepared ZnO NPs.

XRD results Surface characteristics
P | om) | @iy | @om | @mig | O™
Catalyst A 3.902 38.62 8.52 30.21 0.012 1.24
Catalyst B 3.900 22.05 12.45 17.19 0.032 1.08

SEM/TEM images

The surface and internal morphology of the as-prepared ZnO structures are
investigated respectively through the displayed SEM and TEM; (Fig. 4 & 5) at
different magnifications. Both catalysts A and B had exhibited low porous nature
(Fig. 4) which is in a high harmony with the acquired total pore volume via the
surface analysis. Nevertheless, the two catalysts showed nearly the same surface
morphology. Specifically, a non-smooth and non-uniform surface was detected
for both catalysts. Moreover, grains of the zinc oxide with some aggregated
particles were observed through the given SE
images. e g |
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Fig. 4. Surface morphology via SEM micrographs of the as-prepared catalysts A and B.
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The displayed TEM micrographs are strongly matching with the data given
by the surface area analysis in terms of detecting low porous structure in the
crystals of both catalysts. Figure 5 shows nano rod-structures for both catalysts
with average sizes of ca 40 and > 22 nm for catalysts A and B, respectively, also
shows uniform well-dispersed nanoparticles of the zinc oxides along the whole
structure for catalyst B. This can be referred to the usage of the citric acid as a
capping agent during the synthesis of catalyst B. The citric acid could help in
controlling both the particle size and the crystallization of the obtained ZnO
during the preparation. The given measurements by the TEM are genuinely
matched with the calculated gain sizes from the XRD data, according to
Scherer’s equation.
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Fig. 5. TEM micrographs of the as-prepared catalysts A and B. UV-Vis absorption
spectrum.

UV-Vis absorption spectrum

The influence of the preparation method on the photo-optical of the produced
zinc oxides is studied through their capability of absorbing the UV radiation. The
spectra of the UV-Visible absorption by the Zn oxides nanoparticles; both
catalysts A and B, are shown in Fig. 6. Both catalysts have shown an absorption
band at blue shift area (less than 400nm). About the absorption spectra, the
effective wavelengths of catalysts A and B are 385 and 355 nm , respectively. In
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line with, respective energy band gaps of 3.05 and 3.11 eV for catalyst A and B
were detected in Fig.7. The direct band gap of ZnO is estimated from the plot of
(ohv)? versus hv, where hy is the photon energy and « is the ratio of the
absorption coefficient to the scattering coefficient. These band gaps can explicitly
ensure the blue shift which had occurred for the prepared ZnO owing to the
inverse proportion of energy gap and wavelength.
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Fig. 6. Electronic absorption of UV-Visible spectra for catalyst A and B.
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Fig. 7. Plot of (ahv)® —hv of zinc oxide nanoparticdes.

Photoluminescence Spectrum (PL)
Figure 8 shows the photoluminescence spectrum of as-prepared ZnO NPs by
different methods of preparations with excitation wavelength 300 nm at room
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temperature. The curve suggests that the electrons in the valence band are
transferred to the conduction band, after which the excited electrons are stabilized
by photoemission. In general, the PL intensity increases with increasing humber
of emitted electrons resulting from recombination between excited electrons and
holes, leading to a consequent decrease in photo-activity®**? . Therefore, there is
a strong relationship between the PL intensity and photo-activity. In particular,
the band broadening is attributed to the overlapped emission from the higher and
lower excited states to the ground states.

So, the PL study was carried out to find the ability of each of catalyst for the
photocatalytic reaction. The different wavelengths, for both catalysts are strongly
dependent on the energy band gap of each of them. The emission is caused by the
radiative recombination of a photo-generated hole with an electron occupying the
oxygen vacancy®®. The PL intensity of catalyst B is lower than that of catalyst
A which apparently means that recombination of h*-e” system in case of catalyst
B is slow compared to A. This, in turn, will undoubtedly affect the photocatalytic
activity of the synthesized catalysts, specifically, higher activity can be expected
for catalyst B which was prepared by auto-ignition method.
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Fig. 8. Room temperature PL spectra of ZnO (NPs) for catalyst A and B.

Conclusions

ZnO nanoparticles have been prepared through precipitation method and auto-
ignition method. ZnO NPs were characterized by XRD, SEM, Tem, UV-Vis
absorption, and photoluminescence spectroscopy. XRD, surface data and TEM
studies confirmed the nanostructures for the as-prepared ZnO nanoparticles. The
UV-visible results showed that the absorption wavelength range of the ZnO
prepared by two previous methods were extended towards the UV- region (A is
less than 400 nm) with band gap energy 3.05 and 3.11 eV, respectively.
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Photoluminescence (PL) spectra proved that ZnO prepared by auto-ignition
method was the most active one. This indicated a minimum recombination rate.
As a result, they possess the highest photocatalytic activity due to the effective
separation of excited electron/holes. These ZnO nanoparticles can be used in
different photocatalytic and industrial applications due to its great optical
properties.
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