42

Egypt. J. Bot., Vol. 60, No.2, pp. 593-603 (2020)

%

Egyptian Journal of Botany

http://ejbo.journals.ekb.eg/

Comparsion of Ecophysiological Responses of Acacia raddiana and
Acacia nilotica During Seedling Establishment in Extreme Arid

Conditions

CrossMark

Usama A.A. Radwan”, Tarek A.A. Radwan, Esraa K. Abouelkasim
Botany Department, Faculty of Sciences, Aswan University, Aswan 81528, Egypt.

Introduction

HE PRESENT investigation involves the studies of physiological responses of 4.
raddiana (savi) Brenan and 4. nilotica (L.) seedlings under extreme arid conditions.

Experiments were performed in a hyper arid environment to study the effects of
drought stress using different water regimes at 12%, 9%, 6%, 4% and 2%. Photosynthesis
and transpiration rate were measured under full Photosynthetic Active Radiationrange
(0-2500umols'm™?) and instantaneous water use efficiency was calculated.

A. raddiana and A. nilotica showed maximum photosynthesis rate under 4% and 12%
soil moisture content, respectively at high Photosynthetic Active Radiation levels, maximum
transpiration rate of 4. raddiana recorded at 4% soil moisture content and at 9% soil moisture
content in A. nilotica at highest Photosynthetic Active Radiation. The maximum instantaneous
water use efficiency was noticed in A. raddiana at 12% soil moisture content, while A. nilotica
showed maximum instantaneous water use efficiency at 6% soil moisture content at high
Photosynthetic Active Radiation level.

A. raddiana acted as water spender ideal desert plant at high Photosynthetic Active
Radiation. Other wise A. nilotica maximised photosynthesis rate and minimised transpiration
rate giving maximum instantaneous water use efficiency at high Photosynthetic Active
Radiation and low soil moisture content levels.

Keywords: Desert plant, Drought stress, Instantaneous water use efficiency, Photosynthetic
active radiation, Photosynthesis, Transpiration rate.

Abbreviations: Pn: Photosynthesis rate, E: Transpiration, WUE: Instantaneous water use
efficiency, PAR: Photosynthetic active radiation and SMC: Soil moisture content.

of drought stress related to stomatal closure in

response to low soil water content, which leads

Drought stress is the most prevailing environmental
factor restricting plant production (Bray, 1997) and
there are continuous changes in climate which
arising in severe drought conditions (Dai, 2012;
Basu et al., 2016). The effect of drought stress
is recognized as a decline in photosynthesis and
growth at all plant regimes, and it is concerned
with changes in carbon and nitrogen metabolism
(Cornic & Massacci, 1996; Mwanamwenge et
al., 1999; Yordanov et al., 2003). The reduction

to the minimized of intake of CO, (Chaves, 1991;
Cornic, 2000; Flexas et al., 2004; Ahmad et al.,
2011). Plants in arid environments have developed
physiological mechanisms to resist drought stress
(Fahmy & Ouf, 1999; Kozlowski & Pallardy, 2002;
Elfeel & Al-namo, 2011).

Desert plant species withst and extreme
environmental conditions such as water deficit
stress but keeping their metabolism active by the
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regulation of the osmotic and water relations in
order to survive (Khan & Beena, 2002; Abdellah,
2009).

A. raddiana grows in all Egyptian deserts
except that of Sinai and Cataract islands, while A4.
nilotica grows in the, lower stream parts of wadis
connected Eastern and Western Desert Nile valley
with Nile region, Cataract islands and oases of the
western desert (Boulos, 1999; Springuel, 2006). 4.
raddiana used as Gums extracted from the plant are
used for jaundice, Bark is used as disinfectant, and
Seeds used as antidiarrheal, while A. nilotica used
as Gum exudates from the tree antidiarrheal. Stem
bark extract used as antiamoebic, antispasmodic,
hypotensive. Fruits used for diarrhea; fruits used
as Fevers (Boulos, 1999; Springuel, 2006). Both
species considered as threatened due different man
activities such as cutting trees for fuel wood and
drought fluctuations (El Bahaa, 2012; Marshall et
al., 2012; New, 1984; Sinclair et al., 2008).

Aim of the current research was to reveal the
physiological mechanisms of A. raddiana and A.
nilotica to resist the combination of drought stress
and high irradiance during seedling establishment
which in turn help in the restoring and cultivation
of both endangered endemic species.

Materials and Methods

Seed collection and growing conditions

Seed collection from Desert Garden, Aswan
University Campus, Aswan, Egypt in 2015.
Seed dormancy of impermeable seed coat of 4.
raddiana and A. nilotica was breaked through a
pre-germination treatment by immersing seeds
in concentrated sulphuric acid (95%) for 10min
to weaken seed coat (Danthu et al., 1992; Ndour,
1997; Zettaetal., 2017) then washed with tap water.
Seeds were sown directly into plastic pots of 30cm
in diameter and 20cm deep with four 1.5mm-holes
at the bottom. Soil used in experiment was clay:
sand (1:2) (Taher et al., 2006). The experiment was
carried out for 16 weeks old of 4. raddiana savi
and A. nilotica (L.) under a different SMC from
12% (3% above field capacity) to 2% (almost dry).
The soil moisture content in pots is measured and
monitored by Model 5910A Soil moisture Meter
(KIMBLE Glass, Inc.) (Sheded & Radwan, 2008).

Gas exchange measurements

Measurements of the photosynthesis and
transpiration rate were performed by using
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infrared gas analyzer (IRGA, CI-340) handheld
photosynthesis system (CID Bio-Science, Inc.)
and measured in P4R range (0-2500p mols'm?)
by module CI-301LA. Six Homogenous replica
seedlings of A. raddiana and A. nilotica were
selected and marked for the measurements of gas
exchange along different watering regime. WUE
was determined using the following formula:

Instantaneous Water Use Efficiency=The current
net CO, assimilation rate (Pn)/ the current
transpiration Rate (£) (Silva et al., 2013).

Data analysis

Two-way analysis of variance was carried
out using MINITAB 12 statistical software, INC
USA.

Two-way ANOVA compares means in groups
of two different factors (SMC and PAR). Each
variation term again has an associated number of
degrees of freedom (DF) Total: N-1 (N= 55 obs.)
Factor A: Soil Moisture Content % and Factor B:
Photosynthetic Active Radiation. Sum of Squares
(SS)= Variation due to this factor Mean Square
(MS)= Sum of squares/ DF Hypothesis tests
for the importance of each factor in the model:
F-Tests measure the amount of variation explained
by each factor relative to the variation associated
with the errors (Minitab Inc., 1998).

Results

Maximum Pr of 7.07u molms™ was recorded
in A. raddiana seedlings kept at 4% SMC (Fig
1-d) at 2000pumolms™ (P4R). On the other hand,
maximum Pn of 4.02umol ms' was recorded
in A. nilotica seedlings (Fig 2-a) at 12% SMC at
2500pmol ms™ (PAR). Other wise negative values
of Pn were recorded in A. raddiana seedlings
(-0.3, -0.36pumol m?Zs') at 9% SMC and (-1.9,
-1.48 mol m?s?) at 2% SMC at PAR ranged
from 0 to 250pumol m2s™'. On the other hand, Pn
of A. nilotica’s seedlings showed negative values
(-0.78umol m?s™) at 12% SMC, (-1.33, -1.23pmol
m?s?) at 9% SMC and (-0.92p mol m?s™) at 2%
SMC and PAR ranged from 0 to 250umol m?s™.
From two-way analysis of variance (Tables 1
and 2), Pn in A. raddiana and A. nilotica showed
significant changes attributed to differences in both
SMC and PAR, where: F=8.68; P<0.0001, F=12.84;
P<0.0001, F=3.93; P<0.05 and F=8.61; P<0.0001,
respectively.
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Fig. 1a-e. Photosynthesis rate Pn (umol m2s') of

Acacia raddiana under water depletion
(12%, 9%, 6%, 4% and 2%) and at
photosynthetic active radiation (PAR)
ranged from 0 to 2500 (umol m?s?),
F=8.68; P<0.0001, F=12.84; P<0.0001,
respectively.
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Fig. 2a-e. Photosynthesis rate (umol ms™) of Acacia

nilotica under water depletion (12%, 9%,
6%, 4% and 2%) and at photosynthetic
active radiation (PAR) ranged from 0
to 2500 (pmol m-2s-1), F=3.93; P<0.05,
F=8.61; P<0.0001, respectively.
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TABLE 1. Two-way analysis of variance of photosynthesis rate (Pn), Transpiration (E) and instantaneous water
use efficiency (WUE) of Acacia raddiana under different soil moisture contents (%) and at full range of

photosynthetic active radiation (PAR).

Analysis of variance of Acacia raddiana’s photosynthesis rate (Pn) versus SMC and PAR.

Source DF SS MS F P
SMC 4 37.95 9.49 8.68 0.000
PAR 10 140.32 14.03 12.84 0.000
Error 40 43.71 1.09
Total 54 221.98

Analysis of variance of Acacia raddiana’s transpiration (E) versus SMC and PAR.
Source DF SS MS F P
SMC 4 2.1504 0.5376 10.12 0.000
PAR 10 2.2942 0.2294 432 0.000
Error 40 2.1239 0.0531
Total 54 6.5685

Analysis of variance of Acacia raddiana’sWUE versus SMC and PAR.

Source DF SS MS F P
SMC 4 13.974 3.493 5.28 0.002
PAR 10 64.106 6.411 9.69 0.000
Error 40 26.454 0.661
Total 54 104.534

TABLE 2. Two-way analysis of variance of photosynthesis rate (Pn), Transpiration (E) and instantaneous water
use efficiency (WUE) of Acacia nilotica under different soil moisture contents (%) and at full range of

photosynthetic active radiation (PAR).

Analysis of variance of Acacia nilotica ’s photosynthesis rate (Pn) versus SMC and PAR.

Source DF SS MS F P
SMC 4 8.231 2.058 3.93 0.009
PAR 10 45.101 4.510 8.61 0.000
Error 40 20.945 0.524
Total 54 74.276

Analysis of variance of Acacia nilotica ’s transpiration (E) versus SMC and PAR.
Source DF SS MS F P
SMC 4 4.7358 1.1840 32.15 0.000
PAR 10 1.1368 0.1137 3.09 0.005
Error 40 1.4730
Total 54 7.3456

Analysis of variance of Acacia nilotica >’s WUE versus SMC and PAR.

Source DF SS MS F P
SMC 4 126.23 31.56 13.11 0.000
PAR 10 114.69 11.47 4.76 0.000
Error 40 96.28 241
Total 54 337.20
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A. raddiana exhibited maximum £ of
2.73mmol m?s' at 4% SMC (Fig 3-d) at highest
PAR (2500pmol m?s?). On the other hand, £ in
A. nilotica seedlings gave maximum of 1.68mmol
m?s?! at highest PAR (2500umol ms™') kept at
9% SMC (Fig. 4-b). From two-way analysis of
variance (Tables 1 and 2), £ significant changes
of A. raddiana and A. nilotica were attributed
to differences in both SMC and PAR, where:
F=10.12; P<0.0001, F=4.32; P<0.0001, F=32.15;
P<0.0001, and F=3.09; P<0.01, respectively.
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Fig. 3a-e. Transpiration rate E (mmol m?s') of
Acacia raddiana under water depletion
(12%, 9%, 6%, 4% and 2%) and at
photosynthetic active radiation (PAR)
ranged from 0 to 2500 (pmol m?s?),
F=10.12; P<0.0001, F=4.32; P<0.0001,
respectively.
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Fig. 4a-e. Transpiration rate (mmol ms™) of Acacia
nilotica under water depletion (12%, 9%,
6%, 4% and 2%) and at photosynthetic
active radiation (PAR) ranged from 0 to
2500 (umol m?s™), F=32.15; P<0.0001,
F=3.09; P<0.01, respectively.

The maximum WUE (4.7umolms"!/mmol
m?s') was recorded in 4. raddiana seedlings
kept at 12% watering regime (Fig 5-a) at PAR of
1500pumol m?s. 4. nilotica exhibited maximum
WUE of 9.3u molm?s'/mmol m?s' at 6% SMC
(Fig. 6-¢) at 1500umolm3s' (PAR). From two-
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way analysis of variance (Tables 1 and 2), WUE
changes of A. raddiana and A. nilotica showed
significant changes attributed to differences
in both SMC and PAR, where: F=5.28; P<0.01,
F=9.69; P<0.0001, F=13.11; P<0.0001, and
F=4.76; P<0.0001, respectively.
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Fig. 5 a-e. Water use efficiency (umol m?s?'/ mmol

m2s?) of Acacia raddiana under water
depletion (12%, 9%, 6%, 4% and 2%)
and at photosynthetic active radiation
(PAR) ranged from 0 to 2500 (pmol
mZs-'), F=5.28; P<0.01, F=9.69;
P<0.0001, respectively.

Egypt. J. Bot. 60, No.2 (2020)

10 - (a)

8

6 4

2 4

0 : ; ; T T T T T T )
2 (, 500 1000 1500 2000 2500
_4 J
10 - (b)

WUE

8

6

4 4

2 4 /\/\‘\/\‘\H
0 T T T T T T T T T )
210 / 500 1000 1500 2000 2500
-4

10 4 (c)
8 1
6 1
S
s 4
2
0 T T T T T T T T T T 1
20 500 1000 1500 2000 2500
4 ]
10 - (d)
8
yo
S 4
2 4 m
0 T T T T T T T T T T 1
240 500 1000 1500 2000 2500
4 ]
10 - te)
8 1
6 1
2 A M
0 o T T T T T T T T 1
2 ﬂ/' 500 1000 1500 2000 2500
4

PAR (umol m-2s)

Fig. 6a-e. Water use efficiency (umol m?s/
mmol m?s") of Acacia nilotica under
water depletion (12%, 9%, 6%, 4%
and 2%) and at photosynthetic active
radiation (PAR) ranged from 0 to 2500
(nmol m?s?), F=13.11; P<0.0001, F=4.76;
P<0.0001, respectively.

Discussion

During this study, 4.raddiana and A. nilotica
exhibited different high tolerance mechanisms
to drought. Many authors found that drought
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tolerance is characterized by high productivity via
maximizing assimilation in relation to the amount
of water availability (Jones, 1992; Radwan, 2007).
A. raddiana and A. nilotica showed maximum Pn
under 4% and 12% SMC, respectively at high PAR
levels. One of the main physiological responses
of plant to soil dryness is minimize in leaf
conductance to water for keeping sufficient turgor
in plant tissues (Nunes et al., 1989; Radwan,
2008). Negative Pn values were noticed in both
A. raddiana and A. nilotica seedlings under low
PAR (0 to 250pmol m?s') accompanied with
water depletion. Jones (2014) stated that negative
Pn values associated with dark respiration, in
order to produce energy during plant growth.
Drought promoted stomatal closure (Flexas et
al., 2004), shoot and root growth in desert plants
(Bageat-Triboulot et al., 2007; Radwan et al.,
2007). Drought stress affects photosynthesis rate
due to the minimized CO, availability resulted
from stomatal closure (Flexas et al., 2006; Chaves
et al., 2009; Osakabe et al., 2014). Reduced gas
exchange of leaf minimized transpiration in leaf
and carbon assimilation (Parolin, 2001; Baraloto
et al., 2007; Wang et al., 2017). Under limited
water supply or high evaporation, plants exhibit
different strategies for survival and growth (Jones,
2004; Tambussi et al., 2007; El Atta et al., 2012).

According to this study’s results, A. raddiana
showed high transpiration rates at 4% watering
regime. In drought conditions plants attain
survival mechanisms by decrease the potential
dry matter productivity through decreasing total
photosynthesis by stomatal closure. The main
effects of drought stress in plants are declined leaf
size, stem elongation, water use efficiency (WUE)
(Li et al., 2009; Farooq et al., 2009; Farooq et al.,
2012).

The ideal desert plants tends to exhibit
optimum balance between water conservation
and productivity mechanisms depending on the
aridity of the environment, productivity of plants
in dry environments is enhanced by maximizing
assimilation and minimizing water evaporated
in relation to water availability to improve WUE
(Sambatti & Caylor, 2007; Jones, 2014).The
photosynthetic water use efficiency (WUE) is
associated with the plant’s optimum water use
(Robinson et al., 2001; Larcher, 2003; Novriyanti
etal., 2012).

The result of stomatal closure is minimizing

transpiration rate, which leads to the improvement
of water use efficiency (Lawson & Blatt, 2014;
Tshikunde et al., 2018). The highest WUE value
related with the increment in drought tolerance
with trees growing in arid areas (Smith & Nowak,
1990; Otieno et al., 2005), which agree with the
current study’s results that the maximum WUE
was noticed in A. raddiana at 12% SMC, while
A. nilotica showed maximum WUE at 6% SMC
at high PAR level. The plant’s capability to absorb
higher carbon concentrations for including high
photosynthetic rates maintenance, and water loss
is limited via the control of the stomatal aperture
and closure (Flexas et al., 2013; De Santana et al.,
2015; Liu et al., 2016), and plants able to absorb
carbon and maintain photosynthetic activities
(Roel etal.,2011; Broeckx et al.,2014; Dos Santos
etal., 2017).

Desert plants adopt a powerful defense
mechanism by minimize water loss through
reduction of stomatal conductance and the
dynamic photoinhibition under high irradiance
(Rossi et al., 1999; Pinheiro & Chaves, 2011). 4.
raddiana acted as water spender ideal desert plant
at high PAR and in response to water depletion
and 4. nilotica maximized Pn and minimized £
giving maximum WUE at high PAR and low SMC
levels.
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