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ETRACHLOROSILANE/zinc chloride is used as an efficient

heterogeneous reagent to promote a one-pot, three component
synthesis of y-Hydroxy-B-ketoamides by the reaction of dimedone, as
a 1,3-diketone with various aromatic aldehydes and various nitriles,
in dichloromethane at ambient temperature.
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Multicomponent coupling reactions™ (MCRs) are attractive for parallel
synthesis as large arrays of compounds with diverse substitution patterns can be
prepared in one step, mostly in high yields, under mild conditions. MCRs are
powerful tools in modern drug discovery and allow fast, automated and high
throughput synthesis of diverse structural scaffolds required in the search of
novel therapeutic and pharmacological active molecules ®. Industrial and
academic research have made powerful MCR strategies into one of the most
efficient and cost-effective tools for combinatorial synthesis ©. The
development of novel MCRs is an intellectually challenging task, since one has
to consider not only the reactivity match of the starting materials but also the
reactivity of the intermediate molecules generated in situ, their compatibility
and their compartmentalization® . Amido- or amino-ketone derivatives are
significant for their biological and pharmaceutical properties” and in the
synthesis of antibiotic drugs such as nikkomycine or neopolyoxines® . The best
known route for the synthesis of this class of compounds is the Dakin—West
reaction® which involves the condensation of an amino acid with acetic
anhydride in the presence of a base® . Recently, other synthetic methods have
been used for the formation of B-acetamidoketones through the multicomponent
condensation of aryl aldehydes, enolizable ketones, and acyl chlorides in
acetonitrile in the presence of Lewis or Brgnsted acid catalysts such as
CoCL™™  montmorillonite K-10 clay™, silica sulfuric acid™®, BiCl,
generated from BiOCI®, zrOCl,.8H,0"® | heteropoly acid™®, sulfuric acid
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absorbed on silica gel” , Sc(OTf),"®, silica supported H;PW,0, ¢ |
Fe(HS0,);*? | Nafion-H®Y, NaHSO,.H,0%? | and iron(lll) chloride® |
HAPs®) CISO;H® | cyl chlorides®® . Despite these valuable protocols, these
methods lack the generality to produce arrays of B-amido ketones. To the best of
our knowledge, there are only three known methods that have employed the
MCR protocol in the reaction between demidone, aldehydes and acetonitrile (as
an example from nitriles); these methods used HAPs®¥ | CISO;H® | or acyl
chlorides® as catalysts. Therefore, introducing a new, efficient, and general
method which involves the use of simple and inexpensive heterogeneous
catalyst, like TCS/ZnCl, with various nitriles, aldehydes and demidone to form
B-amidoketone under mild condition would be a good addition. Towards this
goal, and in continuation of our investigations on the development and
applications of new in situ reagents derived from tetrachlorosilane (TCS) in
organic synthesis®” , we have developed an efficient and convenient protocol
for the one-pot synthesis of y-hydroxy-p-ketoamides, biologically active drug-
like molecules. The reaction proceeds via a three-component one-pot
condensation reaction of various aldehydes, demidone as a 1,3-diketone and
nitriles including alkyl, aralkyl, aryl, and utilizing the inexpensive and readily
available heterogeneous reagent TCS/ZnCl, in methylene chloride at room
temperature.

Results and Discussion
The synthesis of N-[(2-hydroxy-4,4-dimethyl-6-oxo-cyclohexenyl) phenylmethyl]
acetamide (4aa) in an efficient yield, was achieved through a three-component
one-pot reaction of benzaldehyde 1a, demidone 2, and acetonitrile 3a by using

of TCS/ZnCl, mixture in methylene chloride as a solvent at room temperature
as depicted in Scheme 1.
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Scheme 1. Reagents and Conditions: i) TCS/ZnCl,,CH,Cl,, r.t.

As a part of an ongoing study to investigate the optimum conditions for
these reactions, we studied the efficacy of the catalyst type, molar ratio and
solvent. The obtained results are summarized in Table 1.
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TABLE 1. Effect of catalysts and solvents on the yield and time of the one-pot synthesis of N-
[(2-hydroxy-4,4-dimethyl-6-oxo-cyclohexenyl) phenylmethyl] acetamide (4aa).

Entry Catalyst Solvent Time (hr) Yield
(%)
1 TCS/ZnCl, CH,ClI, 2.5 88
2 TCS/ZnCl, CH,CN 5 60
3 TCS/ZnCl, DMF/CH,CN 10 26
4 TCS/ZnCl, THF 10 Nil
5 TCS/ZnCl, C,H,Cl, 5 84
6 TCS CH,Cl, 102 76
7 ZnCl, CH,Cl, 104 45
8 SnCl, CH,ClI, 102 58
9 Silica.FeClj CH,Cl, 152 52

 heat (60 -70 °C)

For optimizing the reaction conditions, we examined the reaction of
demidone (1 equiv), benzaldehyde (1 equiv), and acetonitrile (1 equiv) as a
model example in the presence of SiCl;-ZnCl, at room temperature in various
solvents. Chlorinated solvents such as CH,Cl, or CICH,CH,CI were found to be
effective. The reaction was not compatible with oxygenated solvents such as
diethyl ether or THF which completely inhibited the reaction, because of high
oxophilicity of silicon. To determine the optimum quantity of SiCl; and ZnCl,,
the reaction was carried out in dichoromethane at room temperature using
different quantities of the catalyst. The use of 2 equiv of SiCl, and lequiv of
ZnCl; resulted in the highest yield. It is noteworthy to mention that a reaction
was observed in the absence of either the Lewis acid or SiCl, after heating. A
slight excess of acetonitrile was found to be advantageous, therefore, the molar
ratio of demidone, aldehyde, and nitrile was kept at 1:1:1.3, respectively, and
the best results were obtained by mixing the aldehyde, demidone, nitrile, and
(TCS/ZnCl,) in CH,CI, as solvent. This remarkable activation in reaction rate,
prompted us to explore the potential of this protocol for the synthesis of y-
hydroxy-p-ketoamides. The results are summarized in Scheme 2 and Table 2.

O Ar
5 © o e A
Ar”H NCR — = I >®\/J\ H
+ i) O R OH
1 3 4
la, Ar = phenyl- 3a, R = Me- 4aa-4ia, 4ab-4db,
1b, Ar = 4-Me-CgHy- 3p, R = Et- 4fb, 4bc-4ec, 4ad,

1c, Ar = 4-MeO-CgHy 3¢, R = Ph,CH- 4bd, 4dd
1d, Ar =4-CI-CgH4-  3d, R = Ph-
le, Ar = 4-Br-CgHj;-
1f, Ar = 2-Br-CgHy-
1g, Ar = 4-NO,-CgHy-
1h, Ar = 3,4,5—(OMe)3C6H2-
1i, Ar = naphthyl-
Scheme 2.
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TABLE 2. Reactions of demidone 2 with a variety of aldehydes and nitriles.

Entry Ar R Produtct [ Time (hr) |Yield® (%)
1 CeHs CH3; 4aa 25 88
2 4-MeCgHs CH3; 4ba 2 91
3 4-MeOCgHs CH3; 4ca 15 93
4 4-CICeHs CH3; 4da 35 85
5 4-BrCeHs CH3; 4ea 4 82
6 2-BrCqHs CH; ifa 45 81
7 4-NO,CgHs CHa; 4ga 5 75
8 3,4,5-(Me0);3CgH, CHa; 4ha 2 90
9 Naphthyl CHa; dia 2 86
10 CeHs CyHs 4ab 3 84
11 4-MeCgHs CyHs 4bb 2.5 89
12 4-MeOCgHs CyHs 4ch 2 90
13 4-CICgHs CyHs 4db 4 83
14 2-BrCeHs CyHs 4fb 45 81
15 4-MeCgHs (CeHs),CH 4bc 4 92
16 4-MeOCgHs (CeHs).CH 4cc 3 95
17 4-CICgHs (CeHs).CH 4dc 5 88
18 4-BrCgHs (CeHs).CH 4ec 5 86
19 3,4,5-(Me0);CeH, (CeHs),CH | 4hc 3 92
20 CeHs CeHs 4ad 5 82
21 4-MeCgHs CeHs 4bd 4 85
22 4-CICgHs CeHs 4dd 55 82

?1solated yield

From the results obtained it was apparent that the reaction time was shorter
and the yield was higher for the one-pot condensations of aldehydes or
acetophenones containing an electron-donating group (CHs, OCHa), relative to
the unsubstituted reactants, and the presence of electron-withdrawing
substituents (Cl, Br, NO,) led to longer reaction times and lower yields. In
addition, nitrile type also has an effect on the reaction rate; the ascending order
of reaction time is acetonitrile, propyonitrile, diphenylacetonitrile and
benzonitrile, respectively .

The structures of the obtained y-hydroxy-p-ketoamides were elucidated by
spectroscopic methods. The IR spectra showed peaks at v = 3397-3365, 3179-
3130, 1657-1650, and 1634-1623 cm™, corresponding to OH, NH, ketonic
carbonyl of COCHj,, and the amidic carbonyl CONH groups, respectively. The
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'H-NMR spectra of the synthesized products revealed singlet at & = 0.97-1.05
for 2CHjs, singlet and multiplet & = 2.14-2.68 for 2CH,, two exchangeable
protons for OH, NH, doublet signals & = 6.13-6.97 for the protons CHNH,
multiplet for aromatic protons. The *C NMR spectrum for (4ia) showed four
characteristic signals at 8 = 197.6 for the ketonic (CO), 171.2 for the enolic
carbon group, at 162 for the amidic CONH carbonyl groups and 104.5 vinylic
carbon; multi signals at 134.1-125.4 for aromatic carbons; 38.50 for CHNH and
(27.1 for 2CHj;. 15.5 for quaternary carbon; 53.9, 49.5 for 2CH,) characteristic
for demidone ring.

A plausible mechanism could be explained and demonstrated as follows, the
reaction started by the addition of heterogenous catalyst SiCl,/ZnCl; in a 2:1
molar ratio to the carbonyl group of the aldehydes, enolizable demidone as well
as to cyano group in nitrile led to the formation of intermediates (1), (ll),
respectively, followed by [4+2] cycloaddition to afford tetrahydrobenzo[e]-1,3-
oxazin-5-one derivatives intermediate (111) which hydrolyzed®® to y-hydroxy-B-
ketoamides (4) due to the (acidic medium ~ pH3) as given in Scheme 3.

o o Ar zncl,

SiCl,+ ZnCl, >©\/\O-SiCI3 N
o} m Q)

[4+2]
cycloaddition

O Ar ﬁ . O Ar

><j\/L NR LD N

H N
OH O R

4 (i

Scheme 3.
Conclusion

In conclusion, a highly efficient new approach to the synthesis of y-hydroxy-
B-ketoamides by the reaction between demidone, as 1,3-diketone, various
aldehydes and various nitriles catalyzed by TCS/ZnCl, has been presented. The
mild reaction conditions of the protocol, inexpensive reagents, ease of handling
and good yield are the advantages of the present method.

Experimental

Equipments

Melting points were determined and corrected. Microanalyses were carried
out by the Microanalytical Laboratory, National Research Center, Cairo, Egypt.
Infrared spectra (KBr-disc) were recorded using a Jasco FT/IR-300E
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spectrometer. *"H NMR and *C NMR spectra were measured in DMSO using
Varian Mercury 300 MHz with chemical shifts using TMS as standard solvent.
Mass spectra were recorded on a GC/MS Finnigan SSQ 7000 spectrometer. All
reactions were carried out under atmospheric conditions at room temperature.

Materials

Tetrachlorosilane (TCS), anhydrous zinc chloride were obtained from
(Sigma Aldrich) company. The solvents were distilled and dried over anhydrous
calcium chloride before use. Reactions were monitored by TLC on 0.25 mm
Merck Silica gel sheets (60 GF 354) (4 x 2 cm), and the spots were detected
with UV light.

General procedure

To a mixture of anhydrous ZnCl, (0.7 g, 5 mmol) and SiCl, (1.2 ml,
10 mmol) in CHyCl, (20 ml) were added aldehyde (5 mmol), dimidone
(5 mmol), and nitrile (6.5 mmol). The reaction mixture was stirred with
exclusion of moisture. The reaction monitored by (TLC) till the reaction
completion, the reaction mixture was poured onto water (100 ml), extracted
with CH,Cl, (2 x 50 ml) and the combined organic phase dried over anhydrous
MgSO,, followed by removal of the solvent under reduced pressure. The residue
resulting was chromatographed on silica gel using [pet. Ether/ethyl acetate
(1:1)] as eluent to give pure y-hydroxy-p-ketoamides.

N-[(2-hydroxy-4,4-dimethyl -6- oxo-cyclohexenyl)- (phenyl)methyl]-acetamide
(4aa)

m.p. 210 °C (lit**) R; 0.36 (pet. Ether: EtOAc 1:1), *H NMR (300 MHz,
DMSO-d6, d/ppm): 11.14 (s, 1H, OH exchanged with D,0), 8.05 (d, J = 9 Hz,
1H, NH exchanged with D,0), 7.63-7.22 (m, 5H, Ar-H), 6.83 (d, J = 9Hz, 1H)
2.68-2.60 (m, 2H), 2.23 (s, 2H), 1.99 (s, 3H), 1.05 (s, 3H), 1.01 (s, 3H).

N- [(2-Hydroxy -4,4- dimethyl-6-oxo-cyclohexenyl)- (4-methylphenyl)methyl]-
acetamide (4ba)

m.p. 205 °C (lit**) R; 0.37 (pet. Ether: EtOAc 1:1), *H NMR (300 MHz,
DMSO-d6, d/ppm): 11.10 (s, 1H, OH exchanged with D,0), 8.10 (d, J = 9 Hz,
1H, NH exchanged with D,0), 7.63 (d, J = 9 Hz, 2H), 7.22 (d, J = 9 Hz, 2H),
6.85 (d, J = 9 Hz, 1H), 2.68-2.60 (m, 2H), 2.53 (s, 3H), 2.23 (s, 2H), 1.98 (s,
3H), 1.05 (s, 3H), 1.01 (s, 3H).

N- [(2-Hydroxy -4,4- dimethyl- 6-0xo-cyclohexenyl) -(4-methoxyphenyl)
methyl]-acetamide (4ca)

m.p. 180 °C (lit*) Ry 0.32 (pet. Ether: EtOAc 1:1), *H NMR (300 MHz,
DMSO-d6, d/ppm): 11.12 (s, 1H, OH exchanged with D,0), 8.10 (d, J = 9 Hz,
1H, NH exchanged with D,0), 7.45 (d, J = 9 Hz, 2H), 7.20 (d, J = 9 Hz, 2H),
6.86 (d, J = 9 Hz, 1H), 3.74 (s, 3H), 2.68-2.69-2.63 (m, 2H), 2.23 (s, 2H), 2.00
(s, 3H), 1.05 (s, 3H), 1.01 (s, 3H).
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N- [(4-Chlorophenyl) -(2-hydroxy -4,4- dimethyl -6-oxo- cyclohexenyl)methyl]-
acetamide (4da)

m.p. 208 °C (lit**) '"H NMR (300 MHz, DMSO-d6, d/ppm): 11.10 (s, 1H,
OH exchanged with D,0), 8.08 (d, J = 9 Hz, 1H, NH exchanged with D,0),
7.32 (d, =9 Hz, 2H), 7.20 (d, J = 9 Hz, 2H), 6.85 (d, J = 9 Hz, 1H), 2.68-2.62
(m, 2H), 2.23 (s, 2H), 1.98 (s, 3H), 1.05 (s, 3H), 1.01 (s, 3H).

N-[(4-Bromophenyl)-(2-hydroxy-4,4-dimethyl-6-oxo-cyclohexenyl)methyl]-acetamide
(4ea)

m.p. 203 °C (lit*) '"H NMR (300 MHz, DMSO-d6, d/ppm): 11.13 (s, 1H,
OH exchanged with D,0), 8.11 (d, J = 9 Hz, 1H, NH exchanged with D,0),
7.36 (d, J =9 Hz, 2H), 7.22 (d, J = 9 Hz, 2H), 6.86 (d, J = 9 Hz, 1H), 2.68-2.60
(m, 2H), 2.23 (s, 2H), 1.98 (s, 3H), 1.05 (s, 3H), 1.01 (s, 3H).

N-[(2-Bromophenyl)- (2-hydroxy -4,4- dimethyl-6-oxo- cyclohexenyl) methyl]-
acetamide (4fa)

m.p. 185-187 °C, R; 0.27 (pet. Ether: EtOAc 1:1), IR (KBr, cm™) 3377
(OH), 3175 (NH) 1655 (C=0), 1632 (C=0). '"H NMR (300 MHz, DMSO-d,
d/ppm): & 11.11 (s, 1H, OH exchanged with D,0), 8.10 (d, J = 9 Hz, 1H, NH
exchanged with D,0), 7.63-7.22 (m, 4H, ArH), 6.85 (d, J = 9Hz, 1H), 2.68-2.60
(m, 2H), 2.23 (s, 2H), 1.98 (s, 3H), 1.05 (s, 3H), 1.01 (s, 3H). MS (EI 70 eV)
m/z: 366 (M"). Anal. Calcd. for CisH,0NO; (366.28): C, 55.75; H, 5.5; Br,
21.82; N, 3.82. Found: C, 55.70; H, 5.42; Br, 21.75; N, 3.75.

N-[(2-Hydroxy-4,4-dimethyl-6-oxo-cyclohexenyl)-(4-nitrophenyl)methyl]-acetamide
(4ga)

mp 202 °C (lit**) *H NMR (300 MHz, DMSO-d6, d/ppm): 11.15 (s, 1H, OH
exchanged with D,0), 8.16 (d, J = 9 Hz, 1H, NH exchanged with D,0), 7.95 (d,
J =9 Hz, 2H), 7.54 (d, J = 9 Hz, 2H), 6.86 (d, J = 9 Hz, 1H), 2.68-2.60 (m, 2H),
2.23 (s, 2H), 1.98 (s, 3H), 1.05 (s, 3H), 1.01 (s, 3H).

N-[(3,4,5- Trimethoxyphenyl) - (2-hydroxy -4,4- dimethyl -6-0xo- cyclohexenyl)
methyl] - acetamide (4ha)

m.p. 156 °C, R; 0.23 (pet. Ether: EtOAc 1:1), IR (KBr, cm™) 3378 (OH),
3176 (NH) 1659 (C=0), 1636 (C=0). *H NMR (300 MHz, DMSO-d6, d/ppm):
8 11.40 (s, 1H, OH exchanged with D,0), 8.80 (d, J = 9.2 Hz, 1H, NH
exchanged with D,0), 6.92 (s, 2H, ArH), 6.85 (d, J = 9.2 Hz, 1H), 3.76 (s, 9H),
2.68-2.60 (m, 2H), 2.23 (s, 2H), 2.05 (s, 3H), 1.04 (s, 3H), 1.00 (s, 3H). MS (El
70 eV) m/z: 377 (M. Anal. Calcd. for CoH,7NO; (377.34): C, 63.64; H, 7.21;
N, 3.71. Found: C, 63.60; H, 7.16; N, 3.67.

N-[(2-Hydroxy- 4,4-dimethyl-6- oxo-cyclohexenyl)- naphthylmethyl]-acetamide
(4ia)

m.p. 185 °C, R; 0.41 (pet. Ether: EtOAc 1:1), IR (KBr, cm™) 3380 (OH),
3179 (NH) 1657 (C=0), 1634 (C=0). '"H NMR (300 MHz, DMSO-d6, d/ppm):
3 11.13 (s, 1H, OH exchanged with D,0), 8.17 (d, J = 9 Hz, 1H, NH exchanged
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with D,0), 7.92-7.74 (m, 3H), 7.49-7.36 (m, 4H), 6.97 (d, J = 9Hz, 1H), 2.69-
2.59 (m, 2H), 2.24 (s, 2H), 2.00 (s, 3H), 1.05 (s, 3H), 1.01 (s, 3H). BC NMR (75
MHz, DMSO-d6, d/ppm): 197.60, 171.20, 162.02, 134.05, 132.26, 126.52,
125.40, 104.50, 53.90, 49.50, 38.50, 27.10, 18.50, 15.50. MS (EI 70 eV) m/z
337 (M"). Anal. Calcd. for C»H,3NO; (337.41): C, 74.75; H, 6.87; N, 4.15.
Found: C, 74.71; H, 6.82; N, 4.10.

N- [(2-Hydroxy -4,4-dimethyl -6-oxo -cyclohexenyl) -(phenyl)methyl]-propionamide
(4ab)

m.p. 188-190 °C, R; 0.38 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3370 (OH),
3120 (NH) 1652 (C=0), 1625 (C=0). *H NMR (300 MHz, DMSO-d6, d/ppm):
& 11.15 (s, 1H, OH exchanged with D,0), 7.85 (d, J = 9 Hz, 1H, NH exchanged
with D,0), 7.32-7.17 (m, 5H, ArH), 6.13 (d, J = 9 Hz, 1H), 2.38 (s, 2H), 2.3-
2.14 (m, 4H), 1.02 (s, 3H), 0.97 (s, 6H). MS (EI 70 eV) m/z: 301 (M"). Anal.
Calcd. for C1gH23NO; (301.18): C, 71.73; H, 7.69; N, 4.65. Found: C, 71.70; H,
7.65; N, 4.61.

N-[(2-Hydroxy -4,4- dimethyl -6- oxo-cyclohexenyl) -(4-methylphenyl) methyl]-
propionamide (4bb)

m.p. 184 °C, R;0.37 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3377 (OH),
3120 (NH) 1648 (C=0), 1627 (C=0). *H NMR (300 MHz, DMSO-d6, d/ppm):
3 11.19 (s, 1H, OH exchanged with D,0), 7.88 (d, J = 9 Hz, 1H, NH exchanged
with D,0), 7.25 (d, J = 9 Hz, 2H), 7.14 (d, J = 9 Hz, 2H), 6.15 (d, J = 9 Hz,
1H), 2.53 (s, 3H), 2.38 (s, 2H), 2.3-2.14 (m, 4H), 1.02 (s, 3H), 0.98 (s, 6H). MS
(EI 70 eV) m/z: 315 (M"). Anal. Calcd. for C1oHsNO; (315.41): C, 72.35; H,
7.99; N, 4.44. Found: C, 72.31; H, 7.94; N, 4.40.

N-[(2-Hydroxy-4,4-dimethyl-6-0xo- cyclohexenyl) -(4-methoxyphenyl) methyl]-
propionamide (4ch)

m.p. 180 °C, R;0.27 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3376 (OH),
3122 (NH) 1653 (C=0), 1620 (C=0). *H NMR (300 MHz, DMSO-d6, d/ppm):
3 11.11 (s, 1H, OH exchanged with D,0), 7.83 (d, J = 9 Hz, 1H, NH exchanged
with D,0), 7.21 (d, J = 9.2 Hz, 2H), 7.10 (d, J = 9.2 Hz, 2H), 6.15 (d, J = 8.8
Hz, 1H), 3.76 (s, 3H), 2.36 (s, 2H), 2.30-2.13 (m, 4H), 1.04 (s, 3H), 0.98 (s,
6H). MS (El 70 eV) m/z: 331 (M"). Anal. Calcd. for C1gH,sNO, (331.41): C,
68.86; H, 7.60; N, 4.23. Found: C, 68.82; H, 7.58; N, 4.16.

N-[(4-Chlorophenyl) - (2-hydroxy-4,4-dimethyl - 6-oxo - cyclohexenyl)methyl]-
propionamide (4db)

m.p. 192 °C, R;0.28 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3375 (OH),
3122 (NH) 1650 (C=0), 1623 (C=0).'H NMR (300 MHz, DMSO-d6, d/ppm):
3 11.19 (s, 1H, OH exchanged with D,0), 7.89 (d, J = 9 Hz, 1H, NH exchanged
with D,0), 7.30 (d, J = 9 Hz, 2H), 7.19 (d, J = 9Hz, 2H), 6.15 (d, J = 9Hz, 1H),
2.38 (s, 2H), 2.3-2.14(m, 4H), 1.02 (s, 3H), 0.99 (s, 6H). MS (El 70 eV) m/z:
335, 337 (M*, M"+2). Anal. Calcd. for CysH,,CINO; (335.83): C, 64.38; H,
6.60; Cl, 10.56; N, 4.17. Found: C, 64.34; H, 6.55; Cl, 10.52; N, 4.12.
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N-[(4-Bromophenyl)- (2-hydroxy-4,4- dimethyl- 6-oxo- cyclohexenyl)methyl]-
propionamide (4fb)

m.p. 160 °C, R; 0.25 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3376 (OH),
3123 (NH) 1649 (C=0), 1625 (C=0).'H NMR (300 MHz, DMSO-d6, d/ppm):
& 11.19 (s, 1H, OH exchanged with D,0), 7.89 (d, J = 9 Hz, 1H, NH exchanged
with D,0), 7.62-7.23 (m, 4H, ArH), 6.15 (d, J = 9 Hz, 1H), 2.38 (s, 2H), 2.3-
2.14 (m, 4H), 1.02 (s, 3H), 0.97 (s, 6H). MS (EI 70 eV) m/z: 380,382 (M",
M*+2). Anal. Calcd. for CigH,,BrNO; (380.28): C, 56.85; H, 5.83; Br, 21.01; N,
3.68. Found: C, 56.81; H, 5.76; Br, 20.92; N, 3.61.

N-[(2-Hydroxy-4,4-dimethyl-6-oxo-cyclohexenyl)-(4-methylphenyl)methyl]-2,2-
diphenyl acetamide (4bc)

m.p. 198 °C, R;0.4 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3382 (OH), 3129
(NH) 1658 (C=0), 1627 (C=0).'H NMR (300 MHz, DMSO-d6, d/ppm): & 8.18
(s, 1H, NH exchanged with D,0), 7.52-7.10 ( m, 14H), 6.38 (d, J = 12 Hz, 1H),
4.95 (s, 1H, OH, exchanged with D,0), 3.76 (s, 1H), 2.53 (s, 3H), 2.20-2.26 (m,
4H), 1.00 (s, 6H). MS (EI 70 eV) m/z: 453 (M"). Anal. Calcd. for CsH3;NO3
(453.57): C, 79.44; H, 6.89; N, 3.09. Found: C, 79.40; H, 6.84; N, 3.03.

N-[(2-Hydroxy-4,4-dimethyl -6-oxo-cyclohexenyl) - (4-methoxyphenyl) methyl]-
2,2-diphenyl acetamide (4cc)

m.p. 142 °C, R;0.35 (pet. ether: EtOAc 1:1), (KBr, cm™) 3385 (OH), 3130
(NH) 1659 (C=0), 1626 (C=0).'H NMR (300 MHz, DMSO-d6, d/ppm): & 8.24
(s, 1H, NH exchanged with D,0), 7.58-7.15 ( m, 14H), 6.37 (d, J = 12 Hz, 1H),
4.97 (s, 1H, OH, exchanged with D,0), 3.76 (s, 1H), 3.74 (s, 3H), 2.22-2.27 (m,
4H), 1.00 (s, 6H).MS (EI 70 eV) m/z: 469 (M"). Anal. Calcd. for CH3NO,4
(469.57): C, 76.73; H, 6.65; N, 2.98. Found: C, 76.68; H, 6.60; N, 2.95.

N-[(4-Chlorophenyl)-(2-hydroxy-4,4-dimethyl-6-oxo-cyclohexenyl)methyl]-2,2-
diphenylacetamide (4dc)

m.p. 156 °C, R; 0.35 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3380 (OH),
3130 (NH) 1656 (C=0), 1628 (C=0).'H NMR (300 MHz, DMSO-d6, d/ppm):
): 8 8.11 (s, 1H, NH exchanged with D,0), 7.52-7.13 ( m, 14H), 6.39 (d, J = 12
Hz, 1H), 4.95 (s, 1H, OH, exchanged with D,0), 3.76 (s, 1H) 2.22-2.27 (m,
4H), 1.00 (s, 6H). MS (El 70 eV) m/z: 473, 475 (M", M*+2). Anal. Calcd. for
Ca9H,sCINO; (473.99): C, 73.48; H, 5.95; Cl, 7.48; N, 2.96. Found: C, 73.43;
H, 5.91; CI, 7.41; N, 2.92.

N-[(4-Bromophenyl)-(2-hydroxy-4,4-dimethyl-6-oxo-cyclohexenyl)methyl]-2,2-
diphenyl acetamide (4ec)

m.p. 159 °C, R;0.33 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3377 (OH),
3126 (NH) 1653 (C=0), 1627 (C=0). 'H NMR (300 MHz, DMSO-d6, d/ppm):
5 8.10 (s, 1H, NH exchanged with D,0), 7.50-7.10 (m, 14H), 6.39 (d, J = 12
Hz, 1H), 4.95 (s, 1H, OH, exchanged with D,0), 3.76 (s, 1H) 2.22-2.28 (m,
4H), 1.00 (s, 6H). MS (El 70 eV) m/z: 518, 520 (M*, M*+2). Anal. Calcd. for
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C9HsBrNO; (518.44): C, 67.18; H, 5.44; Br, 15.41; N, 2.7. Found: C, 67.13;
H, 5.40; Br, 15.36; N, 2.66.

N-[(3,4,5-Trimethoxyphenyl)- (2-hydroxy -4,4- dimethyl - 6-oxo- cyclohexenyl)
methyl] -2,2-diphenylacetamide (4hc)

m.p. 160 °C, R;0.26 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3382 (OH), 3132
(NH) 1653 (C=0), 1626 (C=0). ‘H NMR (300 MHz, DMS0-d6, d/ppm): & 8.16
(s, 1H, NH exchanged with D,0), 7.52-7.07 ( m, 12H), 6.35 (d, J = 12 Hz, 1H),
4.93 (s, 1H, OH, exchanged with D,0), 3.77 (s, 9H), 3.75 (s, 1H), 2.24-2.28 (m,
4H), 1.00 (s, 6H). MS (EI 70 eV) m/z: 529 (M"). Anal. Calcd. for CsHasNOg
(529.62): C, 72.57; H, 6.66; N, 2.64. Found: C, 72.53; H, 6.61; N, 2.61.

N-[(2-Hydroxy -4,4-dimethyl -6-oxo-cyclohexenyl) - (phenyl)methyl]-benzamide
(4ad)

m.p. 170 °C, R; 0.29 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3368 (OH),
3135 (NH) 1656 (C=0), 1633 (C=0). ‘H NMR (300 MHz, DMSO-d6, d/ppm):
3 10.06 (s, 1H, OH exchanged with D,0), 8.02 (d, J = 8.2 Hz, 1H, NH
exchanged with D,0), 7.96-7.05 (m, 9H), 5.55 (d, J = 8 Hz, 1H), 2.00-2.04 (m,
4H) 1.10 (s, 6H). MS (EI 70 eV) m/z: 349 (M"). Anal. Calcd. for CxH,3NO;3
(349.42): C, 75.62; H, 6.63; N, 4.01. Found: C, 75.56; H, 6.58; N, 3.97.

N-[(2-Hydroxy -4,4-dimethyl-6-oxo-cyclohexenyl)- (4-methylphenyl) methyl]-
benzamide (4bd)

m.p. 185 °C, R; 0.3 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3367 (OH), 3133
(NH) 1654 (C=0), 1632 (C=0). '"H NMR (300 MHz, DMSO-d6, d/ppm): &
10.06 (s, 1H, OH exchanged with D,0), 8.02 (d, J = 8 Hz, 1H, NH exchanged
with D,0), 7.96-7.05 (m, 9H), 5.56 (d, J = 8 Hz, 1H), 2.53 (s, 3H), 1.98-2.03
(m, 4H) 1.10 (s, 6H)."*C NMR (75 MHz, DMSO-d6): & 197.60, 170.20, 162.00,
139.05, 133.26, 127.22, 129.00, 104.50, 53.60, 49.30, 40.50, 27.10, 15.50. MS
(EI 70 eV) m/z: 363 (M"). Anal. Calcd. for C,3H,sNO; (363.45): C, 76.01; H,
6.93; N, 3.85. Found: C, 75.95; H, 6.90; N, 3.81.

N-[(4-Chlorophenyl)- (2-hydroxy-4,4-dimethyl-6-oxo-cyclohexenyl) methyl]-
benzamide (4dd)

m.p. 190 °C, R; 0.27 (pet. ether: EtOAc 1:1), IR (KBr, cm™) 3369 (OH),
3136 (NH) 1659 (C=0), 1636 (C=0). *H NMR (300 MHz, DMSO-d6, d/ppm):
8 10.11 (s, 1H, OH exchanged with D,0), 8.09 (d, J =8 Hz, 1H, NH exchanged
with D,0), 7.98-7.00 (m, 9H), 5.58 (d, J = 8 Hz, 1H), 2.00-2.05 (m, 4H) 1.10 (s,
6H). MS (El 70 eV) m/z: 383, 385 (M", M"+2). Anal. Calcd. for C»,H,,CINO;
(383.87): C, 68.83; H, 5.78; ClI, 9.24; N, 3.65. Found: C, 68.75; H, 5.73; Cl,
9.18; N, 3.60.
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